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Direct calculation of reactive

power limit points
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Department of Electrical and Computer Engineering,
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Callaghan, NSW 2308, Australia

A knowledge of points where sources of reactive power
encounter limits is useful in determining the vulnerability of
a power system to voltage collapse. This paper proposes a
predictor/corrector technique which quickly and robustly
finds such points. The predictor is based on sensitivity ideas,
whilst the corrector is a slight modification of the standard
power flow problem. It is shown that a knowledge of limit
points can provide a fast estimate of the point of collapse of
a power system, and that it can improve the usefulness of
some common voltage collapse indices.
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1. Introduction

Lack of adequate reactive power resources in a power
system is a major contributing factor to the process of
voltage collapse! . As loads in a power system increase,
voltages across the network tend to decrease and reactive
power losses increase. This increased reactive power
demand would be supplied by voltage regulating devices
such as generators or static var compensators, if possible.
However, owing to physical limitations such devices
cannot supply unlimited amounts of reactive power.
Often sustained load growth will result in some source
of reactive power, or perhaps a number of such sources,
encountering limits, i.e. reaching a physical limitation in
the amount of reactive power that they can supply”.
Once a reactive power source has reached its maximum
limit, it can no longer regulate voltage. Therefore
sustained load growth results in accelerated voltage
decay, and hence greater reactive power requirements.
This may force other voltage regulating devices to their
limits, with subsequent further acceleration in the rate of
decline of voltages. Thisisillustrated in Figure 1. Asloads
increase from their initial value at point A, network
voltages fall. At point B, the first reactive power source
encounters its limit. Voltages begin to fall more rapidly.
Sustained load increase results in a second reactive power
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source encountering its limit at point C. If load increased
further, the point of collapse (PoC) would soon be
reached. This behaviour is part of the process known as
voltage collapse. Many factors other than those described
in this overview influence the voltage collapse process"‘5 .
However limits on reactive power resources are a major
factor. This paper therefore focuses on a method for
determining points where limits are encountered.

The encountering of limits by reactive power resources
is a sign of vulnerability of a power system. It is therefore
useful to have a method for determining limit points
directly. In a planning environment, system planners
could identify when and where reactive power resources
became inadequate. Steps could be taken to reinforce
those resources, or reduce the reactive power require-
ments. A knowledge of reactive power limit points could
also be extremely useful in an operational environment.
Knowing the level of load increase that would drive
resources to their limits, operators could decide whether
it was necessary to take steps to free-up reserves. For
example, an operator may decide to reschedule genera-
tion, or to use some FACTS device to reduce the power
flow through some part of the network.

The paper proposes a predictor/corrector technique
which robustly finds all the reactive power limit points
as the system is loaded according to a specified loading
pattern. Referring to Figure 1, points B, C and D would
be found. Note that the proposed technique is not a
continuation method in the sense described in References
9-11. No attempt is made to obtain points along the path
between the limit points. Consequently the proposed
technique offers speed advantages over traditional con-
tinuation methods, but provides less information.

The predictor part of the algorithm was inspired by the
sensitivity based ideas of References 6 and 7. Those
methods rely on linearization of the power flow equa-
tions. They provide approximate limit points and point of
collapse information without needing to perform any
power flows apart from at the initial point. However
because these techniques are based on linearization, their
accuracy is very dependent on how close the initial point
is to the points of interest, i.e. limit points and the point of
collapse. If the initial point is some distance away, the
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Figure 1. Typical nose curve

accuracy may not be so good. Further, it is not possible to
determine a priori the accuracy of the results.

Other methods have been proposed, primarily for
finding the PoC, but which take into account reactive
power limits®~'°. They provide complete information
about the reactive power sources that are on limits at
the PoC. But they do not explicitly provide information
about the encountering of limits during the loading
process. For example it is not possible to determine
exactly the value of the loading parameter when a parti-
cular source encounters its limit.

The paper is structured as follows. The predictor/
corrector algorithm is discussed in Section II. In Section
III the details of the implementation of the corrector are
provided. Examples are discussed in Section IV. Section
V describes how a knowledge of the reactive power limit
points can be used to provide a good fast estimate of the
point of collapse. It also discusses the use of this knowl-
edge for improving some voltage collapse indices.

Il. A predictor/corrector algorithm
Consider the power flow equations:

S(x A7) =0 (1)

where x is the vector of state variables (voltages and
angles at load buses, angles at generator buses), and A(7)
is a vector of parameters (typically real and reactive
power loads).

In the normal power flow problem, the parameters A
are fixed, and equation (1) is solved using an algorithm
such as Newton—Raphson for the unknown state vari-
ables x. Having calculated the state variables all other
system quantities such as line flows, system losses and/or
reactive power generated at voltage controlled buses can
be found.

Often we are interested in studying how solutions of
equation (1) vary as parameters are changed. If one
parameter is varied at a time, then a curve results.
Figure 1 is an example of the type of curve that can
result. If two parameters are allowed to change, then a
surface is obtained. Variation of more parameters results
in a higher dimensional hypersurface.

In the development of this algorithm, we shall restrict
attention to the usual case where only one parameter is
varied at a time. However we shall allow some generality
in the loading pattern by defining parameter variation as

A7) = Ao + i (2)

where 7 is the single loading parameter which will be
varied, p is a fixed vector of unit length which defines the
direction in which the system will be loaded, and A, gives
the initial values of loads.

Many common loading patterns can be described
by (2). For example, if we were interested in varying only
the reactive power at one particular bus, then p would be
all zeros, except for a 1 in the location corresponding to
the desired reactive power load. If we required real and
reactive power load at some bus to be varied, but that its
power factor remained constant, then y would be all
zeros, except for the two entries corresponding to the
desired bus. The real power load entry would have a value
Py/VP5+ Q) and the reactive power entry would be

Qo/V' P2+ QF, where Py and Q, were the initial load
values.

As noted above, Figure 1 is an example of the type of
curve that can result from allowing 7 to vary in (1). Of
particular interest are the points B, C and D. We would
like to have a method for determining the values of x and
7 (and hence A) at those points. In this paper we are
proposing a predictor/corrector technique that achieves
that aim.

Flatabe et al.® have proposed a method, based on
linearization of the power flow equations, for determin-
ing approximately the limit points. Such methods, which
are based on sensitivity ideas, do not tell us exactly the
limit points. But they do (generally) provide a good
estimate of their location. Sensitivity ideas therefore
form a good basis for the predictor part of the proposed
algorithm. (Having determined the approximate location
of a desired limit point, a corrector is then used to give the
exact point. This is discussed later.)

To establish the predictor, we first find the total
derivative of the power flow equations (1):

df =0=f,dx+f, % dr
=fodx+fypdr 3)
So
Ax = —f7 '\ uAr (4)
or
Ax =S, Ar (5)

where S, gives the sensitivity of the state variables x to
variations in the loading parameter 7. Define Q as the
vector of reactive power productions at voltage regulated
buses. The limit points, which are the points of interest to
us, occur when any one of the Q entries reaches its
maximum value, given by Q... The Q are dependent
variables:

Q= 0Q(x) (6)
Therefore

AQ = Q. Ax
From (4):

AQ = —Q, [T fiulr (7)
or

AQ=0-0Qy= SqTAT (8)

where S,. gives the sensitivity of the reactive power
generation to variations in the loading parameter 7, and
Qg 1s the initial value of Q.
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The reactive power limits, Q ..., are generally taken as
fixed values. However it has been shown in Reference 12
that it is often more appropriate to model the limits as
voltage dependent. In that case Q. becomes a depen-
dent variable:

Omax = Omax (x) (9)

Therefore

AQmax = Qmax, xAx
From (4) we obtain

AQmax = Qmax - Qmax,() = SMTAT (10)

where S, gives the sensitivity of the reactive power limit
to variations in 7, and Q. ¢ is the initial value of Q,,,.
Note that for sources that have a fixed maximum limit,
Smr,; = 0.

We wish to find the change in 7 which would cause each
reactive power source to encounter its limit, i.e. what
value of At causes Q; = Qp,x, ; for each source j ? To find
this value, we set Q; = Q5 ; in (8):

Omax,j — Qo,j = Syr AT
From (10) we have:

Omax,j = Qmax,0 + Spir, JAT
Substituting yields

Qmax, 0 — QO,j = (Sqr,j - SmT.j)AT (1 1)
The minimum of those values of A7 is therefore given by:

Qmax,Oj - QO,j)

SqT,j - Smr.j

ATyin = rn]ln( (12)
An increase of A7, in the parameter 7 would cause the
first limit to be encountered. In Figure 1, that would
correspond to point B. So, from (12), it is possible to
determine which source is the first to encounter a limit,
and the approximate change in parameter 7 which would
force that source to its limit. Equation (5) would then
provide the corresponding changes in the state variables
x. We therefore have a prediction of the values of x and 7
at the first limit point. The values are only estimates. The
next step is to correct to the true point.

By definition, the limit points are points where a
voltage regulating device first encounters its maximum
reactive power limit, as the parameter increases. For
lower values of the parameter, the voltage is con-
strained. For higher values, the reactive power is con-
strained. (For an SVC, the capacitive susceptance would
instead be constrained.) But at the limit point, the
voltage is at its setpoint value, and the reactive power
is constrained to its limit value. The corrector makes use
of this fact that both voltage and reactive power are
fixed.

The equations which therefore define the limit point
for the kth source are:

f(x7 )‘(T)) =0 }
Qk(x) - Qmax‘k(x) =0

i.e. the original power flow equations (1), together with
the extra reactive power constraint. The unknowns in
this set of equations are the state variables x together with
the loading parameter 7. Notice that the number of
equations and the number of unknowns have both
increased by one.

(13)
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Figure 2. Predictor/corrector process

The predictor provides an initial guess for x, 7. Equa-
tions (13) can then be solved to within the desired
tolerance using almost standard power flow techniques.
Section III gives details of the modifications which are
needed to standard power flows in order to solve this
slightly different problem.

Figure 2 illustrates the predictor/corrector process, as
described so far. Starting from the initial point A, linear-
ization of the power flow equations yields a predicted
limit power B'. The corrector uses B’ as an initial guess to
solve for the actual limit point B. The predictor/corrector
process can be repeated to obtain subsequent limit points.
For example, to solve for limit point C, point B would be
used as the initial point. Recall though that for parameter
values greater than that at the limit point, the correspond-
ing reactive power source switches from having regulated
voltage to having fixed reactive power. So in solving for
point C, this constraint change must be made. (In Figure
2 this constraint change shows as a discontinuity in the
slope of the curve at the limit points. Notice that the
predictor for point C is tangential to the curve to the right
of point B, but not to the curve on the left.)

Having found point C, the predictor/corrector process
can again be used this time to find limit point D. Notice
that the curve has much greater curvature near the point
of collapse, so behaviour is much less linear. It has been
found in such cases that occasionally there is a need to
limit the length of the predictor vector, i.e. reduce the
value of At obtained from (12). The approach taken has
been to ensure that no predicted voltages fall below a
predetermined threshold, for example 0.6 p.u. The differ-
ence between the initial values of voltage and the thresh-
old value can be used in (5) to determine the appropriate
reduced value of A7.

Comments

(1) Even when the corrector is solving for a limit point
that is near the point of collapse, it does not suffer the
convergence problems of normal power flows. In
normal power flows, the Jacobian of the power flow
equations is singular at the point of collapse. Solution
techniques such as Newton—Raphson rely on invert-
ing the Jacobian. so tend to exhibit poor convergence
behaviour near the point of collapse. However the
corrector solves the augmented problem (13), and so
uses a different Jacobian. The corrector can success-
fully solve for limit points, even if they are right at the
point of collapse.

(2) The computational effort involved in finding a limit
point is quite small. The predictor involves some
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manipulation of Jacobians, whilst the corrector is just
a single power flow solution. Further, because the
predictor provides a good starting point for that
power flow solution, it generally only takes two or
three iterations to solve to quite a tight tolerance.
Therefore the critical points of a nose curve such as in
Figure 1 can be found very cheaply. In Section V we
discuss ideas for determining the point of collapse
efficiently from the limit points.

(3) Because the predictor is based on linear approxi-
mations, it is possible that if two reactive power
sources encounter limits at about the same value of
the loading parameter, the predictor may choose the
wrong one. (This has not been observed to date, but it
is possible.) This can easily be detected following the
corrector by checking whether ‘extra’ machines have
encountered limits. If so, it is a simple matter to
reformulate (13) to backtrack to the correct limit
point.

(4) Notice in Figure 1 that limit point D is on the lower
part of the nose curve. A possible stopping criterion
for this predictor/corrector process is to stop if such a
point is found. This can be determined by building
and factorizing the Jacobian of the power flow
equations (not the augmented corrector equations)
at the limit point. If any of the diagonals of the
factorized matrix change sign when compared with
the previous point, then the limit point is on the lower
section. (Note that at the point of collapse, the
determinant of the power flow Jacobian changes
sign. The product of these diagonals has the same
sign as the determinant.)

(5) It is possible to find situations where the nose curve
takes the form shown in Figure 3'*. The predictor/
corrector method has no problems finding such limit
points. It is interesting to note that if the power flow
Jacobian was formulated with voltage at the limited
source constrained (but not reactive power), then a
check of the diagonals would show the point to be on
the upper section of the curve. If however reactive
power was constrained (but voltage was free to vary),
we would find that the point was on the lower section
of the curve. This is one way to detect limit points
which are the point of collapse.

(6) The purpose of the predictor is to provide an initial
guess for the limit point, so that the corrector con-
verges more robustly. In an operating environment
where it may be desirable to find limit points every
few minutes, it is possible that the predictor could be
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Figure 3. A limit point as the PoC

discarded in favour of using the old values of limit
points as initial guesses for new values. Such tracking
techniques are common in energy management
system applications such as state estimation.

Ill. Implementation of the corrector

It has been found that benefits arise in the implemen-
tation of the power flow problem if it is structured so
that each bus is described by two equations and con-
tributes two variables'*!*. In the base power flow for-
mulation, bus voltage magnitude V; and angle «a; are
treated as variables for every bus, independent of bus
type. The equations describing the different bus types
are:

Slack bus
pix) = a;—al =0 (14)
gi(x)=Vi-V'=0 (15)
PV bus
pi(x) = Py(x) = P} = 0 (16)
gi(x) =V, - ViO =0 (17)
PQ bus
pi(x):Pi(X)_PiO:O (18)
g:/(x) = Qix) = Q) =0 (19)

Note that P?, Q) are the real and reactive power injected
into bus i, so are positive for generation and negative for
load. If the equations are ordered as:

f[ =[PiqiP2g2-. - Pu Qn][

and the unknowns as:
X' =la Vies Vs .. o, V)

then the power flow Jacobian is composed totally of
2 x 2 blocks. Further, the Jacobian takes the same
structure as the network admittance matrix, except that
each admittance matrix element is replaced by a 2 x 2
block.

A number of advantages result from this structure:

(1) The Jacobian is simpler to build. No matter what the
bus type, each bus contributes a 2 x 2 block to the
diagonal. Links contribute two off-diagonal 2 x 2
blocks, independent of the end bus types.

(2) The similarity with the admittance matrix allows an
extremely efficient factorization process. Each 2 x 2
block is treated as a single entity, with arithmetic
operations replaced by simple matrix operations.

(3) Bus type changes do not affect the Jacobian structure.
So type changes due to limits being met can be
handled very efficiently.

Further details and discussion of this power flow imple-
mentation can be found in Reference 15.

One further benefit of this power flow structure is
that it can be easily adapted to solve for limit points.
Recall from (13) that when solving for limit points, the
power flow problem is augmented by an extra equation,
describing the reactive power balance at the source that is
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hitting its limit, and an extra variable, i.e. the loading
parameter 7. Let the kth bus be the reactive power source
corresponding to the limit point of interest. Before
encountering its limit, this bus would be described in
the standard power flow by (16), (17). To solve for the
limit point, the equation ¢.(x) =0 given by (17) is
replaced by

l]k(X) = Qk(x) - Qmax,k(x) =0 (20)

Also, the entry V} in x is replaced by 7. These changes
effectively add the extra equation and the extra variable
that are required. Note also that the removal of V; from x
ensures that it remains constant.

We must also include the effect of the loading para-
meter 7 on all the loads. This is done by modifying the
power balance equations for all load buses (18), (19), as
follows,

pi(x) = Py(x) = P + ppy 17 =0 (21)

qi(x) = Qi(x) - 0] + pu =10 (22)

Often many y; will be zero.

In terms of the power flow Jacobian, the modifications
needed for finding the limit points only affect the 2kth
row and the 2kth column. The 2kth row will consist of
the partial derivatives of (20) with respect to x. The
2kth column consists of the partial derivatives of all
the equations with respect to 7. From (21) and (22)
it can be seen that this is just . It is useful to illustrate
this Jacobian structure using the three-bus system of
Figure 4. In this system, we wish to find the values of x
and 7 which ensure that the generator at bus 3 is at a limit
point. (For clarity of the illustration, we have not shown a

slack bus.)
Define
ap; ap; g, dq;
I P .
Y 8C(j J 8Vj ' J} (9aj ’ J OV,
23)
Then the Jacobian has the form;
[dp, ] [ lHn Nu}[le Nu} lle O}W
dg, Ju LullJi Lpl|Js O
dp, B [H2l Nz1}lH22 sz}lo Ms}
dg, oy Ly Jn Ly 0 py
dp; [Hsl N31]{ 0 0 }lez 0}
Ld‘h_ L Jui Ly 0 0 Jiz 0 i
_da]-‘
v,
da2 24
X
v, (24)
da3
Ldr |

This simple example illustrates a number of facts about
the modified Jacobian. The first is that nonzero values of
7; introduce new off-diagonal elements in the Jacobian.

® O O

NN
ST

Q3 = Qmax.]

— P§ + pust
- QF Fugr

Figure 4. Three-bus system

Because of the 2 x 2 block structure, if either 3 or iy
were nonzero in the example, then a new nonzero off-
diagonal block would be created in the matrix. If the
Jacobian is treated as having an admittance matrix
structure, then this is equivalent (in this example) to a
new connection between buses 2 and 3. It is easy to see
that, in general, a new connection will be formed between
the reactive power source which is being forced to its
limit, and any bus i/ that has nonzero p,; | or ;. This is
significant for implementation. These new off-diagonal
terms must be taken into account in sparse storage
schemes. However it has been found that it is sufficient
to treat these new connections the same as if a physical
connection existed between the buses. It is also important
that they be taken into account when determining the
optimal ordering of buses for factorization. Just like
physical connections, these fictitious links can cause fill-
in. Again, it appears appropriate to treat the new con-
nections the same as physical connections. One conse-
quence is that if many load buses are participating in the
loading pattern, i.e. have nonzero u;, then the reactive
power source that is being forced to its limit will have
many connections. It will therefore be ordered near the
end of the optimal ordered bus list.

A second observation from the three bus example is
that a zero appears on the diagonal. In general, if the
source at the kth bus is being forced to its limit, then the
2kth diagonal will be zero. This is also significant from
an implementation point of view, because the factoriza-
tion process divides by the diagonal elements. In the
example, if bus 3 were ordered first, the power flow
would halt, with an error indicating that the Jacobian
was singular. However with bus 3 ordered third, there is
no problem. During the factorization process, as bus 1
then bus 2 are eliminated, the 2kth diagonal becomes
nonzero as a result of fill-in. This can be seen from
inspection of (24).

In general, before the limiting bus, i.e. the bus that is
being forced to its limit, can be eliminated, at least one
load bus with a nonzero y; must be eliminated, together
with all the buses along a path between that load bus and
the limiting bus. This condition is necessary for the
diagonal to be filled in. But it is not sufficient. For
example, consider again the system of Figure 4, and
assume that bus 1 was a PV bus, that the line between
buses 1 and 2 was lossless, and that y; = 0, 4 # 0. Then
the zero diagonal would never get filled in, so the system
would always be singular. To see why this is so, consider
variation of 7, which effectively varies the reactive power
load at bus 2. Then the reactive power flow from bus [ to
bus 2 would vary accordingly, but because that feeder was
lossless, the real power flow would not change at all. Any
change in reactive power flow would be supplied by bus 1
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asitis a PV bus. So vanation of 7 would have no effect on
real or reactive power flow from bus 3 to bus 1. Reactive
power at bus 3 would not vary at all, and so could not be
driven to its limit value.

However, if the feeder between buses 1 and 2 was not
lossless, the zero diagonal would get filled in by a small
value. In this case, variation of 7 would cause a variation
in the reactive power flow from bus 1 to bus 2. Because
this line is now lossy, this change in reactive power flow
would cause a change in losses, and hence a change in real
power flow. This would be reflected in the real power flow
from bus 3 to bus 1, and hence also in the reactive power
generated by bus 3. So variation of 7 influences bus 3
reactive power, and hence can be (theoretically) used to
drive Q5 to its limit. The coupling would only be small
though, and this would reflect through the zero diagonal
being filled in by a small number. The system could easily
be ill-conditioned.

If however bus 1 was a PQ bus, a much stronger
coupling would exist between 7 and (5. During the
elimination process, a much larger value would fill in
the zero diagonal.

In implementing the corrector algorithm, it is neces-
sary to take account of these requirements on the factor-
ization order. The simplest approach would be to order
the limiting bus last. Then, if any ordering scheme could
achieve fill-in of the diagonal, this one would. However
this ordering strategy may be sub-optimal, resulting
in unnecessary extra fill-in. Alternatively, often the
‘natural’ optimal ordering scheme will produce an
order that satisfies the need for fill-in of the zero diag-
onal. As mentioned earlier, the number of connections
to the limiting bus can be high, so it would be placed
near the end of the factorization order anyway. How-
ever, it is still a good idea (and one that is not all
that difficult to implement) to build into the optimal
ordering process the requirement that the limiting
bus is not allowed to be ordered until an appropriate
load bus and path of connecting buses have been
ordered.

As noted above, if a PV bus is one of the buses on the
path, the filled-in diagonal may be smail. If possible, it is
best to find a path that dodges PV buses. Also, the smaller
the impedance between the limiting bus and a varying
load bus, i.e. a load bus with nonzero y,, the larger will
be the filled-in diagonal. So a good choice for a load
bus to be eliminated early is one that is local to the
limiting bus. Also, the more load buses with nonzero p;
that are eliminated (together with appropriate paths
in each case) before the limiting bus, the greater will
be the fill-in of the zero diagonal. (Ordering the limiting
bus last clearly maximizes this criterion.) One further
point to note is that the connecting path between the load
bus and the limiting bus should not contain the slack bus.
If it did, the slack bus would totally decouple the
variation of 7 from the variation of reactive power at
the limit bus.

An alternative formulation of the limit point corrector
can be obtained as a modification of the corrector of the
continuation method given in Reference 9. As in the
previous formulation, the limiting bus is converted to a
PQ bus, with reactive power given by (20). However, in
this case, an extra equation of the form (17) is added to
constrain the voltage at the limiting bus. Also, the limit-
ing bus voltage is kept as a variable. Considering the
example of Figure 4, the Jacobian for this formulation

would be
(dplq _{Hn Ny [le le} [Hn N13} 0 |
dg, Ju LyjlJe LpllJis Lis] O

dp, [HZI Ny
dg; | =

dps [H31 NBl:l [ 0 0
dgs Ju La 0 0
0

L dv | 0 0 0

dV,

das
x | dv, (25)
das
dv,
dr

This compares with the Jacobian for the earlier formula-
tion, which was given by (24).

It can be seen from (25) that the Jacobian again has a
zero on the diagonal. Conditions for the fill-in of that zero
diagonal are effectively the same as for the earlier for-
mulation. It is normal for the extra voltage equation to be
ordered last. When that is the case, the conditions for fili-
in of the zero diagonal are the same as those for the earlier
formulation with the limiting bus ordered last.

1IV. Example

Figures 1 and 2 show the nose curve, limit points, and
predictor/corrector sequence for an example which is
based on the system in Figure 5. This system originates

Mi M2
N1 T
2 [—l
N3 N4 N5 N2
M3 M4
r
NiOI  N102 N103 N106 N107
N201  N202 N204 N206 N207
| oena—|
N6 N7
M5
=N104 N105
Sec=6.7GVA Scc= 10GVA
N203 N205
NI15
NI12 r _]
NIl [ 1 ENIO l‘{ Ni3 ' N14
— 380 kV M6
—— 150 kV

Figure 5. CIGRE 31-bus system
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Table 1. Comparison of predictor and corrector results

Limit

point Predictor Corrector

B Onios (p-u.) 2.971 2.820
VN205 (pu) 09431 09437
Viaos (p-u.) 0.9923 0.9923
VN]OS (pu) 10013 10015

C On2os 4.879 4.302
Vnaos 0.7719 0.7781
VN2os 0.9259 0.9258
VNios 0.9080 0.9102

D ON20s 4.545 4.343
VNoos 0.6774 0.6855
Vnoos 0.8606 0.8600
VNios 0.8423 0.8451

from the CIGRE Task Force that investigated voltage
collapse indices'®. In this example, the reactive power
load at bus N205 is increased. Figures | and 2 show the
variation of voltage at N2035 as the reactive power load is
varied. This load was chosen as it clearly illustrated the
predictor/corrector process. Other loads, or combina-
tions of real and/or reactive power loads, could have
been chosen.

At the initial point A, the generators M3, M4 and M5
are already on their maximum reactive power limits. As
the load at N205 increases, the reactive power limit of
generator M2 is encountered. This occurs at limit point
B. Note that the slope of the curve is nearly the same on
both sides of point B. This is because when the M2 limit is
met, some voltage support is lost, but M1 still provides
strong support. Further increase in the load at N205
results in generator M1 encountering its limit at point
C. The slope of the nose curve changes dramatically at
this point. After M1 encounters its limit, there is no
longer any voltage support in the upper section of the
system. Therefore voltages fall much more rapidly as the
load increases. Further increase in load results in the
point of collapse being quickly reached. Notice that
generator M6 encounters its limit at point D on the
lower section of the curve.

The predictor/corrector process for finding points B, C
and D is illustrated in Figure 2. Predicted and corrected
values of the load and some bus voltages are given in
Table 1. From the figure it can be seen that the predictor,
which estimates points B', C' and D', is always tangent to
the nose curve at the point from which the prediction is
made. This occurs because the predictor is based on
linearization of the power flow equations. The results
also indicate that the predictor provides a good estimate
of the voltages, but always tends to overestimate the load
parameter.

At all three limit points, the corrector took only two
iterations to solve to a tolerance of 0.0001 p.u. This was
despite the fact that both limit points C and D are very
close to the point of collapse.

Figure 3 was produced using the same system, and
the same load variation as Figures 1 and 2. However
in this case, the reactive power limit at machine M6
was reduced from 10p.u. to 8 p.u. Even though point
D is now the point of collapse, i.e. the point of maximum
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loadability, the corrector again converged in two
iterations.

V. Use of limit points in voltage collapse
indices

In realistic power systems, limit points will usually be
encountered on the upper portion of the nose curve. In
that case, a knowledge of the limit points can assist in
determining the proximity to voltage collapse. This sec-
tion discusses two possibilities.

V.1 Point of collapse estimation

In assessing vulnerability of systems to load increases, we
are usually only interested in the limit points which occur
on the upper portion of the nose curve, e.g. points B and
C in Figure 1. However it is often possible to find at least
one limit point on the lower section too, e.g. point D. In
such cases, we have a power flow solution both sides of
the point of collapse. It is then possible to use some form
of interpolation technique to obtain an estimate of system
conditions at the point of collapse. This is explored
further in Reference 17. Using these ideas, it is possible
to obtain a good estimate of the point of collapse
robustly, and the computational burden is equivalent to
just a few power flows.

V.2 Improvement of eigenvalue and singular value
indices

Voltage collapse indices have been proposed which use
the minimum eigenvalue or minimum singular value of
the power flow Jacobian as a measure of how close the
Jacobian is to singularity, and hence how close the
operating point is to the point of collapse, see for example
Reference 18. Unfortunately these indices are affected
significantly by reactive power sources encountering
limits. The solid line of Figure 6 illustrates this effect.
Whenever a limit is met, the change of the reactive power
source from a PV bus to a PQ bus effectively introduces a
new equation and variable. This change in the size of the
Jacobian matrix causes a step change in the minimum
eigenvalue and singular value.

However, a knowledge of which reactive power sources
are on limits at the point of collapse can be used
to overcome this problem. The troublesome steps are
due to buses changing type. Therefore the steps can
be removed by ensuring that no bus type changes occur.
This can be achieved by always treating buses that are
on limits at the point of collapse as PQ buses when
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the eigenvalues and/or singular values are being
calculated.

Assume for now that the reactive power sources that
are on limits at the point of collapse are known. If we are
interested in determining the minimum eigenvalue or
singular value for a particular value of loading para-
meter, then the first step is just the normal solution of the
power flow problem. For this power flow solution, reac-
tive power sources are treated in the normal manner.
However when it comes to building the Jacobian for
evaluation of the eigenvalues or singular values, reactive
power sources that are on limits at the point of collapse
are treated as PQ buses, independent of whether they are
on limits at the current point. For these sources, the
current value of reactive power being generated (which
may or may not be the limit value) is treated as a reactive
load. In this way, the Jacobian is always built with the
same number of PQ buses, so no steps occur in the
eigenvalues or singular values as the load parameter
varies.

Figure 6 enables this procedure to be illustrated. The
curves correspond to the same example used to produce
Figure 1. The unbroken line refers to the normal singular
value calculation, whilst the dashed line was obtained
using the modification considered in this section. Step B
was caused by generator M2 encountering a limit, and
step C by generator M1 limiting. Hence in producing the
dashed line, both generators M1 and M2 were treated as
PQ buses at all points. Notice that for values of load
above step C, the two curves coincide. This is because
above step C, both generators are on limits and would
traditionally be treated as PQ buses anyway. Figure 6
illustrates the benefits of the proposed procedure. Con-
sider a load of say 4.0p.u. Using the traditional
approach, an eigenvalue or singular value based index
would indicate that the system was in a comparatively
strong position. There would be no way of knowing that
for a small increase in load, a limit would be met and the
system would be in a very marginal state. However it can
be seen from the dashed curve that the proposed proce-
dure gives a much better indication that the system is
nearing its loadability limit.

This alteration to eigenvalue/singular value indices
relies on a knowledge of the reactive power sources that
are on limits at the point of collapse. The predictor/
corrector procedure can be used to provide that informa-
tion. Note though that the exact limit points are not
required, just a knowledge of which sources have hit
limits. Therefore, often it will not be necessary to use
the predictor/corrector procedure every time the voltage
collapse index is to be calculated. Consider an operating
environment. The predictor/corrector procedure could
be run every so often to confirm which sources encoun-
tered limits as the load was increased. The index could be
calculated much more regularly, using that information.

VI. Conclusions

A knowledge of the points where reactive power sources
encounter limits is important when assessing the vulner-
ability of a power system to voltage collapse. This paper
presents a predictor/corrector technique that robustly
determines such points. The predictor is based on linear-
ization of the power flow equations about the point from
which the prediction is to be made. It provides an estimate
of limit points. The corrector is a slight modification of

the standard power flow. It uses the estimated limit point
given by the predictor as the starting point for solution.
The corrector generally takes around two iterations to
converge. Because the corrector does not use exactly the
same constraints as the standard power flow, it has no
problem converging near the point of collapse.

Having found the limit points, it is possible to use
interpolation to provide a fast estimate of the point of
collapse. Also, a knowledge of the sources that encounter
limits as the load is increased can be used to improve the
usefulness of voltage collapse indices which are based on
eigenvalues and singular values.
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