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This paper presents a stability analysis of power systems
where induction motors constitute a main portion of the
system load. Various stability questions are analysed in
terms of network and induction motor characteristics. The
issue of dynamic behaviour of induction motors under low
voltage conditions is particularly addressed, highlighting
the role of limits on slip variables in identifying and under-
standing potential (in)stability phenomena. © 1998 Elsevier
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l. Introduction

The area of voltage stability analysis and control of power
systems has yielded an extensive and diverse array of
contributions. These are represented in several recent
publications [1-3]. Motor behaviour has been a major
contributing factor in a number of documented voltage
instability problems and collapses [2,4]. Those incidents
have typically involved large disturbances and low voltage
conditions. This paper, therefore, addresses some voltage
stability issues characteristic of systems where induction
motor loads constitute a significant part of the system load.
In particular, the focus is on sub-transmission systems,
where induction motor interaction can lead to instability
and stalling. With the advent of new lower voltage FACTS
devices, see for example Ref. [5], an improved understand-
ing of system dynamics at this level is very important.

The modelling of induction motor loads has been widely
studied. More specifically, considerable attention has been
paid to an appropriate reduced order representation of the
aggregate motor dynamics in voltage stability studies [6-9].
In Refs [6,8], the first- and the higher- (third-)order induction
motor models are compared in terms of their ability to
capture motor load behaviour under various voltage
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disturbances and for the full range of motor operating
conditions (from standstill to stalling). Different structural
models describing the dominant dynamic behaviour of small
and large induction motors are derived in Ref. [7]. A
dynamic load model which describes measurable bus vari-
ables P, Q, V and frequency, and which is based on induction
motor characteristics, is developed in Ref. [9].

Various voltage and system stability studies have illu-
strated how the choice of a load model, including induction
motor load models, affects the dynamic behaviour of the
system [10-19]. In Ref. [20], the voltage stability of the Rio
area of the Brazilian system is assessed in terms of the
proportion of the induction motor load in the total area load.
In Ref. [4], several incidents in Southern California are
reported. In that paper, the mechanism of voltage collapse
was associated with the stalling of air-conditioning motors at
low voltages and slow fault clearing. In many of these
research reports, bifurcation theory is used as the main
stability analysis tool [10,15,17]. Some interesting aspects
of induction motor stability behaviour, based on laboratory
experiments and time simulations, are presented in Refs
[4,11,12,21]. In Ref. [4], tests of air conditioner response to
voltage dips were used to derive a dynamic air conditioner
load model appropriate for voltage stability studies.

It is now well-accepted that the voltage stability problem
has both static (based on power flow equations) and dynamic
(based on differential equations) aspects. Following the style
of earlier results [13,14,22], the analysis of the paper
addresses this systematically within a framework which
emphasizes the interaction between load dynamics and the
network via power balance equations. Analytical insights
into observed behaviour of power systems with induction
motor loads are given. The analysis makes use of bifurcation
theory and time simulation. We limit attention to sub-
transmission networks where the generator dynamics do
not play a strong role, for example coal-mine distribution
systems [23].

An interesting aspect of induction motors is that slip
cannot exceed unity. These limits play an important role in
system behaviour, and are carefully considered. The impact
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Figure 1. Experimental P and Q transients [24]
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Figure 2. Experimental P and Q responses [24]

of load torque—speed characteristics and load composition
on voltage and system behaviour is also addressed.

li. Load system model

Il.1 Induction motor load response

There have been several analytical and measurement-based
studies of the response of induction motors to a sudden
change in voltage magnitude [11,12,24,25]. Depending on
the size of the motors tested, slightly different responses
have been obtained. Larger induction motors are shown in
Ref. [24] to experience larger (less damped) oscillatory
transients than smaller induction motors. However,
regardless of the motor size, experiments show that transi-
ents disappear very quickly (within 1s), as illustrated in
Figure 1, and are followed by an almost exponential return to
the steady state—see Figure 2. In the case of large induction
motors though, the exponential recovery is slower [24].

Real and reactive power recovery, in response to a voltage
step, is mainly determined by the motor’s inertia and rotor
flux time constants [26]. For long-term stability analysis, the
rotor flux dynamics may sometimes be neglected [26],
leaving only the first-order motor dynamics described by
(18]

P,
d Qd
—_— P R
™ I
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Figure 3. First-order model equivalent circuit of the
induction motor

1 Py
§= IW?; [1 —g PIM(ss V)} (1)
where s = 1 — w/w, is motor slip, w, = 2xfis synchronous
speed, w is rotational speed, I is the moment of inertia, P, is
mechanical load power, and Py is the real power drawn by
the induction motor. Equation (1) can be re-expressed in
terms of torque variables as

1
Iw,
where T,(s, V) = Ppu(s, V)/w, is the developed electrical

torque and T, = P /w is the load torque. This models a
motor connected to a power system bus as shown in Figure 3.

§=1—[Tn(s) = Tels, V)] @)
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It is common to assume constant motor load, i.e. constant T,
More often, however, load torque depends on the rotational
speed w, with quadratic (‘‘fan’’-type load) and linear (fric-
tion effect) dependencies being the most typical torque—
speed representations.

Assuming that the magnetising inductance in Figure 3 is
large, i.e. X, — %, the real and reactive power drawn by the
induction motor are given by

sR.V?
Py=Ppuls, V)= —n—
d [M(s ) R?—I—Serz (3)
2v 12
s X,V
Q4 =0m(s, V)= R )

f+s7X2
R, and X, are rotor resistance and reactance respectively.

Higher-order induction motor models are shown to give
more accurate stability results by being able to capture the
initial oscillatory transients present in a typical motor
response following a voltage step (see Figure 1). However,
the essential load recovery behaviour important for longer-
term system studies is captured by the first-order induction
motor model. Consequently, to explore voltage collapse
conditions arising from low voltages associated with large
induction motor stalling, which typically occurs after the
oscillations die out [17], the simplified first-order model
seems to be an acceptable approximation. This is particularly
so in cases where a large proportion of the system load is
induction motor load [11,12,20]. The first-order model is
also useful from a control point of view. By being more
conservative in predicting the occurrence of stalling condi-
tions [8], the first-order model provides control action
designs, e.g. capacitor switching, that are generally also
effective for the higher order model.

In Ref. [14], it was shown that the equivalent input—output
representation of equations (1), (3) and (4) has the general
form

Py+ £y (P, VY=g, (Pa, VIV 5)

for the motor real power in normal (non-stalled) operation. A
similar equation relates motor reactive power to voltage. As
shown in Refs [14,22], the steady state described by f,(Pg4, V)
= Oreduces to the steady state induction motor characteristic
Pp(s, V) = w,Tp(s) for s€[0,1]. The transient load
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behaviour is obtained by integrating g,(-) with respect to
V. In the induction motor case, this gives equation (3) with
s =5(0). Hence the transient motor characteristic is propor-
tional to the square of the voltage. When a resistor is in
parallel with an induction motor, the equivalent load demand
is given by

Py=Pp(s, V)+ Pg (V) (6)
Q4=0m(s, V) @)

where Py and Qpy are given by equations (3) and (4)
respectively, and Pg (V) = V2IR,.

1.2 Load system model

Consider a network of m generators (or bulk supply points),
and ny, buses, as given in Refs [13,22,27]; thus there are N =
n, — m buses which have no generation of real power. It is
assumed that the inertia at the supply points is large relative
to the loads that we are considering. Therefore, supply point
loadings remain almost constant during the load distur-
bances of interest. Consequently, the associated dynamics
are neglected, and supply points are modelled as constant
real power sources of Pg;, with terminal voltages E;/.6 N
1,...,m, where the E; are constant. This assumption is
consistent with our aim of developing clearer insights into
the role of load dynamics in voltage collapse disturbances
such as those documented in Refs [4,23]. The n, — m load
buses have voltages V,20,, i = 1,...,n, — m. The angles

6;, 6, are referred to the phase angle of the mth generator, i.e.
the nyth bus. Line admittances are Y;;= G ;4 jB ;. Allowance
is made for reactive power support by susceptances b;, i =
1,....ny, — m. The system can be represented schematically as
in Figure 4.

The n, — m loads are assumed to be induction motor loads
in parallel with resistive loads. The power demand of each
composite load is given by equations (6) and (7). It is
assumed that the dynamics of induction motors are captured
by the simplified first-order model equation (1) or equation
(2), representing only mechanical dynamics.

Let Py;, QOp denote the total real and reactive power
leaving the ith bus via transmission lines or transformers.
The standard power flow equations governing the system



478 Stability analysis of induction motor networks: D H Popovic et al

network are
Pyy=—Py i=1,..,n—m (8
Qu=bVi=0u i=1,..ny—m ©)
Py=Py j=m—m+1,..,n,—1 (10)

where

Py = Z ViVil Gy cos(8; — 0,) + By sin(@; — 6],
k=1

i=1,...,m—1 (11)

Ty
O = Z ViVil Gy sin(8; — 6;) — By cos(8; — 6)],
k=1

i=1,..,mp—m 12)

and for convenience we have set V, _,.,,=E; and
8, —m+; = 0;. As mentioned earlier, angles are referred to
the nyth bus, this bus being the slack bus. Therefore the nyth
real power equation is deleted. Note that it is a simple
extension to a distributed slack formulation where all gen-
erators absorb some predetermined proportion of any power
mismatch.

Following a standard procedure, we can eliminate the
angles 6, by solving the equation (10). Suppose the Jacobian
matrix with elements

anj .
— j=m—m+1,... -1, k=1,...m—1
a6

is non-singular; then the Implicit Function Theorem enables
us to locally express each §; as a function of the variables §;,
V.. Using equations (6) and (7), equations (8)—(10) then
become in matrix form

Py = Puu(s, V) +Pg (V) =P8, V) (13)

Q4 = Q(s, V}=0i(0, V) (14)

where all quantities are n, — m vectors. P, and Q) denote
n, —m vectors with components P; = — P, and
Qu=bV} - QOy; respectively.

Combining the power balance equations (13) and (14)
with induction motor equations (2)-(4) gives the total
system representation in the form of a differential -algebraic
(DA) set of equations

x=f(x, y. p) (15)
0=g(x, y; u) (16)

where x denotes the dynamic state N-dimensional vector of
induction motor slips s, y represents 2N power flow algebraic
variables, namely bus angles § and voltage magnitudes V
(assuming no load voltages are regulated), and u denotes a
vector of parameters, e.g. E, B, Py, T, R, X,. The algebraic
equations g = 0 define an N-dimensional manifold called the
(algebraic) constraint manifold.

Note that the DA system model (equations (15) and (16))
is a state limited model since 0 =< s =< 1. That is, if any of the
motor loads i stall, the corresponding slip variables become
fixed at 5; = 1. System dynamics are then driven by the
remaining motor dynamics while satisfying algebraic
(power balance) constraints (equation (16)). The dimension
of the (algebraic) constraint manifold reduces by A, where h

denotes the number of stalled motors. This N — A dimen-
sional submanifold is actually the intersection of the original
constraint manifold and a new ‘‘state limit>’ constraint
manifold of dimension h.

lll. Stability analysis

We will analyse the small-disturbance system stability via
the linearized version of the system model given generically
by equations (15) and (16). Linearizing equations (2), (13)
and (14) around the equilibrium point (s*, y*) gives

A§ Ay Ap][As
= (17)
0 Ja Ji Ay
where
0
v
1 [T, aT.
All—lw0 (K(S*)——a?(s*,}’*))

1 oT,
A12=[ON><N I a—ve(s*,y*)]
[
aP oPy  oP
s, 0. V)= 3 oV 9V
o _ 0 30y 80
0 oV av
9P,
Jas, V= %
9Q4
os

It is clear that J, is dependent upon the network and the
transient load characteristics Py, Q4 described by equations
(6) and (7).

Eliminating the algebraic variables y, assuming J, is non-
singular, gives

As=(A —Apd T )As=AAs (18)

These dynamics are well-defined away from the singular
surface det J, = 0. If the system (18) is stable and equilibria
do not lie on the singular surface, then the original DA
system is stable [28].

Result 1. Assume det J,(s*, y*) # 0. The load system of
equations (2), (13) and (14) at operating point (s*, y*) is
small disturbance stable iff the matrix (Aq; —AlzJ‘_I.Isl)
with all matrices evaluated at (s*, y*), is (asymptotically)
stable.

This result establishes asymptotic stability properties of
an equilibrium point, i.e. whether the real parts of all the
eigenvalues of A are negative. As several voltage stability
studies have indicated, the appearance of a zero (real)
eigenvalue (saddle-node bifurcation) or an imaginary axis
crossing of a complex conjugate pair (Hopf bifurcation),
may be used as an indicator of the proximity to in-
stability =~ (voltage collapse) problems—see Refs
[1,13,15,17,22,29,30] and references cited therein. Eigenva-
lue analysis can be used to evaluate the effects of varying
some system parameter on voltage stability. Time simula-
tions may be used to verify the eigenvalue-based predictions
and to give the complete dynamic response.
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IV. Single load example

In order to explore in more detail the role of induction motor
loads in voltage stability studies the power system shown in
Figure 5 is considered. The motor data are adapted from Ref.
[23]. This system represents a typical supply scheme where a
generator feeds a composite load through a transmission and/
or distribution system impedance. Many stability aspects of
this single induction motor load example are known, but it is
useful to revisit them in the above analytical framework and
clarify associated bifurcation behaviour. The analysis
focuses on stability and control issues encountered during
system operation under heavy load conditions; the impacts
of load torque—speed characteristics, motor parameters and
load composition are studied. Special consideration is given
to system behaviour under low voltage conditions. The
possibility of preventing voltage collapse by capacitor
switching, as mentioned in Refs {3,18,31], will also be
demonstrated.

IV.1 Load torque—speed characteristic

The influence of load torque—speed characteristics on the
behaviour of the system of Figure 5 is studied by employing
eigenvalue and bifurcation analysis. By expressing the load
torque as Ty, = (k/'w,)w”, the parameter k can be used as a
bifurcation parameter to study the changes in equilibria
which result from changes in the load torque, i.e. the load
power demand. Three particular load torque—speed charac-
teristics are considered: constant torque (a = 0), torque
proportional to speed (¢ = 1) and torque proportional to
the square of speed (a = 2).

I=2
Wo =1
R = 0.17

X _
=084

Figure 5. Single composite load system

IV.1.1 Case 1: constant torque motor operation

In the case of constant torque motor operation, with T, = k/
W, as the bifurcation parameter, the motor demand-voltage
curve becomes the bifurcation diagram. (Recall that in per
unit, at steady state Pyy = T, = Ty,.) This is illustrated in
Figure 6 by the dashed lines. The Ppy—V curve shows the
projection of Pyy(s, V) in the P-V plane, whereas the Pyy—s
curve shows the projection in the P—s plane. The system loses
stability at the saddle-node bifurcation point which corre-
sponds to the turning points of the Pyy—V and Ppy—s curves.

However, the saddle-node point lies on the lower part of
the total load demand-voltage (P4—V) curve shown in
Figure 6 as a solid line. (The total load demand includes
the resistive load.) Note that the saddle-node point does not
coincide with the maximum total power loadability. This is
because the curve shows the total load power, whereas the
bifurcation parameter is the motor torque (or, equivalently,
motor demand). The position of the saddle-node point
depends on the proportion of the total load demand which
is resistive (68% in this case). As a result, it is possible for the
system to maintain stable operation even on the lower part of
the P4—V curve. Note though that as soon as the load torque
becomes greater than the critical (saddle-node) torque value
T = 0.4463 pu, given by the turning point of the dashed
curves in Figure 6, the motor starts stalling, i.e. motor speed
decreases. Referring to equation (2), in such operating
conditions the difference between the electrical torque and
the load torque results in a sustained slip increase. This, in
turn, causes a voltage decrease accompanied by an increase
in the absorbed motor reactive power and further voltage
degradation. Such a stalling situation, arising from the
sudden increase of the load torque to T, = (.55 pu, is
depicted in Figure 7.

By increasing the proportion of the induction motor load
in the total load power demand, the saddle-node bifurcation
point moves closer to the maximum loadability point. The
stalling conditions occur at a higher speed, therefore repre-
senting a more critical situation. Alternatively, by increasing
the resistive part of the load (whilst keeping the total nominal
load constant), stalling conditions will occur at a lower speed
and voltage. This is in an agreement with the measured
results presented in Ref. [21].

With the same system and motor data, but with the load
torque as a linear or quadratic function of speed, different
situations may arise. These cases will now be considered.

™ T T T
~__\
1F ‘\\—~\\\\Pim-v

/

0.8} \ —_—

0.6
> \
1] \

\
\
0.4} AN
A Y
N
\ Pim-s
~
02t
— - -
o - ’-.’ L
[} 01 02 03 04

0.6 0.7 0.8 0.9 1

Figure 6. Bifurcation diagram: constant torque motor operation
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Figure 11. Bifurcation diagrams for various load torque-speed characteristics

IV.1.2 Case 2: load torque as a linear function of
speed
Figure 8 illustrates the bifurcation diagram, as seen from
different projections, when a linear torque—speed depen-
dence (i.e. a = 1) is modelled. It is easy to see that in a range
of the load parameter k between the saddle-node points SN1
and SN2, there are three equilibrium points. Stable points
occur on the low slip—high voltage and the higher slip—lower
voltage branches of the bifurcation curve. An unstable point
lies on the part of the bifurcation curve between the two
saddle-node bifurcation points. By replotting the bifurcation
diagram in the P—V plane as shown in Figure 9, it can be seen
that both saddle-node bifurcation points lie on the lower part
of the P4~V curve. Referring to Figure 8, it is interesting to
note that for every load torque coefficient £, there is at least
one stable equilibrium point. Since the unstable equilibrium
point regains stability through the bifurcation point SN2,
stable operating conditions can be maintained even when
motor speed significantly decreases. As shown in Figure §,
the corresponding voltage level may still not be so critically
low as to indicate voltage collapse.

Even though the operating situation with higher slip is

generally not desirable, some motors (for example traction
motors in mines) are designed to function at higher slip
values [23].

IV.1.3 Case 3: Joad torque as a quadratic function of
speed
The situation is even less critical when the load torque is a
quadratic function of speed (i.e. a = 2). Figure 10 illustrates
that for this example, a single stable equilibrium point exists
for all values of the load parameter k. Whilst the P4—V and
P 4—s curves retain the same (‘‘nose’’ type) shape as in the
cases of linear and constant load torque—speed character-
istics in Figures 6, and 9, the bifurcation diagram (Figure 10)
differs and does not indicate the existence of any bifurcation
points. Consequently, unstable equilibria do not arise in this
particular example power system. The analysis also shows
that for the chosen system data, the load composition does
not influence system behaviour, i.e. the system is small
disturbance stable irrespective of the proportion of the
induction motor load in the total load.

The three cases have clearly illustrated that system
stability is highly dependent on load torque-speed
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characteristics. More specifically, the analysis has indicated
that the load torque—speed index a is a critical parameter
which can significantly affect the stability properties of the
system. These effects are closely linked with the shape of the
bifurcation diagram and the bifurcations which can occur
under load variation. Figure 11 gives a closer insight into the
effect of the load torque—speed index a on bifurcations and
stability. As a increases, the number of saddle-node bifurca-
tions, corresponding to the turning points of the bifurcation
curves, changes from 1 (for a = 0) to 2 (for 0 < a = 1.35).
For a = 1.35, there are no saddle-node bifurcations. These
bifurcations in parameter a depend of course on the system
parameters; for example, it has been found that a quadratic
torque—speed characteristic associated with a motor that has
slightly different R and X, parameters (e.g. R, = 0.01, X, =
0.05) may lead to a situation similar to that shown in Figure 8.

IV.1.4 Summary

The most vulnerable situation occurs when the motor oper-
ates under constant load torque. The saddle-node bifurcation
point occurs at a higher voltage level and at higher speed than
when the load torque is speed dependent. Also, in the case of
T, = const, values of load torque above the bifurcation value

imply motor stalling and eventual voltage collapse—see
Figure 7. However, such unstable behaviour may be
alleviated if the load torque is dependent on speed. More-
over, as Figures 10 and 11 (for a = 1.35) indicate, the load
system may remain stable even though the motor operates at
an unacceptably low speed. The possibility for multiple
stable operating points is shown to exist.

It is also worth pointing out that for the chosen system data
and motor characteristic, the percentage of induction motor
load in the total load demand does not affect the nature of
bifurcations, only the parameter values at which the bifurca-
tions occur.

IV.2 Prevention of voltage collapse by capacitor
switching

Motor stalling, as illustrated in Figure 7, can be avoided by
capacitor switching [3,18,31]. This is shown in Figure 12.
The capacitor-compensated network is able to deliver a
higher electrical torque. As a result, the saddle-node point
for the compensated system (point SNC in Figure 13) occurs
at a higher load power. The control action shown in Figure 12
is successful, even though, just before the capacitor is
switched, the system trajectory is well on the lower part of
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1.4

Figure 15. Model system

Table 1. Model parameters

E, E, ol by b, Y;

I, I, Wo Ry Ry X,

1.3 1 0.1736  0.15 0.1 —jl

2 1.8 1 0.17 0.15 0.2

the (uncompensated) P4—V curve and below the saddle-node
point SNU. The capacitor switching time is chosen so that
the value of slip at the time of switching is smaller than the
value of slip at the unstable compensated equilibrium point
(point UEP in Figure 14). This switching strategy ensures
that, after switching, the system trajectory moves towards
the stable compensated equilibrium point (point EP in Figure
14) and stops when that point is encountered.

This control criterion is equivalent to the minimum
voltage criterion proposed in Ref. [31]. The minimum
voltage criterion requires that, after the insertion of reactive
support, the immediate operating voltage must be higher
than a minimum voltage determined by the intersection of
the steady state load characteristic and the final network
curve. In the induction motor case, the minimum voltage
point corresponds to the lower point of intersection of

the vertical line drawn at Ppy = w,T, = 0.55 pu and the
compensated bifurcation diagram, i.e. the compensated
PV curve. This is shown as point UEP in Figure 13.
The capacitor switching results in an immediate positive
mismatch between the electrical supply and the mechanical
demand which eventually preserves the system stability.

V. Multi-load example

The analysis of a multi-induction motor case reveals the
possibility of more diverse power system behaviour than in
the above simple example. The system of Figure 4 withm =
N = 2, as shown in detail in Figure 15, is considered. The
system loads are purely induction motor loads, i.e. there are
no resistive loads. We shall assume T, = const, i = 1,2. The
system data are given in Table 1. Note that the same system
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Figure 19. Slip trajectories without slip limits

and its constraints were considered in Refs [13,22], except
that there the reactive power loads were of the generic
recovery type [14].

V.1 Bifurcation points

Figure 16 illustrates the bifurcation diagram with the load
torque T, as the bifurcation parameter. The two solid lines
represent bifurcation branches which correspond to normal
motor operation (meaning no stalled motors) with the load
torque Tz = 0.2 pu. The dotted line denotes a bifurcation
branch along which s, = 1, i.e. induction motor IM2 is
stalled. (In this projection, the lines are very close together,
but along the dotted line s, = 1.) A similar bifurcation
diagram with the load torque T, as the bifurcation para-
meter is presented in the T,p—s, plane in Figure 17. Solid
lines again represent bifurcation branches which correspond
to normal operation of the motors when the load torque
T,; =0.6 pu. The dotted line represents the bifurcation
branch composed of equilibrium points with IM1 stalled.

Four bifurcation points are denoted in Figure 16: SN1,
SN2 and SN3 are saddle-node bifurcation points, whilst STI
will be called a stalling-induced bifurcation point. That point
is a special limit-induced bifurcation point [32] which
corresponds to a solution of the algebraic equations
(equation (16)) with s; = 1, 5, = 1. That is, the system
representation loses its dynamic nature at that point but the
number of potential equilibrium points changes by one when
the load torque values exceed the values corresponding to the
STI point. Note that the nature of bifurcation points SN1 and
SN2 is different to that of SN3; points SN1 and SN2 arise
with normal operation of both motors under variation of the
load torque T, whilst point SN3 arises under T, variation
but with state variable s, being on its limit. With the state s,
limit being active, the new bifurcation point (point STI)
emerges when the other state variable s; encounters its limit.
Additionally, three saddle-node points (points SN4, SN5 and
SN6 in Figure 17) exist corresponding to the load torque T3
being the bifurcation parameter. The occurrence of a total of
seven bifurcation points, including the three stalling-related
bifurcation points SN3, SN6 and STI, has interesting impli-
cations for the system behaviour. This can be explored
through an analysis of the equilibrium points and their
stability.

As mentioned in Section III, the stability of the system

1 1.5

Slip, s1

equilibria can be predicted by the eigenstructure of the
system matrix A. Note, however, that the reduced order
system dynamic representation should be used when asses-
sing the small disturbance stability of the stalling-related
equilibria, i.e. the equilibria with s5; = 1 or s, = 1. More
specifically, in the case of IM2 stalled, only the dynamics of
the unstalled motor IM1 should be represented in the system
model (equations (15) and (16)). Similarly, when s, is on its
limit the system representation should capture only the
remaining free dynamics, i.e. the dynamics of the motor
IM2. The occurrence of the saddle-node bifurcation points
SN3 and SNG6 is associated with the appearance of a zero
eigenvalue in the state matrix of the appropriately reduced
system model.

The analysis of the eigenvalues of system equilibria
depicted in Figures 16 and 17 shows that saddle-node
points SN1, SN3, SN4, SN6 separate stable equilibria on
the lower half branches from unstable equilibria on the upper
side of the bifurcation branches. This indicates the
possibility of multiple stable operating points. On the other
hand, saddle-node points SN2 and SN5 separate unstable
equilibria (saddles) on the lower half branches from
unstable equilibria (sources) on the upper side of the bifurcation
branches.

V.2 Dynamical behaviour

We now consider how this diverse bifurcation structure has a
significant impact on the behaviour of system trajectories.
Figure 18 illustrates a case with load torque values set to
T,,, = 0.6 pu and T,, = 0.2 pu. As predicted by the bifurca-
tion diagrams of Figures 16 and 17, four of the potential nine
equilibria are dynamically stable. The operating point a is
the normal operating point. No slip variables are on limits at
that point. Operating points b, d and e are stable limit-
induced operating points. The normal unstable equilibrium
points are denoted by a’, ¢’ and ¢”, whilst points b’ and d’
are limit-induced unstable equilibria. It is interesting to note
the influence of point ¢” on the overall behaviour of
trajectories. Since point c” is an unstable node, it acts as a
source with all trajectories directed away from it. However,
the trajectories stop when any of the operating points a, b, d
or e are encountered. Note though that points b, d and e are
stable only because one or both state variables, i.e. slips, hit
their limits and become constant, leaving reduced or no



436 Stability analysis of induction motor networks: D H Popovic et al

0.8 4
\
\\
‘3 0.6 r \ e B
o \
73
|
|
045 | -
s
0.2} i
& ’/
o o MR X . a . 4
0 0.2 0.4 0.6 0.8 1

Figure 20. Slip trajectories for Tyy = 0.7 pu, T2 = 0.2 pu

dynamics to govern system behaviour. To gain a better
insight into the effect of slip limits on system stability, the
phase portrait for the same case but without limits is shown
in Figure 19. The trajectories which leave the source point
stop only when the operating point a is reached. All other
equilibria in this artificial case are unstable. Note that, in this
case, the bifurcation diagrams of Figures 16 and 17 reduce to
only two bifurcation branches denoted by the solid lines in
Figures 16 and 17.

The stability boundary of the (normal) operating point a is
shown as a dashed line in Figures 18 and 19. It is clear that
the limit on slip s, causes an appreciable change in the shape
of the boundary in the region of point b. (Note that the
algebraic Jacobian D,g is globally non-singular in both
cases, since the load is transiently a conductance [33].)
The appearance of limit-induced equilibria explains the
slightly smaller region of attraction of the operating point
a in the slip-limited case. More specifically, since the
trajectories which hit the limit s, = 1 do not come off that
boundary, the region of attraction of the operating point a
near point b is slightly smaller in the case of Figure 18.

Point ¢’ with s, > 1 (braking operating mode) has a strong
influence on the structure of the flows in the restricted state
space. Figures 18 and 19 clearly show that the unstable
manifold of point ¢’ which runs to point a is a dominant
feature.

Figure 18 allows a useful interpretation of limit-induced
equilibrium points b, b’, 4, d'. Each of those equilibria
correspond to points where trajectories are normal to the
limit surface. At those points, the component of movement
of the non-restricted slip state along the limit surface, i.e. the
surface where the other slip state is fixed at unity, is zero.
Hence the system is in equilibrium at those points. The
stability of the equilibria is determined by the component of
movement of the non-restricted slip state near the equilibria.
As mentioned earlier, mathematically this is the same as
finding the eigenvalues of the “‘reduced” Jacobian, i.e. the
Jacobian of the system taking into account the algebraic limit
constraints. These issues are explored further in Refs
[32,34].

It is useful to note another aspect of identifying the
bifurcation points under slip-limited conditions, i.e. points
SN3 and SN6. Based on load torque values at these critical
points, the changes in system limit-induced operating points

Slip, s1

under changing loading conditions can be predicted. Figure
18 illustrates the case with four stable operating points.
Assuming an increase in the load torque values T, and/or
T2, some of the limit-induced operating points may lose
stability and/or disappear at limit-induced bifurcation points
SN3 and SN6. A sustained load torque increase would lead
eventually to only one remaining operating point, where
both induction motors were stalled. Referring to Figures 16
and 17, note that such a situation would be accompanied by
the disappearance of the source, i.e. the unstable equilibrium
point c”. Figure 20 illustrates the case when the load torque
T is increased to Ty = 0.7 pu. Since T, now exceeds the
values corresponding to bifurcations SN2 and SN3, (see
Figure 16), the equilibrium points ¢”, ¢’, b and b’ disappear.
The loss of point b means that, when compared with the case
Tm = 0.6pu in Figure 18, the total number of stable
operating points has reduced by one. Also, it is worth
noting that the region of attraction of the normal operating
point a has become smaller, whilst the stability regions of
stalling-induced equilibria d and e have been significantly
extended.

This multi-load case has clearly pointed out the impor-
tance of slip limits and their significant effect on the stability
and behaviour of motor load systems. The existence of
multiple operating points, induced by the stalling of different
motors, is an inherent feature of power systems with induc-
tion motor loads. Note that even though points b, d and e are
theoretically stable, operation under stalled conditions
would generally not be allowed. The stalled motors would
trip off-line. The voltage viability problem associated with
these conditions can be adequately treated by the use of
appropriately fast capacitor switching, as discussed in
Section IV.2.

VI. Conclusions

This paper presents a systematic analysis of the dynamical
behaviour and stability of power systems which contain a
large percentage of induction motor loads. The dynamic
behaviour of induction motors under changing loading con-
ditions has been analytically characterized based on the
analysis of system bifurcations. The load torque—speed
characteristic is shown to have a significant influence on
system stability, especially under low voltage conditions.
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In multi-load systems, a rich set of non-linear phenomena
is directly linked to the presence of state limits, i.e. limits on
motor slip variables. These limits lead to multiple stable
operating points and multiple stability regions which do not
exist in the unlimited state system model. The stability
boundary is shown to be strongly affected by stalling-
induced equilibria. The slip limits generate some new
bifurcations which determine critical parameter values at
which qualitative changes in system behaviour occur. In
particular, we identify a new concept of stalling-induced
bifurcations related to the operating conditions with all
induction motors being stalled. The appropriate system
modelling when stalling conditions arise, i.e. when slip
limits become active, is shown to be necessary in order to
identify analytically the various stability features of power
systems with induction motor loads. It allows the possibility
of fully understanding diverse dynamic behaviour of induc-
tion motors and the associated instability mechanisms in
power systems.

The analytical approach presented in this paper com-
plements the traditional measurement and time-domain
simulation approaches. It also provides an important
mathematical foundation for control design. Current work
in the development of global control schemes able to cope
with various operating conditions and associated complex
behaviour is directly applicable to induction motor
networks. These control topics are beyond the scope of this
paper and will be reported elsewhere.
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