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ABSTRACT

The large disturbance behaviour of power systems often involves
complex interactions between continuous dynamics and discrete
events. The paper proposes a differential-algebraic-discrete (DAD)
model structure which captures those interactions in a systematic
way. It is shown that the model is a realization of a general hybrid
system model. The DAD model opens up opportunities for the
application to power systems of hybrid system results in stability
analysis and control. The paper presents a practical approach to
implementing the DAD model structure.

1. INTRODUCTION

The large disturbance behaviour of power systems is often char-
acterised by complex interactions between continuous dynamics
and discrete events. Components such as generators and loads
drive the continuous dynamic behaviour. They obey physical laws,
and are usually represented by coupled differential and algebraic
equations [1]. Other components exhibit event-driven discrete
behaviour though. Examples include tap-changing transformers,
swiiched shunts and protection devices. The dynamics in this case
are often governed by logic rules that depend on inputs from the
continuous dynamics.

Systems which involve both continuous and discrete event dy-
namics, such as power systems, have become known as hybrid
systems. Significant attention has been directed towards hybrid
systems recently, with exciting progress being made in stability
analysis and control 2, 3]. These developments open up new
opportunities for power system security assessment and control
design. However to fully exploit these opportunities, a systematic
model of power systems must be established. This paper addresses
that modelling issue.

Analysis of the large disturbance dynamic behaviour of power
systems has historically relied on time domain simulation. There-
fore ad hoc approaches to modelling discrete events have been
adequate. Development of systematic models has received little
attention. An exception is the work of [4], where precise de-
scriptions of protection devices have been presented. Interestingly,
even common devices such as tap-changing transformers exhibit
dynamic behaviour that is difficult to describe analytically. The
proposed model captures such complexities.

2. HYBRID SYSTEM MODEL

As indicated in Section 1, hybrid systems are characterized by:
e continuous and discrete states,
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e continuous dynamics,
o discrete events, or triggers, and

e mappings that define the evolution of discrete states at
events.

Conceptually such systems can be thought of as an indexed col-
lection of continuous dynamical systems = = fq{x), along with a
mechanism for ‘jumping’ between those systems, i.e., for switch-
ing between the various f,. The continuous and discrete states
are x and g respectively. The jumping reflects the influence of the
discrete event behaviour, and is dependent upon both the trigger
condition and the discrete state evolution mapping. Overall sys-
tem behaviour can be viewed as a sequential patching together of
dynamical systems, with the final state of one dynamical system
specifying the inital state for the next.

A formal presentation of these concepts is given in 5], where
a general hybrid dynamical system is defined as

H=[Q,% A,G] (H

and
e () is the set of discrete states;

e ¥ = {¥;}seq is the collection of dynamical systems

- g = [Xq, Ty, fq] where each X, is an arbitrary topolog-
ical space forming the continuous state-space of Xg, I'g is
a semigroup over which the states evolve, and f, generates
the continuous state dynamics;

o A= {A;}qeq, Aq C X, foreach g € Q, is the collection
of autonomous jump sets, i.e., the conditions which trigger
jumps;

® G = {Go}eeq, where Gg : Ay — S = quQ Xq x{q}
is the autonomous jump transition map.

The hybrid state-space of H is given by S. In this paper we
restrict attention to hybrid systems where € is countable, each
X, CR%,d, € Zy,andeach Ty = R.

The abstract model (1) is not immediately useful for power
system analysis. Therefore a model which is more conducive to
such analysis is presented in the following section. Itis then shown
that the proposed model is consistent with (1).

3. POWER SYSTEM MODEL

Many different types of systems, including power systems, can
be generically described by a parameter dependent differential-
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algebraic-discrete (DAD) model of the form,

T = f(z,y,2 ) )
0=g"(z,y,2 ) 3)
G- .
— g X (miy) 25 )‘) Yd,i < (] .
0= { @y, 50 yai>0 T Lowd (4
2t = hi(z™,y",27; A) Yy =0 j€{l,...;e} (5)
z=0 Yej #0 Vi€ {l,....,e} (6)

where

TEXCR,yeYCR™, 2 ZC R, Ac LCR"

ya = Dy

ye = By

f . Rn+m+l+p - Rn
g©®
9(1)

9 = N R"+m+l+p — Rm
9@

hy R R i=1,..e

and D € R¥™™ E ¢ R**™ are matrices of zeros, except that
each row of each matrix has a single 1 in an appropriate location.
The yq and yego vern the d switching events and e reset events
respectively. There is no restriction on yq4 and y. sharing some
common elements. In (5), 27, y7, 27 refer to the values of z, y,
and 2 just prior to the reset condition, whilst z* denotes the value
of z just after the reset event.

In this model, which is similar to a model proposed in [6), z are
continuous dynamic state variables, 4 are algebraic state variables,
z are discrete state variables, and A are parameters. For example, in
the power system context z would include machine dynamic states
such as angles, velocities and fluxes, y would include network
variables such as load bus voltage magnitudes and angles, z could
represent transformer tap positions and/or relay internal states, and
A could be chosen from a diverse range of parameters, from loads
through to fauit clearing time.

Note that the model does not allow discontinuities in the dy-
namic states, i.e., impulse effects. This is not a restriction forced
by analysis. However the model adopts the philosophy that the
dynamic states of actual systems cannot undergo step changes.

The proposed model (2)-(6) captures all the important aspects
of hybrid system behaviour, namely the interaction between contin-
uous and discrete states as they evolve over time. Between events,
system behaviour is governed by the differential-algebraic (DA)
dynamical system

z
0

(@92 ) %)
gq(z7y725 )‘) (8)

Il

i

where g4 is composed of 99, together with functions from “4)
chosen depending on the signs of the elements of 4. Each different
composition of g4 is indexed by a unique g. An event is triggered
by an element of y4 changing sign and/or an element of y. passing
through zero. At an event, the composition of g, changes and/or
elements of z are reset. Therefore, in this hybrid system model,
each DA dynamical system is effectively indexed by g and z. Atan

event, this index changes and a jump is made to the new dynamical
system.

Assuming the Jacobian 8¢, /9y is nonsingular, i.e., the system
has not encountered an impasse surface [7], the implicit function
theorem allows (8) to be solved (locally) giving y = @(q,2y(; A).
Substitution into (7) yields @ = f(, ,,(z; A). This representation
allows the DAD model to be related directly to the general hybrid
dynamical system model (1). The discrete states are (¢, z) € Q.
The dynamical systems X.(q, .y are defined by (7),(8), with f(*q’z)
generating the continuous state dynamics. Each jump set A(g,,)
is composed of conditions yq,; = 0 and ye ; = 0, where yq, ye
are given by ©(,,). The general nature of g,, and hence ¢, .),
allows arbitrarily complicated sets of event triggering conditions
to be described for each (g, z). The jump transition map G/, ;) is
defined by the change in g that corresponds to each yq,; = 0, along
with the reset map (5) corresponding to each y. ; = 0.

The following example illustrates the DAD model structure
(2)-(6).

Example

In order to demonstrate the ability of the DAD structure (2)-(6)
to model rule-based systems, this example considers a relatively
detailed representation of the automatic voltage regulator (AVR)
of a tap-changing transformer. The logic flow of the AVR for low
voltages, i.e., for increasing tap ratio, is outlined in Figure 1. The
corresponding DAD representation is,

T1 =Y

=Ys—yst+ 2

0= ys ~ 1+ Nmax — Nsiep/2
0:nV1—V2

0=y -1 y2 <0
0=mn

>0

0:y4_x1 } Y2

=y2 — Va+ View ye <0
O0=y2-1 ys >0
0:y5*I1+Z1+Tmp y3<0
0=ys — 21 +ya + Ttap y3 >0
2] =z -
nt = n" + nge } when ys = 0.

To assist in connecting AVR logic with the model, Figure 1 indi-
cates the variables that are related to particular functions.

The dynamics of this device are driven by a number of inter-
acting events which govern the behaviour of the timer. If the tap is
at the upper limit (ye¢ > 0), or the voltage is within the deadband
(y2 > 0) then the timer is blocked. If the voltage is outside the
deadband (y2 < 0) then the timer will run. If the timer reaches Th5p
(ys = 0) then a tap change will occur and the timer will be reset,
but not necessarily blocked. If the voltage returns to within the
deadband, because of smooth system dynamics, or a tap change,
or some other system event, then the timer is blocked and reset. O

It is clear that the notation of (2)-(6) can quickly become un-
wieldy. Therefore it is convenient to write the model more com-
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Monitor voltage 12

Taps on upper himit?
(ys > 07)

Reset timer (yq = 21)
Black timer (¢, = 0)

Timer enabled? no,

Enable timer
(& =17) (& =1)

Timer reached Tiap?

Change tap (nt = n~ + nuep)
Reset timer (2 = z1)

Figure 1: Transformer AVR logic for increasing tap.

pactly as
z = f(z,y) ©)
0= 9(0)(% ?/) 10
G-) )
_{ 9 Nzy)  wyea<O0
0= { 0Pz y)  yaz>0 T Led (1)
z' =hi(z,y7) Yy =0 je{l,.,e} (12)
where
x f z
z= z ? _f_ = 0 il ﬁj = hj
A 0 A

Let the times at which events occur be given by {71 : o < 71 <
72 < }

Notice that the definition of f ensures that z and A remain
constant away from reset events (12). Further, b ; ensures that ©
and A remain unchanged at a reset event. As with (7),(8), over each
of the open time intervals (7, 7+1) the system is described by a
smooth differential-algebraic (DA) model

z = flz,y) : (13)
0 = g(z,y) (14)

where g is composed of (10) together with functions from (11)
chosen depending on the signs of the elements of y4. (Recall that
the definition of the ) ensures that no elements of yq can change
sign during the period (Tk, Tie41)-)

4. IMPLEMENTATION

Models of large systems are most effectively constructed using a
hierarchical, object-oriented approach. With such an approach,
components are grouped together as subsystems, and the subsys-
tems are combined to form the full system. This allows component
and subsystem models to be developed and tested independently.
It also allows flexibility in interchanging models. For example, a
dynamic load model may be swapped for a static load to explore
the influence on voltage collapse. At a higher level, an economic
dispatch subsystem model could be replaced by a market dispatch
model to compare outcomes of the different scheduling strategies.

Voo Z0 Vidé, Vo462 =6, Valos

Supply Bus 1 Bus 2 Bus 3
Point

Figure 2: Power system example.

The interactions inherent in hybrid systems are counter to this
decomposition into subsystems and components. However the al-
gebraic equations of the DAD model can be exploited to achieve
the desired modularity. Each component or subsystem should be
modelled autonomously in the DAD structure, with all ‘interface’
quantities, i.e., inputs and outputs, established as algebraic vari-
ables. The components are then interconnected by introducing
simple algebraic equations that ‘link’ the interface variables. For
example, say the n-th algebraic state of component 7, denoted y;n,
isrequired as an input by component &. In the model of component
k, that input would appear as an algebraic variable yx . The con-
nection is made via the simple algebraic equation 0 = y; » — Y&, m-
In general, all linking can be achieved by summations of the form

0= cryis (15)

where cxi s 1. Notice that all connections are external to the'
component models.

The process introduces extra algebraic variables and equations,
so is a little inefficient. However the connections are extremely
sparse, so careful use of sparsity techniques makes the approach
tractable.

The proposed modular approach to constructing hybrid sys-
tems has been implemented in Matlab. The following example
illustrates the concepts.

Example (continued)

The simple power system of Figure 2 consists of a dynamic load
supplied from an infinite bus via a tap-changing transformer. The
continuous dynamics of the real power load are given by an expo-
nential recovery model.

This system is described by the data file of Figure 3. Each
component of the system is described by its corresponding model;
the dynamic load and tap changer are represented by load_dynl
and tap_changer respectively, whilst the models for the infinite bus,
network and switched line are appropriately named. Each model
is associated with three data vectors. These specify initialization
values for z,, yo and parameters respectively. )

As indicated carlier, the models are interconnected through
interface variables. Consider the connection of components such
as the load to the network. The model network provides a nodal -
representation of the network constraints, and introduces four al-
gebraic variables at each bus, viz., real and imaginary components.
of bus voltage V., Vi and injected current I, I;. The model
load_dyn1 describes load behaviour in terms of terminal bus alge-
braic variables V,., V;, I and I;. The link between the network
and load variables is established via connections. Each vector in
connections contains pairs of indices which set up an equation of’
the form (15). Referring to the data file of Figure 3, the first vector.
[1 2 3 —13], for example, introduces the equation0 = y1,2 - ¥3,13
where y; ; refers to the j-th algebraic variable of the i-th model.
This particular equation ensures the real part of the voltage seen by.
the load (y1,2) is equal to the appropriate network voltage (y3,13).
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model_data = {'load _dynl' {0 5 0.4 2.0} (3.4 1 0 -0.4 0] (0.4} ;
'tap_changer' [0 -1 1.0375 20 0.0125) ...
(60000001010 -0.400.40) ...

[1.04 1.11 ;
‘network' [} 1 0 00 ... % Infinite bus
10-0.40...%Bus 1
10 0.40 ...%Bus 2
10-0.40]... % Bus 3
[1200.650 % Line data: £ t RX B
3400.800] ;
‘infinite bus' (] [1.05 0] [1.05] ;
‘switched_line' [0] [1 0 6 0 ... % From bus
1000 -1] ... § To bus
(0 0.40625 0 10] ;
‘out_Vmag' [) (1 0 1) (I };
connections = {[1 2 -131 ...
(133 -14) ...
(143 -180 ...
{153 -16] ...
(2 73 -5y .
(283 -6) .
293 -9) .
[2 10 3 -10)
2113 757
(2123 -8 5 8]
12 13 3 -11)
(2 14 3 -121
[4 13 -17 .
(4 23 -2)
{513 -1]
[523 -2} ...
{553 -5 ...
(563 -6]
[6 13 -13]
(€ 23 -141 }

)
nz=142

Figure 4: Sparsity structure for the two machine system.

The Jacobian of the continuous dynamics

(L £ ]
7 [92 g: (16)

is useful for illustrating the interconnections between models. The
structure of 7 for this example is shown in Figure 4. It is clearly
sparse. The matrix. is composed of blocks down the diagonal,
together with the cross couplings f and gy and the connection
equations. The matrix iz, which occupies the top left corner

of J, has dimension R'°*% in this example. The last 20 rows
correspond to the connection equations. They interconnect the
diagonal blocks of g,,.

A disturbance was applied to the power system to illustrate the
interactions between continuous dynamics (due to the load) and
discrete event dynamics (resulting from the tap-changing trans-
former). Att = 10s, the feeder with impedance j X, was tripped.
The behaviour of the voltage at bus 3 is shown in Figure 5, along
with the load demand Py. The non-smooth nature of the trajectory
is clearly evident. a

In general, components and subsystems of any form can be
modelled, provided they are structured with input/output algebraic
variables that can be linked to other components. For example a
subsystem representing market dynamics could be linked to appro-

o 180 180 20

¢ ®  © & 8 10 1
Tima (sec)

Figure 5: System response to disturbance.

priate inputs of the physical power system. Noise and/or random
disturbances can be added to the model by linking components that
generate random signals.

5. CONCLUSIONS

Power systems often exhibit complex behaviour in response to large
disturbances. Such behaviour frequently involves interactions be-
tween continuous dynamics and discrete events. Power systems are
therefore an important example of hybrid systems. Their behav-
iour can be captured by a model which has a differential-algebraic-
discrete (DAD) structure. It is shown in the paper that the DAD
model is a useful realization of a more general representation of
hybrid dynamical systems.

Models of large systems are most effectively constructed using
a hierarchical, object-oriented approach. However the interactions
inherent in hybrid systems make that difficult to achieve. The pa-
per shows that the desired modularity can be achieved with the
DAD model. Components and/or subsystems are modelled au-
tonomously, with inputs and outputs linked via simple algebraic
equations. The resulting models have a sparse structure.
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