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This paper explores the dynamic behaviour of loads and tap
changers during the process of voltage collapse in power
systems. Using an exponential recovery load model repre-
senting the dynamic behaviour of aggregate loads, the
mechanism of voltage collapse is illustrated. Dynamic
interaction between loads and transformers is investigated.
Based on such dynamic considerations, a tap locking
strategy is proposed which ensures that voltage collapse
does not occur. Investigations focus on determining a
critical value of tap position such that locking at a smaller
value of tap results in stable behaviour, but locking at a
larger value results in voltage collapse.
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I. Introduction

Owing to the number of widespread system black-outs
throughout the world the study of voltage instability
problems has become an important and interesting area
of research and studies. Voltage collapse is usually char-
acterized by a progressive fall of voltages and shortage of
reactive power reserves in the network. Primary events
which can induce voltage collapse are line or generator
tripping, sudden increase in load, and limiting or loss of
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reactive power support. Depending on the severity of the
contingency, the voltage collapse time frame could range
from seconds to minutes. Despite an enormous research
effort, a number of aspects of the dynamics of voltage
collapse are still not well understood.

The voltage collapse phenomenon can be related to the
action of tap changers on transformers, reactive power
limiting protection at generators and load characteristics
at low voltage magnitudes' 3?13 These devices can
interact in quite a complicated way. Many investigations
of the mechanisms of voltage collapse have shown that
tapping of transformers to restore voltages in an alread‘y
weakened system could cause further voltage reduction®*.
This is a consequence of the transformers higher reactive
demands in that case. If that reactive power could not be
adequately supplied, either because of network con-
straints, or because of generators encountering reactive
power limits, then voltages would fall further. Further
tapping would cause further voltage falls, until ultimately
protection action would result in cascaded tripping of
system components, or machines would separate because
of the inability of the network to maintain an adequate
level of synchronizing torque.

Because voltage collapse usually occurs on heavily
loaded systems, and tends to result in abnormal voltage
behaviour at load buses, load—voltage characteristics are
considered to be a very important factor. Further,
dynamic behaviour of loads is important®=®!'2!3 The
load at transmission levels is an aggregation of various
load devices, each with some dynamic attribute. A gen-
eral dynamic load modelling methodology developed by
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Hill and Karlsson”® expresses load dynamics in terms of
aggregate static and transient load characteristics. In
Reference 7, it is shown that this general nonlinear
model captures the dynamical behaviour of various
loads including motors, tap-changers, static loads and
thermostat controlled resistive devices. This was subse-
quently used to explore static vs. dynamic aspects of
voltage stability. In Reference 7 the single line case was
studied; results for the general case are presented in
References 11 and 16.

This paper investigates the nature of voltage collapse
by modelling the dynamics of aggregate loads and voltage
control equipment such as transformer tap-changers, and
examining the dynamic interaction between them. In
Reference 3, ‘leaf” diagrams were proposed as a way of
explaining this interaction and revealing a mechanism
of voltage collapse. As for the control action, it was
shown that locking the tap changers at an appropriate
time which corresponded to voltage recovery helped the
system voltage to reach a steady-state, and therefore
avoid the collapse. These results were obtained using
load dynamics with an instantaneous recovery to a
steady-state level. We show that with a more realistic
(exponential) recovery produced by a general nonlinear
recovery load model’, the earlier conclusions regarding
tap locking do not always hold true. Besides that, the
important issue of the ‘timing’ of tap locking is particu-
larly investigated. It is shown that in most cases the tap
locking problem can be analysed as a bifurcation pro-
blem. The latest appropriate time to perform the tap
locking corresponds to a bifurcation point of the system
model. Some special situations where this does not hold
true are addressed.

The structure of the paper is as follows. Section II
develops a model for single-line single-load power sys-
tems which incorporates tap changer dynamics and
dynamic load with exponential recovery. Section I
presents leaf diagrams, and briefly reviews the main
results of the voltage stability analysis presented in
References 3 and 5, which corresponded to the use of
non-recovery load modelling. Insights into the mechan-
ism of voltage collapse when load recovery is modelled
are revealed in Section IV. The voltage collapse phenom-
enon in a simple power system is analysed by examining
the dynamic interaction between the load and its supply
network. From this analysis, the use of tap locking as a
way of preserving load voltage is investigated. Detailed
information on the determination of the latest time to
lock taps, along with some supporting simulation
results, are presented in Section V. Conclusions are
given in Section VI. Further details are available in
Reference 15.
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Figure 1. A two-node system

Il. System model

A general model for the study of the interaction between
generator limits, tap-changing transformers and load
dynamics is developed in References 15 and 16. In this
paper we concentrate on the simple power system shown
in Figure 1. Therefore, the reduced model applicable to
this simple power system will be outlined here.

In this simple power system, we have only one gen-
erator bus. We shall therefore take that bus as the
reference bus, i.e., the voltage angle is set to zero. Also,
swing dynamics are not a consideration. The generator
terminal voltage is denoted by E. Its reactive output Q,
has an upper limit of @y, The terminal voltage and
reactive power have the following characteristic:

This characteristic can be described by,

if Qg(EO)ngim
Qe(E) = Qiim it Qg(Ey) > Otim

Note that at the point where the limit is first encountered,
both the above constraints (on £ and Q,) are satisfied.

For simplicity, assume the system is lossless, i.e., the
impedance of the transmission line is jX. Let the turns
ratio of the transformer be #, and let P,, O, denote the
total real and reactive power entering the load bus via the
transformer. Then

E=E,

EV
P8,V = = siné I
(&, V,E n) nXsm6 (1)
v: EV
V. En) = —— 4o 2
Q(6, V. E.n) oy Ty cose ()

Now consider the modelling of the load. Measurements
in the laboratory and on power system buses show that a
typical load response to a step in voltage V' is of the form
shown in Figure 2 for reactive power Q,, and similarly
for real power®. It can be seen that a sudden voltage step
causes an instantaneous power demand step AQ,. This
step defines the transient characteristics @,(¥7) of the
load. Following this the demand recovers to a steady-
state value. The steady-state power demand is a function
of the steady-state voltage and this function defines the
steady-state load characteristics Q (V). The time con-
stant for a load to recover to steady-state is denoted as
T,. Based on this form of response, Reference 7 proposes
a nonlinear recovery model which captures such load
behaviour. Considering reactive power, the model can
take the form of a scalar differential equation

T,04+ Qu=0.V)+k,(V)V (3)

or first-order normal form
X, = =T %, + N(V) (4)

Qs=T,'x,+0,V) (5)
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Figure 2. Recovery load response to a step voltage change

where
ag, .-
d—V_ qukq(V) (6)
N,(V)=0,(V) - QuV) (7)

Similar equations hold for real power P, related to V.

This approach to load modelling is flexible enough to
study various time-scales corresponding to induction
motor, tap-changer or thermostat control transient
behaviour.”

The functions Q, and Q, (and likewise P, and P,) can
take various forms. One simple choice is the usual single
index form

0,(V) =0V (8)
0,(V)=0r? 9)

which separates static and transient behaviour by using
indices 3; and j3, respectively. In the analysis of voltage
collapse, other models for static characteristics are some-
times preferred, e.g.,

Q,(V)=by+b V+b ¥ (10)

Depending on the nature of the real and reactive power
loads, we define

0=P;—T,'x,— P(V)
=g (V,x,,Pg) for dynamic P,
0= P, — Py(V)
=g1(V,x,, Py) for static P, (11)
and
0=0,-T,'x,~ Q)
=g3(V,x,,Q4) for dynamic Q,
0=04—0uV)
=g3(V,x,,Q,) for static Q, (12)

Note that functions P,(V), @,4(V) could be constant or
in fact zero.

Consider the modelling of the tap-changer. Tap-
changers are a special type of transformer whose turns-
ratio is automatically adjusted in order to regulate the
voltage of a specified bus, i.e., usually the voltage at the
secondary side of the transformer. The tap-changer has a
reference voltage value ¥°, which is the target value of
an automatic voltage regulator. The tap movements are
discrete and can be modelled by

n(t)=n(t") —df (¥ = V") (13)
where d € R™ is the size of each tap-step,

-1 ifxg —e
flx)=4 0 if|x|]<e (14)
1 if x=e
and (—e, ¢) is the deadband'®. An alternative to (13) is a
continuous-time model of tap changing. This model
could be written as,

dn 1 0

w7V V) (15)
where 7 is the tapping time constant of the transformer.
This model provides an acceptable approximation of
discrete tap movements over the longer term and so
forms a convenient basis for the analytical study of
voltage collapse behaviour.

Combining the transformer tap dynamic equation (15)
with the equations describing the power balance at the
load bus, which are derived from (1)—(12), gives the total
system representation

a=T (V' =V) =H) (16)
X, = =T, %, + N,(V) = falx,, V) (17)
Xp= =T, x, + N,V) = filx,, V) (18)

0=g1(V.xp, Py) (19)

0=—P(5,V,Eny+P; :=g(6,V,En Py (20)
0=g3(V,x, Q) 21

0= _Ql(év V,E,n) +Qd = g4(6= V,E,I’l, Qd) (22)
This model is a set of differential-algebraic (DA)
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Figure 3. Non-recovery load response to a step voltage change

equations. The dynamic states of the system are the tap
position # and load dynamic variables x, and x,, whilst
the algebraic variables are bus quantities é, ', P; and Q.
Define g = (212, g3 84" Theng(n, X, X,,6,V, Py, Q) = 0
defines a 3-manifold called the constraint manifold. The
system always remains on that manifold and is driven
over it by the dynamics of (16)—~(18).

The model (16)—(22) assumes that the generator voltage
is fixed at E,, so that the reactive power equation at the
generator bus is deleted. But, if the generator reactive
power (), becomes fixed (at its limit), the generator
voltage E becomes a variable, and a reactive power
equation at the generator bus given by

0= Qg(éa V,E,i?) - Qlim = gS(ér V?Eﬂn) (23)

should be added to the system model (16)—(22). Then, the
constraint manifold will be augmented by equation gs,
and will involve one more variable, the generator term-
inal voltage E. The constraint manifold will remain of
dimension 3.

As mentioned earlier, the extension of the above simple
system model to a multimachine multiload system model
is given in References 15 and 16.

Ill. Voltage collapse with non-recovery
load model

The load modelling approach given by (4)—(7) provides
separate nonlinear static and transient behaviour defined
by load functions P((V') and P,(V), and/or Q (V) and
Q,(V'). Setting recovery time constants 7, = T, = 0 gives
that the response of an aggregate load to the voltage step
is of the form shown in Figure 3 for reactive power Q,,
and similarly for real power P,. As with the recovery
model, a sudden voltage change causes an instantaneous
power demand change. But following this the demand
recovers instantaneously to a steady-state level. This
model is used in References 3 and S for analysing the
dynamic process of voltage collapse based on the interac-
tion of tap changer dynamics, load dynamics and genera-
tion limits. In Reference 5, ‘leaf’ diagrams were proposed
as a way of explaining this interaction. A simple power

system of Figure 1 is analysed. For this system, a region in
the state space which corresponds to the recovery of
voltage is identified. This region is conveniently visualized
in terms of load voltage and tap position. This voltage
recovery (V' > 0) region, which was referred to as the ‘leaf”,
is enclosed within the curve defined by ¥ = 0. Manipula-
tion of the model equations obtained from setting V' =0
results in the analytical expression for the region boundary,
EzJ v, v

20,(V) - |5 n

=0
X +X2

PIV) + Q5 +

(24)

Two versions of the region boundary are shown in
Figure 4. Curve | was obtained by setting £ = E;. How-
ever, at a large number of points in curve 1, the reactive
power limit of the generator was exceeded, i.e., Q,(Ey) >
Qlim- Curve 2 shows the restriction of the region bound-
ary obtained by taking into account the generator
operation at the limit. Where the curves do not overlap,
the value of E. which satisfies Q (E) = Qjm, is less
than E,. Because of that the region V' >0 becomes
significantly smaller. The equilibrium points are given
by the intersection of the region boundary with a line
corresponding to the set point voltage V°, as shown in
Figure 4. The shape of the region ¥ > 0 depends on the
load models for P, and Q,; the particular shape given in
Figure 4 arises when P, is set to zero and O, is a
quadratic function of V. As long as the system trajectory
is inside the recovery region, the load voltage recovers. In
References 3 and 3, a different approach was taken in
handling the generator reactive power limit. Rather than
explicitly determining the restriction to the recovery
region caused by the generator limit (and given in
Figure 4 by curve 2), the idea of shrinking leaves was
proposed. After the generator limit is encountered, £
begins to fall from the setpoint value E;. For each
reduced value of E, a new leaf is defined by (24). 1t was
shown that as E reduces, a succession of smaller and
smaller leaves, each one contained completely within the
previous one, is obtained. (Note though that only one
point on each of these leaves will satisfy Q, = Qy;,,. That
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Figure 4. Leaf diagram in the n—V plane

point would occur at the intersection of the contracted
leaf and the right section of curve 2.) Voltage collapse
can occur by either the system trajectory moving
outside the leaf, or the leaf contracting from around
the system trajectory. In both cases, the point at which the
system exits the leaf must satisfy J” = 0. It must therefore
correspond to a point on curve 2 of Figure 4. If at the exit
point E < Ey, then by definition Q, = Qy,. In that case it
will correspond to a point on the right section of curve 2.

Based on such dynamic considerations, it was also
found that it is possible to avoid voltage collapse if the
tap changer is locked while the system trajectory is inside
the recovery region. For a physical view, note that when
the voltage is recovering (trajectory is inside the recovery
region) the continuing action of the tap changer may
further reduce the receiving-end voltage of the transmis-
sion line V' /n due to an increasing n. If one decides to lock
the tap while the trajectory is inside the recovery region,

1.5 T T T

Tap ratio, n

then ¥ /n will improve since V increases and » is fixed.
This implies that the reactive loss due to the transmission
line can be reduced and the burden on the generator is
lessened. The generator terminal voltage E can recover
and hence, in the shrinking leaf view, the leaf expands.
The system trajectory continues moving vertically
upward (n fixed) and approaches the boundary of the
recovery region where V' = 0. The load voltage settles to a
steady-state value. However, it may be lower than the
reference voltage V°. The effect of this tap locking
strategy is illustrated in Figure 5°.

IV. Voltage collapse with recovery load
model

IV.1 Features of the single-line system
In Section I1T it was stated that if load is modelied with no
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Figure 5. Voltage recovery by tap locking
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recovery mechanism, then voltage collapse can be
avoided if the locking takes place when the system
trajectory, which in that case is driven by voltage
dynamics, is inside the leaf. The use of a more general,
nonlinear recovery load model given by (3) provides
novel insights into the mechanism of voltage collapse.
The extra dynamic terms 7,P; andjor T,Q, make a
major difference regarding the decision when to lock the
tap changer to prevent a voltage collapse arising.

To illustrate some properties of this model, the single
load system of Figure 1 is explored in this section.
Dynamic behaviour of the load model is most clearly
illustrated when only the real power load or reactive
power load is modelled dynamically, with the other
being modelled by some static voltage characteristic.
Assume that reactive load is modelled by (3), and for
convenience the real load is set to zero. Since P; =0,
equations (1) and (20) give § = 0 everywhere and Q, only
depends on ¥ and n. From equations (7), (16), (18), (21)
and (22) the system is described by the differential-
algebraic set of equations

n=T"Yv°-r) (25)
Y= =Ty x,+ (V) - Q,(V) (26)
0= —QI(V:n) + Tt;lqul(V) (27)

It is useful to note that (26) has an equivalent convenient
form. Combining (26) and (27) gives

xq = QS(V) - QI(an) (28)

which means that the load dynamics is driven by the
reactive power mismatch. Setting derivative x, to zero
gives the static model @,(V) = Q,(V,n), which is the
same as the static model in Section III obtained by setting
V' = 0. It means that it represents the same curve in the
n—V plane as is shown in Figure 4. But now, the region
X, < 0is enclosed within the curve defined by (24) where
P,(V) is set to zero (since we assume P; = 0). It is no
longer appropriate to call this region the voltage recovery

region. However we see from (28) that x, < 0 corre-
sponds to Q,(V,n) > Q,(V), ie., the load demand is
greater than the steady-state load requirement. We shall
therefore refer to this region as the (transient) excess load
region.

The equilibria of the system are intersections of the
curves ¥ = V'° and the boundary of the excess load
region, X, = 0. From (27),

Xy = Tq(Q,(V,n) - QZ(V)) (29)

so the corresponding curve in the n—x, plane is given in
Figure 6 where

xg =T, (Q:(V°) = Q(V°)
= T,N,(V°) (30)

Again, curve 1 represents the boundary of the region
obtained for E = E;, whilst curve 2 takes into account
generator operation at its limit, in which case the actual E
is less than £,. The dotted line denoted by @, gives
points where the generator makes the transition between
regulating £ and being limited, or vice versa, i.e., points
which satisfy both (23) and E = E;. So for the system in
Figure 1, the generator terminal voltage E is given by

vz o1 |py4 y2
QlimX+_+§ n—4+4 XQlim

E = min¢ E,, 5 —
2n~ n*

(31)
where the second term in the minimization refers to (23),
i.e., generator operation at its reactive power limit. As
seen, the effect of the generator reactive limit is to
contract the x, <0 region. It will be shown in the
sequel that this contracted excess load region plays an
important role in the mechanism of voltage collapse.

It is useful to supplement the view of the excess load
region in the n—V and n—x, planes, shown in Figures 4
and 6, by the corresponding view in the V'—x, plane. It
follows from (26) that the curve given by

xg = T (Q:(V) = Q,(V)) (32)

Load state, xq

v ¥ T

Tap ratio, n

Figure 6. Excess load region as viewed in the n—x,, plane
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Load state, xq (pu)

-8 2 n

Load voliage, V (pu)

Figure 7. Boundary of the excess load region as viewed in the V—x, plane for various reactive static characteristics:
(1)Qs(V) =0.4+ 0.1V +0.16V2*  (3)Q,(V) = 0.65V 2"
(2)Q4(V) =068 — 0.28V +0.2V? (4)Q,(V) = 0.65V°®

defines all points where %, = 0. Notice that the shape of
this curve depends only on the static and transient load
characteristics. Some possible shapes for this curve, as
viewed in the V' — x, plane, are shown in Figure 7. In
producing these curves, Q,(V') was specified as a linear
function of V', ie., Q,(V) = (k,/T,)V, where K, = 10,
T, = 15s. The parameters of Q (V') were varied. As can
be seen, the general shape of all these curves is almost the
same, except the one shown by curve 4. The difference is a
consequence of the fact that in this case the Q,(V)
characteristic has a greater voltage exponent than the
O,(V) characteristic, which results in a maximum as an
extreme point. As in the case of the excess load region
shown in Figures 4 and 6, X, < 0 at all points inside the
region, ie., above the curve, and X, >0 at all points
outside the region, i.e., below the curve. These curves will
be used in the analysis in Section V, where tap locking
strategies which alleviate voltage collapse will be explored.

Itis interesting to note that static characteristic 3 differs
from the others in terms of its effect on singularity of the
Jacobian of the equations which describe the x, =0
curve. From (26), (27), it can be seen that x, = 0 corre-
sponds to 0 = —Q,(V,n) + Q,(V). In Reference 14, it
was conjectured that if the voltage index 3, was greater
than 1, singularity of the Jacobian would not occur. For
indices less than 1, singularity was a possibility. Only
characteristic 3 satisfies that criteria for Jacobian non-
singularity. (Characteristics 1 and 2 fail due to their
constant power terms.) As a consequence, the X, =0
curves for characteristics 1, 2 and 4 are always bounded
in the direction of increasing #. Figures 8 and 11 provide
examples. For characteristic 3, such curves are
unbounded in the » direction, see Figure 10.

The power system of Figure 1 is used in the sequel to
illustrate voltage collapse scenarios, and later tap locking
strategies. The following parameters of this system have
been used in all cases:

Ey=105pu, X =03pu,V°=1pu.,
T'=62sk,=10,T,= 155

Various static reactive power load characteristics
have been used for different cases. Also, the value
of the generator reactive power limit varies between
cases. Details of those parameters are provided as
appropriate.

IV.2 Voltage collapse analysis

Having established some general properties of the load
state behaviour, we now consider how a voltage collapse
arises from the interaction of the load dynamics described
by the nonlinear recovery model, tap changing, and
generator reactive capability limiting.

Referring to Figure 6, assume that the system has
been operating in a steady state point A when a distur-
bance occurs, such as an increase in loading. The operat-
ing point A is outside the post-disturbance x, < 0 region,
and because of that, the x, trajectory is moving up (i.e.,
X4 > 0). At point B, the x, trajectory enters the excess
load region and changes direction, i.e., begins to move
down. If the trajectory does not cross the generation
limit curve @y, then it would trace a path from point
B to point D within the excess load region. If, on the
other hand, this trajectory crosses the limit curve at
some point C, the generator will operate at its limit
and its terminal voltage decreases. The part of the
region where £ < Ej, i.e., curve 2, is now relevant, so
the x, trajectory may soon fall outside the x, < 0 region.
It is then moving up. As will be shown in the sequel,
during that time V' < V'°, so that the tap ratio steadily
increases. It means that the x, trajectory is moving up
but away from the boundary x, = 0. Voltage collapse
takes place.

Note that the voltage collapse may not always happen
in this way. Depending on load parameters, the
relative positions of the curves corresponding to tap
changer dynamics, load dynamics and generation limit
may change, and the sequence of events may be differ-
ent. This will be described and illustrated after the
following analytical discussion of the voltage collapse
scenario.
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If follows from (29) that voltage dynamics are given by

1 0. 0)
>l . i
V=T S 0, oy (33)
oV ov

Considering a very small time interval, tap ratio variation
is typically much slower than variation of xq(T > T,). It
means that for small movement away from point A, w1th
x4 increasing, the tap ratio can be assumed unchanged.
The change in load voltage V in response to the increase
in x, is then given by

1
o -l
AV=-Ta 50, —0)"
v

Assume that Q,(V") isa linear function of V,i.e., Q,(V) =
(ky/T,)V, where kg >0, T, > 0. Then, {GQ (M)]/8V at
point A is positive. It is shown in the Appendlx that under
normal conditions [0Q,(V,n)]/8V for the post-fault
system characteristic is negative. Therefore, an increase
in x, results in a decrease in V. But, according to (25) a
decrease in V' will provoke an increase in n. The 7 term of
(33) will begin to become significant. Again, from the
Appendix, under normal conditions [0Q;(V,n)]/0n will
be positive. Because of that, the rate of downward move-
ment in voltage is decreasing and at one moment V
becomes zero (point E in Figure 6). Since at that point
the X, = 0 curve has not been encountered, X, remains
positive; x, trajectory continues moving up and load
voltage starts to increase but is still ¥ < V° which
means that » continues to increase. In this scenario,
after time the system will reach a point where x, = 0
(point B in Figure 6). From (28) it can be seen that at that
point, Q,(V,n) = Q,(V'). Voltage dynamics are given by

(34)

Since 8Q,/8n, [0(Q, — ©;)}/9V and r are still positive at
point B, ¥ will remam positive too. At point B, x,
changes frora being positive to bemg negative, so the
trajectory begins to decline. Because x, < 0, (33) implies
that generally V' will continue to 1ncrease until the
boundary x, =0 is touched again (point D) and #
becomes zero. The system will settle at V' =V°, ie,
X, =xg

this analysis has shown that if the trajectory doesn’t
cross the limit curve Qy;,,, voltage recovery will occur on
the path E-B—D. We now wish to consider the case when
the trajectory crosses the limit curve. The generator is
then at its limit and its voltage is given by the second term
in (31). From (29), (31), voltage dynamics are then given
by

X 1

T a0, —0) 60,08

TV QE®V
90, — Q) 0Q,0F
~ on _ OE Bn 6
300, - 0) 000" (36)
oV BEOV

Assume that the trajectory is outside the excess load
region (i.e., it is moving upward), and crosses the Qjim
curve while load voltage is recovering (path E-B in
Figure 6). The generator is now at its limit and its voltage
E starts to decrease. Since [3(Q, — Q,)]/9V, 8Q,/0E,
OE/OV, 0Q,/0n are positive, and GE/n is negative (see
Appendix), the detailed analysis of the terms in (36) given
in the Appendix shows that at the point as E starts to
decrease and ¥V < V'° both
00, 0FE

0@, -0y 0Q0E] . [0(Q~-Q) 00.0F
av OE OV On OF On

can be regarded as positive. Because of that, it follows

00— O, ) @ from (36) that V" becomes negative and voltage decreases.
V= — __on On P (35) The rate of the tap ratio movement is increased. There are
Q. — Q/) 8(Qt - Q) two possibilities.
ov ov e Ifload and generator voltages decrease rapidly, X, > 0
4+ o 7]
™
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Flgure 8. Excess load region and voltage collapse scenario as viewed in the n— X, plane; Q (V)
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Figure 9. Voltage collapse scenario in time domain: Q,(V) = 0.68 — 0.28V + 0.2V2, Q;, =0.74

will start to increase, i.e., upward movement can
become faster, but the generator will continue to
work on its limit. So, the load voltage continuously
decreases, i.e., the tap ratio steadily increases and the
system trajectory is moving up but far away from the
boundary x, = 0. This case is illustrated in Figure 8
where the system trajectory is presented in the n—x,
plane along with the corresponding contracted excess
load region (denoted by dashed lines in Figure 8). The
equivalent representation in the time domain is shown
in Figure 9.

¢ If load voltage decreases slowly, then it is possible that
the trajectory may enter the X, < 0 region. This will not
change the voltage direction, i.e., it will continue
decreasing. This will lead to a further reduction of
generator voltage and increase of tap ratio. As a resuit,
the system trajectory may soon fall outside the x, < 0

-1

region again. It will then again move up toward the
boundary x, = 0. But, in the scenario illustrated in
Figure 10, it cannot reach the boundary and voltage
collapse takes place.

Voltage collapse can also happen when the trajectory is
inside the X, < 0 region and crosses the Qg curve (point
C in Figure 6). As mentioned above,

0(Q.-0) 00i08] {5(Qt - Q) 9Q,0E
ov OFE OV on OE On

are positive at that moment, so from (36), V' changes
sign, i.e., load voltage starts to decrease which provokes
faster increasing of tap ratio and decreasing of generator
voltage. As a result, the trajectory can fall outside the
X, < 0 region, and begin to move up again. Owing to
further increasing of tap ratio, it will move away from the
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Figure 10. Excess load region and voltage collapse scenario as viewed in the n—x, plane; Q,(V) = 0.65V21,

Qi = 0.65
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X, =0 boundary as is illustrated in Figure 11. Load
voltage continuously decreases and voltage collapse
takes place.

Note that in these voltage collapse scenarios, the
system trajectory either exits (Figures 10 and 11) or
passes by (Figure 8) the x, < 0 region from its low side,
i.e., from under the x, = 0 curve. For the purpose of the
later analysis of control action, 1t is useful to show one
more possible voltage collapse scenario. Figure 12 illus-
trates the case where the trajectory exits the x, < 0 region
from its upper side. The importance of such system
trajectory behaviour during voltage collapse will be
emphasized in the next section where the problem of
timing of tap changer control is explored.

Another way of illustrating the voltage collapse

scenario is to consider the constraint manifold described
by (27), including the effect of generator capability limit
given by (31). This surface is shown in Figure 13 in the
space of (V, n, x,). One projection of this surface is shown
in Figure 14. In this view the surface is composed of
contours, each one of which corresponds to a different
constant n. The corresponding %, =0 curve (from
Figure 7), the line corresponding to 7 =0, and the
simulation of Figure 8 (or 9) as viewed in the V—x,
plane are added to illustrate the voltage collapse sce-
nario. Note that the fold in the surface corresponds to
the generator encountering its limit. It is easy to see that
the trajectory never enters the x, < 0 region. As nand x,
increase, it crosses the fold in the surface before it gets to
the boundary of that region. Consequently, after the
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Figure 12. Region x, < 0 and voltage collapse scenario as viewed in the n—x, plane, Q,(V)=0.68-0.28V +

0.2V2, Q;n = 0.755
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Figure 13. Constraint manifold as viewed in the
(V,n,x,) plane; Q4(V)=0.68-0.28V +0.2V2 Q;,
=074

limit is encountered voltage steadily declines, leading to
a voltage collapse-type situation. This view confirms
the observations of the previous part of this sub-section,
and will be used to demonstrate the voltage control
action in the following section.

V. Alleviating voltage collapse by tap
changer control

V.1 Tap locking strategies

This section focuses upon some possible control actions,
particularly tap changer locking, for preserving the load
voltage. In Section III, where the load model did not
account for load recovery, it was shown that tap locking
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should take place when the system trajectory was inside
the region of increasing load voltage. However, using the
more general load model of Section IV, with x, now a
dynamic state of the system, we will see that the load
voltage can be preserved even if the tap is locked at a
point outside the x, <0 region. Therefore, detailed
analysis of the appropriate time to lock the tap should
be made. Depending on the system trajectory behaviour
during voltage collapse, there are two cases to consider.

Case 1. Locking the tap while x, trajectory is inside the
excess load region

This decision is shown as always useful. Note that locking
the tap means that tap ratio # becomes fixed. Referring to
(36), voltage dynamics are then given by

— 1 .
V=T 50, ~0) 90,08

oV OF oV

Since locking will not influence the signs of X, and
[(0(Q, — Q)/8V — (8Q,/OE)(OE/OV )], X, will remain
negative and [(3(Q, - 0/)/0V ) — (9Q,/SE)OE/0V )]
positive. Then according to (37), V' becomes positive and
load voltage increases.

If, at the moment of locking, the trajectory has not
crossed the limit curve, then the trajectory will continue
moving vertically downward and will approach the
boundary x, = 0. The system reaches a stable equili-
brium, as shown in Figure 15. Note that the corre-
sponding (uncontrolled) voltage collapse behaviour,
i.e., voltage collapse without tap locking, is given in
Figure 11.

If, at the moment of locking, the trajectory has already
crossed the limit curve, so that F < E), then from (31) it
follows that increasing of voltage V causes the generator
terminal voltage E to increase. As the voltage recovers,
the system may pass through the Qy, curve again,
indicating that the generator had come off its limit, and
E had recovered to E;. Ultimately the system trajectory
will reach the %, = 0 boundary. At that point, V" will
become zero, and the system will reach steady state.
Alternatively, the Q) curve may not be encountered

(37)
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Figure 14. Voltage collapse scenario as viewed in the V—x, plane; Q (V) = 0.68 — 0.28V + 0.2v2, Om=074
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Figure 15. Tap locking while the trajectory is inside the xq < Oregion and has not crossed Qj;, curve; Q,(V) =0.4 +

0.1V +0.15V%4 Q. = 0.8; t,,, = 1055

along this post-locking path. Then E < E, when
the trajectory reaches the x, = 0 boundary, where the
system settles to a steady state. This situation occurs if
tap locking for the case considered in Figure 15 is
delayed by 15s, to 1, = 120's. Again, the corresponding
uncontrolled voltage collapse behaviour is given in
Figure 1.

Case 2. Locking the tap while X, trajectory is outside
the excess load region

As seen from Figures 10, 11 and 12, the system trajectory
which describes the uncontrolled voltage collapse situa-
tion has after some time left the x, < 0 region. In the case
of Figure 8 (or 9) it is obvious that the system trajectory
has never entered that region. The decision to lock the tap
while the x, trajectory is outside the X, < Oregionmay or

may not help depending on the time when locking is
performed.

Figures 16, 17 and 18 illustrate cases where such a
decision halted voltage collapse. Further analysis of the
situation illustrated in Figure 17 shows that even later tap
locking would have preserved the load voltage. However,
exploration of the cases corresponding to Figures 8 (or 9)
and 11 shows that if tap locking is delayed too long,
collapse will still occur, but at a slower rate than in the
corresponding uncontrolled cases.

In the scenario shown in Figure 16 the load voltage was
recovering at the time the tap changer was locked.
Figures 17 and 18 illustrate cases where the load voltage
was decreasing at the locking time, f,,. As discussed
earlier, tap locking will not change the signs of X,
and [(0(Q, - Q,)/8V) — (0Q,/OE)OE/OV)]. So from
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Figure 16. Tap locking while the trajectory is outside the X4 < 0 region helps; Q (V)= 0.68 —0.28V + 0.2V?,

Olim = 074, tlok =50s
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Figure 17. Tap locking performed at ¢, = 900 s preserves load voltage; Q (V) = 0.65V27, Qiim = 0.65

(37), because x4 > 0, V will be negative. However, it is
obvious from Figures 16, 17 and 18 that such voltage
behaviour immediately after tap locking does not mean
that this action does not help. It seems that the sign of V/
does not give an accurate indication of the usefulness of
this control action, i.e., there are other factors that need
to be taken into account. This issue will be discussed in
more detail in the next sub-section.

In the voltage collapse scenarios shown in Figures 8,
10, 11 and 12, it can be seen that if tap locking was
performed at any time while the x, trajectory was below
the excess load region, collapse would be avoided. After
tap locking, the system trajectory would move vertically
upward, ultimately encountering the X, =0 curve.
Steady state would be reached at that point.

V.2 Determination of the /atest time to lock the tap
changer

It was shown in Subsection V.1 that locking of the tap

while the system trajectory was inside the X, < 0 region
always resulted in the system reaching a steady state.
However, it was also shown that under certain circum-
stances locking of the tap while the system trajectory was
outside that region, or had left the region, could also help.
As seen from Figures 17 and 18, where such decisions
halted voltage collapse, it means more time to decide to
act in order to prevent the collapse.

Detailed analysis of situations shown in Figures 8,
11 and 12 has shown that there is a critical time before
which tapping should cease in order to prevent the
collapse. Analysis of this critical time problem has
pointed out the importance of the system trajectory
behaviour.

Referring to Figures 8, 10 and 11, denote the maximum
tap ratio for points on the X, = 0 boundary by n,,. Since
the system trajectory exits the x, < 0 region from its low
side (Figures 10 and 11) or is passing by it from below
(Figure 8), locking the tap at any point up to n;, means

n
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Figure 18. Tap locking performed at ¢, = 160s helps; Q,(V) = 0.4 +0.1V + 0.1 5V24 Q;n = 0.8
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that the trajectory on its subsequent vertically upward
movement will encounter the %, = 0 boundary and stop.
The tap locking strategy of Figure 18, given in the n—x,
plane in Figure 19, curve 1, illustrates this behaviour,
Alternatively, the corresponding picture in the V—x,
plane is shown in Figure 20. It can be seen that the
system trajectory in the V' —x, plane stops at the point
of intersection of the constraint manifold, i.e., a contour
of fixed n (n = n(ti,x)), and the x, = 0 curve. For such
fixed n, this intersection point is one of the solution
points defined by solving (27), (31) and (32). Figure 21
gives the view in the ¥ —x, plane of the collapse scenario
which results when tap locking occurs too late. It
illustrates the case where this intersection point does
not exist, and therefore tap locking performed at time
tisk would not help. Referring to Figure 19, it means

that n(fe =200 s) >ny,. The trajectory on its
vertically upward movement does not meet the x, = 0
boundary.

From Figure 19, it can be seen that in this case the
critical value of tap n,, corresponds to a saddle node
bifurcation point. For values of tap less than Ry, pOINts
on the x, = 0 curve exist. For tap values greater than Ry,
no points exist. This is not always the case though, and in
some situations 1, is not the appropriate value to lock
taps at. The various cases are considered below. We shall
refer to the latest value of tap for which locking will be
successful as ny,,.

Case 1. Critical value of tap position is determined as a
saddle-node bifurcation point
The critical value of tap position n,y is obtained as a
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Figure 20. Tap locking performed at ¢, = 160's as viewed in the V—x, plane; Q (V) = 0.4 + 0.1V + 0.15V24,
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Figure 21. Tap locking performed at t,,, = 200s as viewed in the V—x, plane; Qy(V) = 0.4 + 0.1V + 0.16V?*,
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solution of the following set of equations:
E=E i Oy(E)<Qim
Q¢ (E) = Quim if Qp(Ey) > Qjim & 0= f1(V,n,E)(38)
0=-T;"5%,+0,(V)-Q,(V) = 0=1(Vx,) (39)
0=—0,(V,n,E)+ T 'x, + Q(V)
& 0=4f(V,nE x,;) (40)

In this case, nj, = n;,. We see from Figure 19, Curve 2
that the system trajectory will just touch the x, =0
boundary curve. In Figure 22 it is shown that this case
corresponds to the constraint manifold for n = nj,, being
tangential to the x, = 0 curve. Compare this situation
with the scenarios of Figures 20 and 21.

Case 2. Critical value of tap position corresponds to a
limit induced bifurcation point

This case is illustrated in Figure 8. The bifurcation point
occurs at the intersection of the boundary x, = 0 and the

s0=f(V,nE)  (42)

[ O ofi O]
a—j; 64 8_2 limit curve Qy,. Because of that, this is called a limit
*q induced bifurcation point. Tap locking will be successful
0 = det % % % (41) provided it occurs before the tap increases above the
oV 0x, OE value ny,, given by,
% 95 I
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0=-T.'x,+0,(V)-0.V)

& 0=1f(V,x,) (43)
0=—QV.n E)+T; x,+ Q)

S 0=1(V,n E ,x;) (44)

Case 3. Bifurcation point does not exist

Situations can occur where neither saddle nor limit
induced bifurcations occur. This is closely related to the
choice of parameters of the static load model Qs(V)“'M.
Figure 10 illustrates such a case. Tap locking is always
successful in this case. If the trajectory is above the x, = 0
curve, then locking will cause the trajectory to move
vertically downward and intersect this curve. If the
trajectory is below the X, =0 curve, tap locking will
result in the trajectory moving vertically upwards, and
again reaching a steady state at the intersection with the
x, = 0 curve.

Case 4. Bifurcation point exists, but it does not
determine the critical value of tap position

The case is characteristic of voltage collapse situations
where the system trajectory exits the excess load region
from its upper side, i.¢., above the bifurcation point. This
is illustrated in Figure 12. Since outside that region the
trajectory has to go up, it is directed away from the
boundary. Therefore, performing the tap locking at any
time after the trajectory has left the region would have
no useful effect. It means that in such a situation, the
latest time to lock the tap corresponds to the exit point
of the excess load region (point X in Figure 12). Since
the position of this point is greatly influenced by the
dynamics of the system, it is hard to determine analyti-
cally the corresponding values of V, n, x, and E < E; at
that point. Referring to Figure 12, it is only possible to
make the following observation regarding the values of n
and x,:

Penter < Mlast < nbp

xq(”emer) > xq(”last) > xq(”bp)

This case clearly demonstrates the importance of the
dynamic behaviour of voltage collapse and the need to
establish the link between bifurcation based static and
simulation based dynamic approaches.

VI. Conclusion

The paper has investigated long term mechanisms of
voltage collapse using recently developed dynamic load
models. It is shown that load dynamics, reactive power
limiting and tap changing can significantly influence the
voltage behaviour. With a dynamic load model’, the
voltage collapse phenomenon is analysed by examining
the dynamic interaction between the loads and their
supply network. It is shown that appropriate (recovery)
load modelling has a significant effect on the decision
when the tap changer should be locked in order to
alleviate voltage collapse. The results obtained with
regard to determining the latest time to lock the tap
changer are related to the so-called excess load region,
1.e., the region where the load demand is (transiently)
greater than the steady state load requirement, and they
could be summarized as follows.

e Where the system trajectory passes below, or exits from

the low side, of the excess load region, then a bifurca-
tion point of the system equations determines the latest
acceptable tap ratio.

e Non-existence of a bifurcation point means that tap
locking can be performed at any time.

e Where the system trajectory exits from the upper side
of the excess load region, the exit point is the last
opportunity to lock taps. Later tap locking will not
alleviate voltage collapse.

Illustrations throughout the paper have been based
on examples where load recovery was faster than tap
changing. However the results of the paper are not
dependent on any relationship between load and tap
changer time constants. In fact, slower load recovery
would lead to a reduced possibility of the system trajec-
tory exiting the excess load region from the upper side.
So in cases of slow load recovery, it is more likely that the
latest tap locking time can be determined analytically.

The analysis has been undertaken using the continuous-
time model of tap changing. Modelling discrete tapping
will not affect the above observations, except that it
would be more appropriate to talk of the latest time
interval to lock the tap in order to preserve the system.

A main result from a practical viewpoint is the inade-
quacy of using the load voltage (or load voltage deriva-
tive) behaviour as an indicator of the control action
needed to alleviate voltage collapse.

Even though the studied network is very simple, the
results are interesting, since they emphasize the dynamical
character of the phenomenon. Studies of more complex
networks have been initiated; more general analysis and
results are expected to follow.
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Appendix

For the system in Figure 1, the derivatives in (36) are
given by,

80, 1 v

W’E(E_ZZ) )
0 _ ¥V (Vg

*an‘—nzx(zn E) (46)
09, vV

PE X 47

OF 1 vV

% 48
oV 2n P2 (48)
| —5 + 4Q\im X
n
OF vV V

SR [ T A— (49)

on 2n? 2
Mzt 4Q4m X

Itis obvious that 9Q,/JE and OE/OV are always positive,
whilst OE/9n is always negative. Considering some rea-
sonable values of V, n, E, derivative 8Q;/0n is positive,
and dQ,/9V is negative. Consider the signs of the terms
given in (36), [(8(Q, — 0,)/9V ) — (9Q,/OE )(DE/IV )]
and [(8(Q, — Q;)/9n) — (8Q,/OE)(OE/On)]. After some
algebraic manipulation of (45)—(49) we find

NQ, — Q) 80, IE _

ov OE oV
k
4 L K 3h__V—_ _E (50)
Tq nX |2n

[
Mozt 40 X

(0.~ 0) 00, 0E
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LA A I S
ntX |2n P2
n ?+4QlimX

Since the analysed voltage collapse situations are char-
acterized by low V and high n, ie., ¥V/n <1, and
V/[n/(V?/n?) + 4QumX] is also less than 1, and the
whole term given in brackets is negative, assuming that
the value of E is not significantly less than Fy; it means
that [(O(Q, — Q;)/0n) — (0Q,/OE)(OE/0On)| is positive.
Also, for some chosen values of k,, T, in (50), k,/T, >
(1/nX)[(V/2n)(3 = V/[n,/(VZ/n?) + 4Qyu X ) — El, s0
that ((5(Q, — 0)/0V) - (9Q,/0E)(9E/0V)] is also

positive.

—E (51)




