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Abstract

A number of facts about quadratic algebraic problems and applied Newton–Raphson like methods are presented. The main results are
about solution structure, loading trajectories, load flow feasibility boundaries and Newton–Raphson solutions. Various practically important
applications of these properties are discussed. Although motivated by power flow problems, the results are valid for any problem described
by an algebraic system of quadratic equations.q 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Different problems in power system analysis and control
can be described by algebraic sets of quadratic equations of
the form

f �x� � y 1 g�x� � 0 �1�

wherex [ Rn
x is a vector of unknown variables,y [ Rn

y is a
vector of specified parameters, andg is a quadratic function
of x.

A classical example is the load flow problem wherex
consists of nodal voltages,y represents specified nodal para-
meters such as nodal powers, andg is the nodal power
mismatch function. There are two main forms used for the
power mismatch equations: the polar and rectangular forms.
Both of them have some advantages. The polar form
provides significant reduction of computations. For
instance, the method, which uses P–Q decomposition of
the load flow problem [1], is widely used in practice. The
rectangular form of power flow equations can be effectively
used as well—see Refs. [2–8]. The most important features
of that form are that the power mismatch function can be
exactly expressed using linear and second order terms of the

Taylor series, and its Jacobian matrixJ�x� � 2f =2x is a
linear function of active and reactive components of nodal
voltages. Note that highly nonlinear static characteristics of
loads can be always presented as quadratic functions by
means of Taylor series approximations and introducing
additional variables to reduce their nonlinearity.

The load flow problem is certainly not the only example
of quadratic algebraic problems met in power system analy-
sis. In fact, solutions of any optimisation problem with
linear and quadratic objective function and constraints can
be found by solving a quadratic system whose equations are
obtained by differentiating the corresponding Lagrange
function with respect to unknown variables and Lagrange
multipliers. For instance, the problem of finding the shortest
distance from a current operating point to the load flow
feasibility boundary, which is often considered as the
voltage collapse boundary, can be expressed as a quadratic
task [9]. Once again, the problem can be represented as a
quadratic equations set with the Jacobian matrixJ�x� being a
linear function of unknown variables.

In any nonlinear problem, there are some important theo-
retical issues including solution existence, numerical
method behaviour and their convergence to particular solu-
tions, location of multiple solutions, configuration of singu-
lar boundaries where detJ�x� � 0; mutual arrangement of
solutions and singular boundaries and solution behaviour in
vicinity of singular boundaries. Such studies have already
given valuable practical results.
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Studies of the multiple solutions of the load flow problem
play a role in determining proximity to voltage collapse
[5,10]. In order to obtain multiple load flow solutions,
Tamura et al. used a set of quadratic load flow equations
and the Newton–Raphson (NR) optimal multiplier method
[7]. Iba et al. used Tamura’s approach and some newly
discovered convergence peculiarities of the NR method to
find a pair of closest multiple solutions [8]. It is observed
from experimental results [8] that if a pointx comes close to
a line connecting a couple of distinct solutions, a further NR
iterative process in rectangular form goes along this line.
The next observation in Ref. [8] is that, in the vicinity of a
singular point, the NR method with the optimal multiplier
gives a trajectory which tends to the straight line connecting
a pair of closely located but distinct solutions. These
features are effectively used in Ref. [8] to locate multiple
load flow solutions. The authors asked for a theoretical
background of these experimentally discovered properties.

The present paper is written to further explore some
fundamental properties of quadratic algebraic problems
and use them in a number of practical applications. The
main results establish the following properties:

• A variation of x along a straight line through a pair of
distinct solutions of the problemf �x� � 0 results in varia-
tion of the mismatch vectorf �x� along a straight line in
Rn

y:

• There is a singular point in the middle of a straight line
connecting a pair of distinct solutionsx1, x2 in Rn

x [5,6,11
and others].

• A vector co-linear to a straight line connecting a pair of
distinct solutions inRn

x nullifies the Jacobian matrix
J�x� � 2f =2x at the centre point of the line [5,6 and
others].

• If x belongs to a straight line connecting a pair of distinct
solutions, the NR iterative process goes along that line.

• The maximal number of solutions on any straight line in
Rn

x is two.
• Along a straight line through two distinct solutionsx1, x2,

the problem can be reduced to a single scalar quadratic
equation which locates these solutions.

• If a loading processy�b� in Rn
y reaches a singular point

detJ�x� � 0; the corresponding trajectory ofx�b� in Rn
x

tends to the right eigenvector nullifyingJ�x� at the
singular point (except in some special cases).

• At any singular point, there are two merging solutions
(except in some special cases).

• For any two pointsx1 ± x2 and the Jacobian matrix
detJ�x1� ± 0; the number and location of singularities
of the quadratic problemf �x� � 0 on the straight line
throughx1, x2 is defined by real eigenvalues of the matrix
J21�x1�J�x2�:
Some of the results are already known—see references

above. They are assembled here with new results and clearer
explanations. Earlier versions of the results presented here
are given in Refs. [2,12,13].

2. Quadratic power flow studies

This section deals with some basic properties of the quad-
ratic power flow problems, their solutions, singularities, and
the NR method.

2.1. Property 1

2.1.1. Formulation
For a quadratic problemf �x� � 0; there is a point of

singularity in the centre of a straight line connecting a
pair of distinct solutions inRn

x; and a vector co-linear to
this line nullifies the Jacobian matrix evaluated in the centre
point.

2.1.2. Proof
Let x1, x2 be two distinct solutions of a quadratic problem

f �x� � 0: A line connecting these solutions can be defined
by

x� x1 1 m�x2 2 x1� � x1 1 mDx21 �2�
wherem is a parameter, andDx21 � x2 2 x1: Due to quad-
ratic nonlinearity, we have

f �x1� � f �x2�2 J�x2�Dx21 1 0:5W�2Dx21� �3�

f �x2� � f �x1�1 J�x1�Dx21 1 0:5W�Dx21� �4�
where 0:5W�Dx21� is the quadratic term of the Taylor series
expansion, Eq. (4). It is clear thatW�2Dx� �W�Dx�: From
Eqs. (3) and (4),

�J�x1�1 J�x2��Dx21 � 0 �5�
For a quadratic functionf �x�; the Jacobian matrix

contains elements which are linear functions ofx. So, it
can be represented as

J�x� �
Xn
i�1

Aixi 1 J�0� �6�

where Ai ; J(0) are �n × n� constant matrices of Jacobian
coefficients,xi [ x: Using Eq. (6), the equality (5) can be
rewritten as

2J�x0�Dx21 � 0 �7�
wherex0 � �x1 1 x2�=2: As Dx21 ± 0; the vectorDx21 is the
right eigenvector corresponding to a zero eigenvalue of the
Jacobian matrix. Moreover, for allx ± 0; which are co-
linear vectors with respect toDx21, we getJ�x0�x� 0:

2.1.3. Comments
Both the first and second parts were proved in Refs.

[2,5,11 and others]. The above proof seems to be more
simple and compact.

2.1.4. Examples
Let us take an example of the New England Test System

[14]. The system consists of 39 buses, 10 generators, and 18
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loads. Bus number 31 is chosen as a slack bus. All other
generators are represented by means of constant active
powers and terminal voltages. Loads have fixed active and
reactive demands. We consider three distinct load flow solu-
tions x1, x2 and x3 given in Table 1. These solutions were
selected from a solution set obtained by the method for
computing multiple solutions of quadratic algebraic
problems given in Section 3. All three points are low voltage
solutions. As the pointsx1, x2 and x3 do not belong to a
straight line, they define a plane inRn

x which we call the
D-plane. TheD-plane is very convenient for viewing the
mutual arrangement of solutions and singularities of a
load flow problem [15]. Actually, solutionsx1, x2 and x3

can be shown as points in the plane—see Fig. 1. Straight
lines connecting these three solutions belong to the plane—
they are drawn as dashed lines. The cut-set of the feasibility

domain boundary where detJ�x� � 0 by the D-plane is
given by dotted curves. To get the cut-set, the X-ray theo-
rem andD-plane method were used—see Section 3 and Ref.
[15]. In full compliance with Property 1, the singular points
marked by small circles lie exactly in the middle of the
dashed lines connecting the pointsx1, x2 andx3.

2.2. Property 2

2.2.1. Formulation
For quadratic mismatch functionsf �x�; a variation ofx

along a straight line through a pair of distinct solutions of
the problemf �x� � 0 results in variation of the mismatch
vectorf �x� along a straight line inRn

y:

2.2.2. Proof
Let x be a point on the straight line connecting two

distinct solutionsx1, x2 described by Eq. (2). For quadratic
mismatch functions,

f �x� � f �x1�1 mJ�x1�Dx21 1 0:5m2W�Dx21� �8�

f �x2� � f �x1�1 J�x1�Dx21 1 0:5W�Dx21� �9�
where 0:5W�Dx21� is the quadratic term of the Taylor series
expansion, Eq. (9). At pointsx1, x2, we havef �x1� � f �x2� �
0: So, from Eq. (9),

0:5W�Dx21� � 2J�x1�Dx21 �10�
Using Eq. (10), Eq. (8) transforms to

f �x1 1 mDx21� � m�1 2 m�J�x1�Dx21 � bF �11�
where b � m�1 2 m�; F � J�x1�Dx21:Thus the mismatch
function f �x1 1 mDx21� varies along the straight linebF
in Rn

y:

2.2.3. Comments
This fact was mentioned in Ref. [5]. An interesting

conclusion follows from Properties 1 and 2. Variations of
x along a straight line connecting a couple of distinct solu-
tions are actually motions ofx along the right eigenvector
nullifying J�x� in the middle of the line.

2.2.4. Examples
In the same New England test system and for the same

solution setx1, x2 andx3, let us consider a mapy� 2y0 2
g�x� of theD-plane in Fig. 1 into the spaceRn

y—see Fig. 2.
Point 0 represents the conditiony0 1 g�xi� � 0; xi �
x1; x2; x3: As the straight lines defined byx1�m1� �
x1 1 m1Dx21 and x2�m2� � x1 1 m2Dx31 are mapped into
the distinct straight linesy1�m1� � m1�1 2 m1�J�x1�Dx21

and y2�m2� � m2�1 2 m2�J�x1�Dx31 which intersect at
point 0, the last two lines define a plane inRn

y: This plane
is referred to as theD-plane inRn

y: All points which belong
to the straight linesx1�m1� andx2�m2� are given accurately as
the corresponding points on the linesy1�m1� and y2�m2�
including all singular points with detJ�x� � 0: Singular
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Table 1
Distinct load flow solutions

Bus Solutionx1 Solutionx2 Solutionx3

V, kV d , grad V, kV d , grad V, kV d , grad

1 103.1 224.9 0.0 2191.2 89.3 242.4
2 101.7 218.6 86.9 211.0 64.1 241.1
3 95.5 220.4 92.0 215.1 3.8 2125.2
4 84.2 219.6 94.6 215.7 44.5 239.2
5 77.0 216.4 96.6 214.1 64.0 229.0
6 78.7 215.0 97.3 213.1 67.7 226.4
7 68.5 219.2 96.0 216.3 66.3 232.7
8 64.1 220.4 95.9 217.3 66.5 234.5
9 0.0 104.0 100.8 223.4 88.9 240.2
10 88.2 212.9 98.9 210.8 73.5 225.3
11 84.9 213.6 98.2 211.6 71.2 225.7
12 84.6 213.9 96.8 211.7 67.6 226.7
13 87.9 214.1 98.2 211.7 68.9 227.5
14 87.9 216.9 96.9 213.6 59.0 234.3
15 94.2 218.7 97.5 214.5 64.3 245.0
16 98.6 217.7 99.4 213.1 69.5 245.2
17 98.3 219.1 97.2 214.3 52.3 249.7
18 97.1 220.1 95.1 215.1 32.0 256.4
19 103.5 212.9 103.8 28.4 93.6 239.1
20 98.3 214.2 98.5 29.7 92.6 240.8
21 100.0 215.1 100.6 210.6 79.5 241.2
22 103.4 210.5 103.7 26.0 92.5 235.1
23 102.7 210.7 103.1 26.2 91.5 235.3
24 99.5 217.5 100.3 213.0 73.0 245.1
25 103.5 217.3 93.9 212.0 75.6 245.8
26 102.4 217.9 98.3 212.9 73.4 248.1
27 99.9 219.7 97.2 214.9 62.5 251.7
28 103.6 214.3 101.5 29.2 88.8 243.2
29 104.1 211.5 102.7 26.3 94.1 239.9
30 104.8 216.2 104.8 28.3 104.8 237.4
31 98.2 20.0 98.2 0.0 98.2 0.0
32 98.3 24.8 98.3 23.7 98.3 215.6
33 99.7 28.3 99.7 23.8 99.7 234.4
34 101.2 29.1 101.2 24.6 101.2 235.5
35 104.9 25.7 104.9 21.2 104.9 229.7
36 106.4 22.7 106.4 1.7 106.4 226.52
37 102.8 210.7 102.8 24.9 102.8 237.3
38 102.7 24.7 102.7 0.5 102.7 232.7
39 103.0 228.6 103.0 227.3 103.0 242.5



points A and B correspond to the pointsA and B in Fig.
1. They have a specific nature. For example, a loading
processx1�m1� results in a straight motion from point 0
to point A, m1 , 1=2: At point A, the maximum load-
ability point with m1 � 1=2 is reached. A further loading
along x1�m1�; m1 . 1=2; results in backward straight
motion from A to 0. All other singular points (dotted
curves beyond the straight lines 0–A and 0–B) are
obtained as projections of multidimensional singular
curves on theD-plane inRn

y:

2.3. Property 3

2.3.1. Formulation
If any pointx is on a straight line connecting two distinct

solutions of the quadratic problemf �x� � 0; the Newton–
Raphson iterative process with the initial point fromx
follows this line.

2.3.2. Proof
If any point xi is on the line connecting two distinct

Y.V. Makarov et al. / Electrical Power and Energy Systems 22 (2000) 313–323316

Fig. 1.D-plane inRn
x (New England Test System).

Fig. 2.D-plane inRn
y (New England Test System).



solutions it can be described in the form (2). The middle
point ofDx21 is x0 � 0:5�x1 1 x2�: The quadratic mismatch
function can be expressed as

f �xi� � f �x0�1 J�x0��xi 2 x0�1 0:5W�xi 2 x0� �12�
To express the last term of Eq. (12) in terms of Jacobian
matrices, we write

f �Dx� � f �0�1 J�0�Dx 1 0:5W�Dx� �13�

f �0� � f �Dx�2 J�Dx�Dx 1 0:5W�Dx� �14�
By summing of the last two equalities,

W�Dx� � �J�Dx�2 J�0��Dx;

and so

0:5W�xi 2 x0� � 0:5�J�xi 2 x0�2 J�0���xi 2 x0�
On the contrary, taking into account the quadratic nonlinear-
ity of f �x� and Eq. (6),

J�xi 2 x0� � J�xi�2 J�x0�1 J�0�
Therefore, in Eq. (12), we have

0:5W�xi 2 x0� � 0:5�J�xi�2 J�x0���xi 2 x0�
Noting Eq. (7), thenJ�x0��xi 2 x0� � 0: From Eq. (12),

f �xi� � f �x0�1 0:5J�xi��xi 2 x0� �15�
For the NR method with initial pointxi

; we have the follow-
ing expression for the correction vectorDxi

f �xi�1 J�xi�Dxi � 0 �16�
From Eq. (11),

f �xi� � m�1 2 m�J�x1�Dx21 �17�

and so

J�x1�Dx21 � m21�1 2 m�21f �xi�; m ± 0;1 �18�
At the pointm � 0:5, we havexi � x0; and it follows from
Eqs. (17) and (18) that

f �x0� � 0:25m21�1 2 m�21f �xi� �19�
By the substitution of Eq. (19) into Eq. (15), it follows

f �xi� � 0:25m21�1 2 m�21f �xi�1 0:5J�xi��xi 2 x0� �20�
Multiplying Eq. (20) byJ21�xi� and taking into account Eq.
(16),

Dxi � 22m�1 2 m��4m�1 2 m�2 1�21�xi 2 x0� �21�
Eq. (21) shows that the NR correcting vectorDxi belongs

to the straight line directed by the vector�xi 2 x0�; i.e. the
iterative process goes along the line connectingx1, x2.

2.3.3. Comments
This fact was experimentally discovered in Ref. [8],

where again the authors asked for some theoretical proof
of the phenomena.

2.3.4. Examples
In the same New England test system, let us consider

Newton–Raphson iterations starting from the pointx�
x1 1 0:43�x3 2 x1� which lies exactly on the line
�x1 2 x3�—see point 0 in Fig. 3. A numerical simulation
has been done, and it has been discovered that the entire
NR process goes along the same line on theD-plane—see
points 1, 2, 3 and 4 in Fig. 3. The initial leap from point 0 to
point 1 is explained by the fact that the point 0 is taken
rather close to the singular pointA.
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Fig. 3. Newton–Raphson process along the line connecting two distinct solutions (New England Test System).



2.4. Property 4

2.4.1. Formulation
The maximum number of solutions of a quadratic equa-

tion f �x� � 0 on each straight line in the state spaceRn
∞ is

two.

2.4.2. Proof
Let us take the function

f�l; x� � f t�x 1 lDx�f �x 1 lDx� �22�
For a quadratic mismatch functionf �x�;
f �x 1 lDx� � f �x�1 lJ�x�Dx 1 0:5l2W�Dx�
So,

f�l; x� � if �x�1 lJ�x�Dx 1 0:5l2W�Dx�i2

� if �x�i2
1 ilJ�x�Dxi2

1 i0:5l2W�Dx�i2

1 2lf t�x�J�x�Dx 1 l3Wt�x�J�x�Dx 1 l2f t�x�W�Dx�
The functionf�l; x� equals zero if and only iff �x 1 lDx� �
0: At a solution pointx� xp; f �xp� � 0;and the function (22)
is

f�l; xp� � 0:25l4iW�Dx�i2
1 l3Wt�Dx�J�xp�Dx

1 l2iJ�xp�Dxi2

� �al2 1 bl 1 c�l2

wherea, b, c are the obvious functions ofDx. For any fixed

directionDx ± 0;f�l; xp� equals zero in the two following
cases

(a) l � 0;
(b) al2 1 bl 1 c� 0:

The first case gives us the original solution pointx� xp:

The second case corresponds to solutionsx ± xp on the
straight line directed byDx. However, as it is clear from
Eq. (22), that function (22) cannot be negative. Thusal2 1
bl 1 c $ 0; and in case (b) it is possible to have only one
additional solution exceptxp, but not two or more. So, on the
line we get one rootx� xp; and we can have only one
additional root corresponding to condition (b).

2.4.3. Examples
Fig. 4 shows a typical shape of the scaled functionsl 2

(curve 1), al2 1 bl 1 c (curve 2) and f�l; xp� �
�al2 1 bl 1 c�l2 (curve 3) along a straight linexp 1 lDx
connecting two distinct solutions in the New England test
system. Two zero minima off�l; xp� at l � 0 andl � 1
correspond to the first solutionxp and additional solution
x ± xp:

2.5. Property 5

2.5.1. Formulation
For a straight line, connecting two solutions inRn

x; the
system of quadratic equations can be reduced to a single
scalar quadratic equation, which locates these solutions.

2.5.2. Proof
Let x1, x2 be unknown distinct solutions of a quadratic

Y.V. Makarov et al. / Electrical Power and Energy Systems 22 (2000) 313–323318
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c�l2
:



problemf �x� � 0: Suppose we have a pointxp and direction
Dxp which define a line connecting the pair of solutions. The
mismatch function calculated along this line is

F�a� � f �xp 1 aDxp� �23�
wherea is a scalar parameter. Let us take any fixed value
a � ap and define a constant

Fp � F�ap� ± 0 �24�
Having Eqs. (23) and (24), consider the equation

Ft
pF�a� � 0 �25�

It follows from Property 1 thatFp and F�a� are co-linear
vectors, and Eq. (25) is true only ifF�a� � 0: Using Eq. (24)
and the Taylor series expansion

F�a� � f �xp�1 aJ�xp�Dxp 1 0:5a2W�Dxp�
we get the scalar quadratic equation

aa2 1 ba 1 c� 0 �26�
where a� 0:5Ft

pW�Dxp�; b� Ft
pJ�xp�Dxp; c� Ft

pf �xp�:
Eq. (26) has a pair of distinct real rootsa1,a2 corresponding
to x1, x2, and we can define these solutions asx1 �
xp 1 a1Dxp; x2 � xp 1 a2Dxp:

2.6. Property 6

2.6.1. Formulation
For almost all cases, if any loading processy�b� ends at a

singular pointx0 of the problemy�b�1 g�x� � 0; whereg�x�
is a quadratic function ofx andb is a scalar loading para-
meter, there are two distinct solutionsx1, x2 merging at the
singular point, and the trajectoriesx1�b�; x2�b� tend to the

right eigenvectorr corresponding to a zero eigenvalue of the
Jacobian matrixJ�x0�:

2.6.2. Proof
Let a loading process withb variable and

y�b�1 g�x� � 0 �27�
end at a singular pointx0 corresponding tob � b0: At the
singular point, dy� y0b�b0� db � Y0 db: The implicit func-
tion theorem gives

J�x0� dx 1 dy� J�x0� dx 1 Y0 db � 0 �28�
By multiplying Eq. (28) byst

; wheres is the left eigenvector
of J�x0� corresponding to a zero eigenvalue, we get

stJ�x0� dx 1 stY0 db � stY0 db � 0

For the general case of loading,stY0 ± 0; and, therefore,
db � 0: This, means that the loading parameterb reaches
its extremal valueb0 at the singular pointx0. Alternatively,
when stY0 � 0; the loading trajectoryy�b� tends to the
tangent hyper-plane to the singular margin�detJ�x� � 0�
of the problemf �x� � 0 at the pointx0. It follows from the
fact thats is an orthogonal vector with respect to the singular
margin inRn

y:

Using Eq. (28), we have

J�x0� dx� 0 �29�
So, the increment dx has the same direction as the right
eigenvectorr of the Jacobian matrix corresponding to its
zero eigenvalue, and the last part of Property 6 has been
proved.

On the contrary, having Eq. (29),

2Y0Db � J�x0�Dx 1 1
2 W�Dx� !Db!0 1

2 W�Dx�
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Fig. 5. Two loading trajectoriesx�b� ending at singular pointA (New England Test System).



andW�Dx� �W�2Dx�: So, for a small incrementDb at the
point x0, we have two increments ofx of opposite signs
directed alongr. Therefore, the first part of Property 6 has
been proved.

2.6.3. Comments
The property follows from [16, p. 217]. A similar fact was

mentioned in Ref. [17]. The proof presented here was first
given in Ref. [9]. It explains the experimental fact obtained
in Ref. [8]. It was observed that in the vicinity of a singular
point the NR method with the optimal multiplier gives a
trajectory which tends to the straight line connecting a
pair of closely located load flow solutionsx1, x2. Actually,
the loading trajectoryy�b� in Eq. (27) can be represented as
the convergence trajectory of the NR method. If it comes
close to the singular margin, it tends to the right eigenvector
r, which nullifies the Jacobian matrix in the middle point
between closely located solutions. Property 3 says that the
further iterative process goes along the line directed by the
vector�x1; x2�; and that the line is co-linear tor. So, Proper-
ties 3 and 6 explain these phenomena.

2.6.4. Examples
Fig. 5 shows two curvesx�b� (circled curves) correspond-

ing to two different loading trajectoriesy�b� ending at singu-
lar point A. It is seen that both the trajectoriesx�b� tend to
the right eigenvectorr � x2 2 x1 which nullifies the Jaco-
bian matrix at pointA.

2.7. Property 7 (X-ray theorem)

2.7.1. Formulation
For any two pointsx1 ± x2 and detJ�x1� ± 0; the number

and location of singularities of the quadratic problemf �x� �
0 on the straight line throughx1, x2 is defined by real eigen-
values of the matrixJ21�x1�J�x2�.

2.7.2. Proof
Let us define the line throughx1, x2 as Eq. (2). Using Eq.

(6), it is easy to show that

J�x1 1 m�x2 2 x1�� � �1 2 m�J�x1�1 mJ�x2� �30�
As x1 is a nonsingular point, form ± 0; expression (30) can
be written as

J�x� � mJ�x1��J21�x1�J�x2�2 �m 2 1�m21I �
whereI is the identity matrix. Therefore, all singular points
on the line, Eq. (2) can be computed as real eigenvalues of
the matrixJ21�x1�J�x2�:

2.7.3. Comments
The X-ray theorem can be effectively used to locate all

singularities of the load flow Jacobian matrix along a given
ray in the space of dependent variablesx. In particular, it
forms a basis of theD-plane method given in Section 3.

3. Power system applications

This section illustrates how the properties analysed in
Section 2 can be used in power system analysis.

3.1. Finding multiple solutions of a quadratic problem

Property 1 allows to find multiple solutions of a quadratic
problemf �x� � 0; for example, the load flow problem. Note
that Eq. (11) can be rewritten as

f �x1 1 Dx�1 �m 2 1�J�x1�Dx� 0 �31�
wherex1 is a known solution,Dx an unknown increment of
state variables andm an unknown scalar parameter. Except
the trivial caseDx� 0; the last equation corresponds to a
different solution

x2 � x1 1 m21Dx; umu , ∞; m ± 0

System (31) hasn equations andn 1 1 unknown variables,
so it is necessary to add an additional equation in Eq. (31),
for instance,

r tDx 2 1� 0 �32�
wherer is a nonzero vector. By varyingr and substitution of
newly discovered solutions instead ofx1 in Eqs. (31) and
(32), it is possible to get all solutions of a quadratic problem.
Tables 1 contains some of the distinct solutions in the New
England test system. The total number of solutions obtained
exceeds 70.

3.2.D-plane method

The X-ray theorem allows us to develop a new robust
method for finding the power system load flow feasibility
boundary and, more generally speaking, the singular bound-
aries of the power flow problem on theD-plane defined by
any three vectors of dependent variables (nodal voltages).
An advantage of the method is that it does not require an
iterative solution of nonlinear equations (except the eigen-
value problem). Besides benefits for visualisation and fully
flexible observation, the method is a useful tool for topolo-
gical studies of power system multiple solution structures
and stability domains. For instance, any three equilibria
(load flow solutions) can be chosen to form theD-plane,
and the relative positions of these points and bifurcation
surfaces will be reflected on theD-plane in all details.

3.2.1. Obtaining bifurcation curves on theD -plane
A plane inRn

x can be defined by any three distinct points
x1, x2 andx3 provided the condition

x3 ± x1 1 m�x2 2 x1� �33�
is satisfied for any scalar parameterm . Condition (33)
means that the pointsx1, x2 andx3 do not belong to a straight
line inRn

x. Once Eq. (33) is true, the pointsx1, x2 andx3 form
a triangularD, which defines a plane inRn

x and gives the
name for the proposed method. Any point on theD-plane
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can be expressed by means of scalar parametersg1 andg2:

x�g1;g2� � x1 1 g1�x2 2 x1�1 g2�x3 2 x1� �34�
It is clear thatx�0;0� � x1; x�1; 0� � x2 and x�0;1� � x3:

Suppose that at the pointx1; detJ�x1� ± 0: Then the
following procedure can be used to find out all singula-
rities of J�x� in the D-plane. The idea consists in rota-
tion of a vector x�g1;g2�2 x1 in the D-plane, and
subsequent computations of all singularities ofJ�x� on
each line defined by this vector. Letu be the angle,
which defines the current orientation of the vector
x�g1;g2�2 x1 with respect to the vectorx2 2 x1 in the
D-plane. The following steps are used:

1. Choose the angleu � 0:
2. Computeg1 � l cosu andg2 � l sinu; l q 0:
3. Define a pointx� x�g1; g2� as in Eq. (34).
4. Find eigenvalues of the matrixJ21�x1�J�x�:
5. Computemj � �1 2 lj�21 for all real eigenvalueslj ± 1

from the previous step.
6. For each value ofmj ; define the corresponding point in

theD-plane as

xj�u� � x1 1 mj�g1�x2 2 x1�1 g2�x3 2 x1�� �35�

7. Changeu � u 1 Du; whereDu is an increment, and go to
step 2 unlessu $ p:

The set of pointsxj�u� computed for differentu forms
a cut-set of the feasibility domain boundary by theD-
plane. The procedure does not require an iterative solu-
tion except as needed for the eigenvalue problem. The
reliable QR technique is recommended to be used in
step 4.

3.2.2. Visualisation of theD -plane inRn
x

Although the bifurcation pointsxj�u� in Eq. (35)
belong to theD-plane, they are vectors in the multi-
dimensional spaceRn

x: To get a visual representation
for them, it is convenient to use a new two-dimensional
coordinate system associated with theD-plane itself. For
this purpose, we use the following oblique-angled coor-
dinate system:

~x1 � � 0 0�t �36�

~x2 � ix2 2 x1i� 1 0�t

~x3 � ix3 2 x1i� cosax sinax �t

where

ax � arccos
�x3 2 x1�t�x2 2 x1�
ix3 2 x1iix2 2 x1i

In the new two-dimensional coordinate system, the
expression for computing the power flow singular points

becomes the following:

~xj�u� � mj�g1 ~x2 1 g2 ~x3� �37�

3.2.3.D -plane inRn
y

Consider a particular case whenx1, x2 and x3 are
distinct solutions of the load flow problem. It follows
from Property 2 in Section 2 that these points cannot lie
on a straight line inRn

y: Property 3 says that, fromy�
2g�x�; the straight lines

x�g1; 0� � x1 1 g1�x2 2 x1� �38�

x�0; g2� � x1 1 g2�x3 2 x1� �39�
in Rn

x are mapped into the straight lines

y1 � y�g1;0� � g1�g1 2 1�J�x1��x2 2 x1� �40�

y2 � y�0; g2� � g2�g2 2 1�J�x1��x3 2 x1� �41�
in Rn

y; respectively. The last two lines pass through a
common point2g�x1�; and they define a plane which
we call theD-plane inRn

y:

3.2.4. Visualisation of theD -plane inRn
y

From y� 2g�x�; all singular points computed along the
lines (38) and (39) are mapped into points of the lines (40)
and (41), respectively. So, they lie on theD-plane in the
spaceRn

y: The rest of the pointsyj�u� mapped from theD-
plane inRn

x do not normally belong to theD-plane inRn
y; the

D-plane inRn
x is mapped byy� 2g�x� into a surface which

is not a plane. The only thing, which we can do here, is to
find out their projections~yj�u� on theD-plane in the space
Rn

y: The projection~yj�u� can be found by the following way.
Let

~yj�u� � b1 ~y1 1 b2 ~y2 �42�
whereb1 andb2 are parameters, and~y1; ~y2 are defined as

~y1 � iy1i� 1 0�t �43�

~y2 � iy2i� cosay sinay �t �44�
whereay � arccosiy2i21iy1i21�y2�t�y1�: The coefficientsb1

andb2 can be found by solving the linear equation

iy1i2 yt
1y2

yt
1y2 iy2i2

0@ 1A b1

b2

 !
� yt

1yj�u�
yt

2yj�u�

0@ 1A �45�

They are then used in Eq. (42) to get singular points in
the two-dimensional oblique-angled coordinate system
� ~y1; ~y2�:

As the singular points belong to a nonlinear surface, and
we use their projections on theD-plane, the resulting plot
reflects a qualitative shape of the singular boundary inRn

y:

Nevertheless, all singular points along the linesAB andAC
are defined accurately.
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3.2.5. Examples
The proposed method has been tested for the above New

England Test System. We consider three distinct load flow
solutionsx1, x2 andx3 given in Table 1. Solutionsx1, x2 and
x3 define aD-plane inRn

x shown in Fig. 1. The plane is
oriented in such a way thatx1 corresponds to the zero
point (0,0), and the vectorx2 2 x1 is directed along the
horizontal axis. Solutionx1 is taken as a fixed point for
the plot: all straight lines, along which the singularities
are determined, belong to theD-plane and pass throughx1.
The cut-set of the feasibility domain boundary by theD-
plane is shown by dotted curves (solid parts of the curves
are formed by covering of close dots).

A detailed consideration of the feasibility boundary
topology is not the main purpose of this paper. Nevertheless,
let us make some observations. Firstly, note that the singular
points marked by small circles lie exactly in the middle of
the dashed lines connecting the pointsx1, x2 andx3. This fact
is explained in a number of works—see Refs. [13,18], for
example. Secondly, the singular curves in Fig. 1 have an
open shape. This appears to say that, by certain unrestricted
variations of independent parametersy in Rn

y; voltagesx in
Rn

x may be indefinitely increased without reaching the feasi-
bility boundary. In more realistic situations the limitations
for y, for example, equality constraints for generator term-
inal voltages and zero power injections in empty buses, must
be taken into account.

Fig. 2 shows the correspondingD-plane inRn
y: Point 0

represents the operating conditiony0 1 g�x� � 0 of the
system. The singular boundary is plotted by using the map
y� 2y0 2 g�x�: PointsA andB correspond to the pointsA
and B in Fig. 1. All singular points which belong to the
straight lines defined by 0–A and 0–B are given accurately.
All other points are obtained as projections of multidimen-
sional singular curves on theD-plane inRn

y:

4. Conclusions

In this paper, we have carefully studied the properties of
quadratic equations with respect to solution structure, loading
trajectories, load flow feasibility boundaries and Newton–
Raphson solutions. These results were shown to clarify tech-
niques used in power system analysis. This is explored for
finding multiple solutions and bifurcation curves.
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