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Analysis Tools for Power Systems—Contending

with Nonlinearities

IAN A. HISKENS, MEMBER, IEEE

As systems become more heavily loaded, nonlinearities play an
increasingly important role in power system behavior. Modeling
rust accurately reflect component and system response. Analysis
tools should continue to work reliably, even under extreme system
conditions, providing accurate predictions of system behavior. The
paper considers some power system modeling issues and presents
an overview of the source of nonlinearities in power systems. It
then considers industry accepted analysis techniques, as well as
those techniques that are more research orientated. The influence
of nonlinearities on these tools is explored.

I. INTRODUCTION

Power system analysts need to accurately predict the
behavior of their power systems. System planners, for
example, must estimate future asset requirements, based
on long range predictions of system performance. System
operators must determine the robustness of the current
operating point to parameter changes and disturbances.
In both cases, the consequences of being misled by poor
predictions can be quite significant. If the planner rec-
ommends plant that is not required, a large cost penalty
is incurred. But if he underestimates plant requirements,
consumers may be adversely affected by load restrictions
and/or a reduction in reliability. Likewise, if operators are
not guided accurately, they may miss an opportunity for
a profitable power transaction with a neighboring utility,
or they may be unaware that their system is at risk from
certain contingencies.

Historically, power systems were designed and operated
conservatively. It was comparatively easy to match load
growth with new generation and transmission equipment.
So systems normally operated in a region where behavior
was fairly linear. Only occasionally would systems be
forced to extremes where nonlinearities could begin to have
some significant effect. However the recent trend is for
power systems to be operated closer to limits. Also, as the
electricity industry moves toward an open access market,
operating strategies will become much less predictable.
Hence the reliance on nearly linear behavior which was
adequate in the past must give way to an acceptance that
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nonlinearities are going to play an increasingly important
role in power system operation. It is therefore vital that
analysis tools perform accurately and reliably in the pres-
ence of nonlinearities.

Other papers within this special section are devoted to
exploring the types of nonlinear phenomena that can occur
in power systems. This paper focuses on commonly used
analysis tools, and considers their ability to cope with those
nonlinearities.

The types of analysis tools normally used by power
system analysts are as follows:

» Power flow programs solve the algebraic equations
which describe power system steady state conditions,
i.e., a power flow solves for the system operating point
(equilibrium point).

» Small disturbance stability analysis is concerned with
the eigenstructure of the system linearized about an
operating point of interest.

» Large disturbance simulation programs perform
numerical integration of the differential-algebraic-
discrete equations that describe the power system.

These tools will be considered further in later sections. For
now we shall use a power flow example to motivate the
idea that power systems can exhibit interesting nonlinear
behavior. The algebraic equations solved by the power
flow are in general multivalued. Fig. 1 provides a graphical
illustration of the complex nature of solutions. This figure
comes from [75], and describes solutions of a 23 bus section
of the Queensland (Australia) power system. Each curve
corresponds to a different (constant) value of voltage at the
Cairns bus, and describes the relationship between the real
and reactive power generation at Barron Gorge required
to maintain that voltage. The curves together describe a
complicated surface. We shall return to power flows, and
this particular figure, later.

The paper is structured as follows. Section II describes
the power system model, and addresses ‘normal’ modeling
assumptions. Power system analysis tools which have been
adopted by industry are described in Section III. Analysis
tools which have more of a research orientation are con-
sidered in Section IV. Section V makes some predictions
about future trends in analysis tools.
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Fig. 1. - Power flow solutions for various MW and MVAr parameters [75].

II.  SYSTEM MODELING OVERVIEW

A. Component Models

A major issue in the analysis of power systems is
the modeling of the multitude of components that make
up such complex interconnected systems. Analysis tools
and techniques can only provide useful information if the
models accurately reflect true component behavior over the
range of interest. (Note that this range can vary depending
on the nature of investigations.) In general, component
models have been developed to a high degree of accuracy.
One notable exception, which will be discussed later, is the
modeling of loads.

Even if the model structure is well understood, often
parameters will not be known exactly. Therefore parameter
sensitivity analysis is an important aspect of modeling.
This applies not only to the component models, but also
to the complete interconnected system model. Generally
industry has been limited to rather ad hoc approaches to
sensitivity analysis. Fortunately newer techniques, such as
those presented in [55], [66], offer a systematic way of
analyzing parameter uncertainty. Validation is also a vitally
important aspect of modeling. Unfortunately, for power
systems this is often not easy [14], [31], but is worth
persisting with.

Component modeling has been encountered in earlier
papers in this issue [55], [66], [99]. Rather than reiterating
modeling details, we shall highlight some areas where anal-
ysis tools, and the users of those tools, can be particularly
vulnerable to nonlinear behavior. In this discussion, we
shall focus on the inherent nonlinearities of components,
modeling uncertainty and assumptions, and also on the
influence of limits and switching.

1) Component Nonlinearities and Modeling Uncertainty:
All power system components can exhibit some degree of
nonlinearity under certain circumstances. However system
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dynamic behavior tends to be dominated by generation
equipment and loads. Also power electronic devices are be-
coming increasingly significant in modern power systems.
In some situations, such as voltage collapse, transformers
play a dominant role. We shall therefore focus on these
various components.

a) Generation equipment [5], [7], [54]: The modeling
of synchronous machines is quite well established, with
the Park—Blondel transformation forming the basis of the
model development [5]. Even so, subt]e‘differences can
occur between machine models. For example, Canay’s
mutual inductance [9] is not always modeled. Also, there
are different ways of handling saturation of the magnetic
circuits [81]. Generally these modeling differences result in
quite small discrepancies in simulated behavior. However
occasionally the discrepancies become significant. This can
be extremely frustrating, particularly when various utilities
are undertaking parallel studies using different analysis
packages. Benchmarking of the tools is necessary un-
der those circumstances. Synchronous machine models are
high order nonlinear differential-algebraic sets of equations.
Therefore the structural consistency (in a structural stability
sense [66]) of the models cannot even be guaranteed.

No matter how good the models, the accuracy of sim-
ulations is dependent on the quality of: data. Standard
measurement procedures generally provide accurate ma-
chine parameters. However these procedures rely on taking
machines out of service, which is expensive due to lost
production. Techniques for estimating parameters ‘while
machines remain in service are therefore required. The
nonlinear nature of the models makes this a difficult iden-
tification problem though. .

Because of the high order of synchronous machine mod-
els, it is common for simplifying assumptions to be made.
This leads to some uncertainty in the model. Care must
be taken to ensure the behavior of the simplified models
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is consistent with that of the more complete model. This
cannot be guaranteed in general. References [61], [66] pro-
vide examples where this is not the case. Model reduction
techniques must address these structural stability issues.

Historically the modeling of machine control loops was
quite crude. Analysis packages were supplied with ‘stan-
dard’ models. It was necessary to massage actual controller
structures and parameters into those standard forms. How-
ever discrepancies between predicted and measured system
behavior have (in many cases) forced the development
of more accurate models [53]. It is common now for
controller model structures to be deduced directly from
circuit diagrams, and parameters identified from tests. With
the move toward control based expansion of power systems
[33], increasing importance will be placed on controller
modeling. Also, as more sophisticated control techniques
gain favor, e.g., adaptive, robust and/or nonlinear control,
controller structures and modeling will increase in com-
plexity and importance.

Adaptation in controllers introduces an interesting chal-
lenge. Control parameters at any point in time will depend,
through adaptation rules, on system conditions leading up
to that point. The study of system dynamic behavior will
therefore require a knowledge of prior system conditions.
This challenge has not yet been faced in practical power
system analysis.

Even though machines have the most direct influence
on power system behavior, their prime movers are also
vitally important. For a thermal plant, the dynamics of the
steam cycle (boiler, turbine, governor) can affect the power
system [18]. For a hydro unit, water column dynamics may
be important. These phenomena tend to be slower than
electromechanical transients, and will often only become
influential after the initial transients have died away, maybe
around 10-20 s. However they can be quite nonlinear, e.g.,
boiler-governor interaction of a thermal plant, or surging in
the water column of a hydro unit. The effects can be crucial
though in studies where the system undergoes a significant
frequency excursion, for example following the tripping of
a major unit. In such a case, incorrect analysis due to poor
modeling could result in widespread underfrequency load
shedding.

b) Loads [44], [45]: As a result of the time varying
nature and complex composition of loads, it is often im-
practical (and perhaps impossible) for them to be accurately
modeled. Certainly large individual predictable loads such
as aluminium smelters, or some. motor loads, can be ac-
curately modeled. But in general, generic aggregate load
models must be used. Such load models attempt to capture
the dependence of a group of loads on variables such as
voltage, frequency, and time. Generally load models should
be nonlinear for large disturbance analysis.

Consider the voltage dependence of loads. The generic re-
sponse of load to a step change in voltage is shown in Fig. 2
[32], [36]. (Real power load is shown, but reactive power
generally exhibits a similar form of response.) The load
undergoes-an initial step change in response to the voltage
step. A period of load recovery follows, with the load finally
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Fig. 2. Generic load response.

settling to a new steady state value. The load recovery may
be monotonic, or display oscillatory behavior. This form
of behavior can be observed in many different types of
load [32], including induction motors, loads supplied by tap
changing transformers, thermostatically controlled heating
loads and aluminium smelters. However because of the
aggregate nature of most loads, it is usually not appropriate
to formulate a model based on any particular type of load.
Rather the models of these different load types provide the
motivation for generic load models.

A general (state) form of load response is given by [36]

& =Fz +GNy (V)

oF

where z is an n-dimensional vector of load states, F, G, H
are appropriately dimensioned matrices, and N;, Ny are
nonlinear functions of voltage which are directly connected
to the steady state and transient response of the load,
respectively. This model is given in input-output form in
[32]. These models are however too general to be of any
practical use. More specific models are considered in [35],
[36]. For example, monotonic recovery of real power load
is given by

[Pd } — Htz + No(V)

1
- prp + Np(V)

1
Pi=—x,+ P(V).
TP

wp=

The modeling of loads can have quite a significant
influence on power system dynamics, particularly slower
behavior such as voltage collapse [89]. Interesting bifur-
cation phenomena have been observed, see for example
[72], [98]. Load dynamics can also affect the damping
of electromechanical oscillations. This is explored in [42]
using generic recovery load models. Other studies have
established a close connection between load modeling and
the solvability of the power balance equations [38], [41],
[66], [79]. (These solvability issues are considered further in
Section II-C). Unfortunately though, load behavior is never
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exactly known. Therefore power system analysts must
always check to ensure their results and conclusions are
robust to load parameter uncertainty. The examples given
in [66] further highlight the importance of this robustness
analysis.

¢) Power electronic devices [50], [62]: Power elec-
tronics can be used to quickly and reliably control power.
Because of that, they are finding applications across the
whole power system. At the load end, for example, they
are fundamental to variable speed drives. They also form
the basis for connecting renewable energy sources, e.g.,
photovoltaics and wind power, to power grids. Energy
storage systems such as batteries and flywheels use similar
technology.

Power electronic devices have found applications in
transmission and distribution systems, where they can have
a very significant influence on system behavior. High
voltage direct current (HVDC) schemes have been in com-
mercial operation for many years [64]. Recently many
newer forms of power electronic devices have been pro-
posed. They have been generically referred to as flexible
ac transmission system (FACTS) devices [22], and include
static var compensators (SVC’s), thyristor controlled series
compensators (TCSC’s), static converters (STATCON’s)
and -thyristor switched phase shifting transformers. The
development of this equipment has been driven by the
desire to use the controllability of the power electronics,
together with' modern control techniques, to increase the
operational flexibility of power systems and to improve
system stability margins [33].

Generally, in the modeling of such devices for studies of
power system behavior, the fast switching action inherent
in power electronics is ignored. Instead the devices are
represented by approximate models which exhibit contin-
uous behavior. The aim is to ensure that the exact and
approximate representations have a similar ‘average’ effect
on the system, i.e., phasor dynamics remain consistent. Of
course any physical limitations in the actual device must
be accurately reflected in the approximate model.

The SVC provides a good example. An actual SVC
generally consists of a fixed shunt capacitor in parallel with
a shunt connected thyristor controlled reactor (TCR). The
thyristors regulate the current flowing through the inductor.
Therefore the thyristor firing angle determines the effective
susceptance of the TCR branch, and hence of the SVC.
Control of the susceptance allows regulation of the bus
voltage, with associated stability improvement. The SVC
can be modeled approximately, but sufficiently accurately
(for most studies), as a susceptance which can vary contin-
uously between an inductive limit and a capacitive limit.
However it is important to remember that the model is
only approximate, and does haveits limitations [76], [77].
It is possible, under certain circumstances, for unmodeled
nonlinear dynamics to have a significant effect.

The TCSC provides another interesting example. It has
basically the same configuration as an SVC. But instead of
being connected as a shunt device, the TCSC is connected
in series with a transmission line. Therefore, by varying
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the effective impedance of the TCSC, the impedance of the
overall transmission connection can be altered. This can be
used to control power flows and improve system damping.
However the variable susceptance model developed for the
SVC is no longer appropriate. Instead the TCR of the TCSC
must be modeled as a current source which is dependent
on the thyristor firing angle [47]. Ignoring these nonlinear
effects can lead to quite erroneous results.

These examples highlight the fact that care is required in
developing phasor-based models for fast switching devices.

d) Transformers [7], [26]: Many transformers have the
capability of performing tap changing on-line. A voltage
regulator compares the measured voltage -with a setpoint,
and orders a tap change if the difference has been greater
than some deadband for a preset time. Note that the trans-
former ratio changes in a finite number of discrete steps.
Transformers therefore introduce a number of significant’
nonlinear effects, viz., deadbands, time: delays, ‘discrete
switching, and limits.

To overcome the difficulties introduced by these nonlin-
earities, various simplifying assumptions are often made.
In particular, for long time frame studies, the tap position
is frequently treated as a continuous variable 7, driven
(between limits) by the simple differential equation

# = 2V~ Viness) 0

where V; is the setpoint voltage, Vieas is the measured bus
voltage and 7' is a time constant representing tapping time
delays. A relationship between T and the actual transformer
time delays is established in [78]. However, the model (1)
is fairly crude, ignoring significant nonlinear behavior. Care
must be taken to ensure it is used appropriately.

2) Limits and Switching: All ‘power system components
need to be protected against damage which could result
from abnormal operating conditions. In ‘particular, faults
need to be cleared quickly and reliably. However protection
devices have an inherently nonlinear effect on systems.
When a limit is encountered, the resulting system behavior
tends to be non-smooth, though continuous. Switching
action results in discontinuous behavior. The effects of
these nonlinearities on systems can be quite significant.
However rigorous analysis is usually nontrivial.

Protection of power generation equipment and subsys-
tems includes over/under excitation, over/under frequency,
and volts per hertz limits. The process of voltage collapse,
for example, often involves over-excitation limitations [89].
Inaccurate modeling could lead to erroneous conclusions
about power system security. : _

Lines, cables, and transformers (network connections)
are normally protected against faults or excessive currents
[8], [68]. If the protection detects an abnormality, the
connection will be tripped. This results in-'a change in
network topology, and a discontinuity in ‘the mathematical
description of the system. Protection operation often has
a significant influence on system stability. For example,
voltage collapse is frequently associated with cascaded line
tripping. Careful tuning of protection settings can therefore
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lead to improved system security [90]. (Alternatively, poor
tuning can result in a reduction in system security.) Further,
in order to maximize system security over a wide range of
operating scenarios, adaptive relaying concepts are being
proposed and implemented [70]. The influence of network
protection . on system dynamic behavior implies that these
devices should be accurately modeled. However modeling
has traditionally been rather crude; the exception being in
postmortem analysis [14].

Loads are also often subject to switching action. If the
frequency or voltage of a controlled load falls below some
threshold, the load will be disconnected after a preset time
delay. The location and timing of this protection action can
influence system stability [6].

B. System Modeling

The complete power system model is formed from all the
component models. Interconnection is achieved by ensuring
that Kirchoff’s current law is satisfied at all nodes, i.e.,
currents add to zero. The model has the generic structure

& = f(zr,y,2p) o)
0=g(z,y,2;p) 3
Zir1 = h(T, Y, 213 D) 4

where z are dynamic states, y are algebraic states, z are
discrete states, and p are parameters.

Various simplifying assumptions are commonly made,
depending upon the nature of the study. If the focus is
on fast transient processes, such as switching behavior
of power electronic circuits, or resonance between trans-
formers and cables (for example), then slower behavior
could be neglected. These studies would typically have
a time window of less then a second, so it would not
be necessary to model effects such as tap changing, or
boiler/turbine/governor dynamics.

A significant proportion of power system studies focus
however on (slower) electromechanical phenomena. In such
cases it is normal to assume that system quantities can
be adequately represented by phasors (rather than instanta-
neous values). Network modeling detail is then significantly
reduced, but more precise modeling of the slower devices
is required. Also, the approximations discussed earlier can
(generally) be made for power electronic devices. In using
a phasor representation however, care must be taken to
ensure that system behavior is slow relative to the system
frequency. Otherwise the phasor-based models may become
invalid [16], [100]. This can become significant if a system
trajectory approaches conditions where the model is not
solvable. These conditions are considered in Section II-C.

Even after making simplifying assumptions, the system
model may contain a wide range of time constants. Some
components, such as AVR’s for power electronic devices,
have small time constants in the order of milliseconds,
whereas time constants for other components, e.g., boilers,
are in the order of minutes. Such stiff systems must
be handled carefully by numerical integration techniques
so that numerical stability is ensured [82]. (Numerical

instability can lead to meaningless simulation results. An
even more troublesome possibility though is that numerical
instability may be mistaken for system instability.)

The power system model wili often include time delays.
Implementation in variable step size numerical integration
techniques can be difficult. Also, switching action typically
does not coincide with time steps. Interpolation techniques
are frequently used to reflect actual switching times.

C. Generic Properties of the System Model

Significant analysis of the differential-algebraic-discrete
model (2)—(4) has been presented in the literature. This spe-
cial issue provides some.insights into such investigations.
In this paper we wish to explore features of this model
which can potentially cause difficulties for analysis tools.

The first thing to note is that the model generally contains
algebraic equations; see (3). These equations relate to con-
straints such as power balance at network buses. Ignoring
discontinuities caused by discrete states for now, the model
simplifies to a differential-algebraic (DA) structure

& = f(z,y;p) ®)
0 =g(z,y;p)- (©6)

The algebraic equations define the constraint manifold,
a manifold in the space of dynamic and algebraic state
variables [37], [55], [94], [97]. Satisfying the algebraic
equations ensures that system trajectories always remain on
that manifold. The differential equations drive the system
over the constraint manifold.

It should be recognized that there are generally under-
lying dynamics associated with the algebraic constraints
(6). However these dynamics tend to be neglected as part
of the model reduction process. They may be discarded,
for example, through the use of the phasor representation,
or the simplified modeling of power electronic equipment.
The more complete differential equation model can often
be viewed as a singular perturbation [52] of the DA model.
These issues are explored further in [55], [97].

Referring to the DA model (5), (6), while Dyg (the
matrix of partial derivatives of algebraic equations with
respect to algebraic variables) remains nonsingular, the
Implicit Function Theorem [24] ensures the existence of
local functions y = (x;p). The algebraic variables y
can then be replaced in (5), yielding the local differential
equation form

i = f(z,9(z);p) = f'(z;p). @

Under certain conditions, this local result can be extended to
a differential equation form over simply connected regions
[34], [74]. Numerical techniques do not rely explicitly on
the functions 1. However, they are greatly influenced by
the existence of such functions.

In general, the local functions ¢ are not unique. For
a given value of dynamic state z, (6) may be satisfied
by a number of different values of the algebraic state y,
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Fig. 3.  Power system constraint manifold [40].

with a different ; corresponding to each solution. As z
varies in response to system dynamics (5), a point may
be encountered where different solutions of (6) coalesce.
(This is a form of saddle node bifurcation, where 7 is the
varying parameter.) At such a point, D, g becomes singular
and the algebraic equations become unsolvable. The model
breaks down, so the system trajectory cannot be continued.
Extensive investigations of this phenomenon are reported in
[94], [97]. As mentioned earlier, a close connection exists
between this algebraic singularity (model breakdown) and
load modeling [38], [66].

To -illustrate these concepts, Fig. 3 provides a simple
example taken from [40]. The power system in this case
has a radial structure, with two load buses being supplied
from an infinite bus. A tapping transformer regulates the
voltage magnitude of each load bus. The dynamic states are
therefore tap positions 71, 79, and the algebraic variables are
bus voltage magnitudes and angles. In [40], the tap positions
are modeled as continuous variables driven by differential
equations of the form (1). However the shape of the
constraint manifold is independent of the dynamics driving
T1, T2, or whether they are discrete or continuous variables.
Fig. 3 shows a projection of the constraint manifold. Notice
that no solutions of the algebraic equations exist beyond
the boundary of this manifold. System dynamics will cause
T1, To to vary, producing a trajectory over this manifold.
But if the trajectory encounters the boundary, it will not be
able to continue. The model will break down. Other (power
system) examples which illustrate this type of behavior are
given in [38], [55], [74], [95].

Typically power system models can exhibit such be-
havior. Real systems of course do not reach points from
which they cannot continue. The model breakdown is
due to modeling assumptions, for example the use of
phasors where they are not appropriate [16], [100] or
oversimplification (or inappropriate choice) of load models
[41]. In reality, the trajectory would continue under the
action of unmodeled dynamics. However the assumptions
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which underlie this problem are common in the analysis of
power systems. Therefore ‘analytical tools must be able to
cope with these model breakdown conditions. '

In Section II-A.2 we saw that many power system devices
involve limits.- Examples include generator overexcitation
limits, controller saturation, and physical limitations of
devices. Included in this latter category are transformer tap
limits, SVC susceptance limits and induction motor slip.
Both windap and non-windup limits can be found in power
systems. Limits can have a significant influence on system
behavior. An important aspect of this, namely the structure
of the stability boundary, is explored in [96], [97].

Limits often lead to a shrinking of the stability region. For
example, limits on the field forcing capability of generator
AVR’s can result in a generator being unable to maintain
synchronism following a major system disturbance. How-
ever some limits can be beneficial, e.g., limits on generator
stabilizer output signals. Another classic illustration of the
influence of limits can be found in [71],:[99] where it is
shown that generator overexcitation limits play a major role
in the voltage collapse phenomenon. That same illustration
can however also be used to show that some limits may lead
to an improvement in stability. Transformer tapping plays
a major role in voltage collapse. But when transformers
encounter tap limits, the destabilizing effect of tapping is
removed.

Limits can have other interesting effects also. A case is
reported in [98] where limits led to sustained oscillations.
Without limits, oscillations grew and the system lost sta-
bility. The limits forced the system frajectory to remain
bounded.

Discontinuities, such as produced by protection switching
action, can cause further complications. For example, with
no discontinuities the constraint manifold is continuous,
and so trajectories are continuous. (If there are no limits,
the constraint manifold and trajectories are smooth.) But
in the presence of discontinuities, the constraints describe
a ‘surface’ which is composed of disconnected sections.
Algebraic variables undergo step changes when discontinu-
ities are encountered. This corresponds to jumping from one
section of the constraint surface to another. As mentioned
earlier, generally the constraints will be multivalued, i.e.,
for a given z, the constraints may be satisfied by a number
of different y. Therefore, when switching actions -occur,
analysis tools must ensure that the algebraic variables
jump to the correct solution. Otherwise the trajectory will
continue on the wrong component of the constraint surface,
giving meaningless results.

D. System Equilibria

The starting point for the analysis of the power system
model (2)—(4) is the establishment of system equilibria. For
a given set of parameters p, the equilibria are given by
solutions of the (generally) nonlinear set of equations

0= f(z,y,2;p) @®
0=g(z,y,20p) ©
z =h(z,y,z;p). (10)
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Fig. 4. Simple 3 bus power system.

The primary concern in solving (8)—(10) is ensuring that
power balance is achieved at all buses in the network.
Because boundary conditions at buses are usually specified
in terms of power, i.e., generation or load, the equations
are nonlinear.

Having satisfied the network constraints, it is then gener-
ally possible to determine steady state conditions for system
components such as generators and controllers. Usually this
is quite a straightforward procedure. Therefore power flow
analysis and steady state analysis can be considered as
synonymous. Equilibria are commonly referred to as power
flow solutions. :

As parameters vary, so do the equilibria. Note that due
to the nonlinear nature of (8)—(10), if a power flow solution
exists, then generally there will be more than one solution.
Also, the power flow solution space is commonly bounded,
so parameters can be found for which there are no solutions.
Fig. 1 provides an indication of these properties. They
are more clearly illustrated by the very simple system of
Fig. 4. (This is a lossy version of a system analyzed by
Tavora and Smith [87].) A view of the power flow solution
space is shown in Fig. 5. Each curve which makes up this
figure corresponds to a different (constant) value of ¢o,
the voltage angle at Gen2. The complete surface shown in
Fig. 5 results when ¢ is varied from —180° to 180° in
steps of 10°. This surface shows all possible solutions for
parameters P, and P3;. Multiple solutions exist within the
boundary of this surface. There are no solutions outside the
boundary. This simple example provides a clear illustration
of the nonlinear nature of the power flow equations.

Iterative techniques are used to solve for power flow
solutions. Therefore, becanse of the existence of multiple
solutions, the iterative process must be carefully initialized
to ensure the appropriate solution is obtained. Poor initial-
ization can result in nonconvergence, or convergence to the
wrong solution. '

At the solution space boundary, generically two solu-
tions coalesce then disappear in a saddle node bifurcation
[55]. Similar bifurcation behavior occurs at other points
in parameter space which lie within the solution space.
(But at those internal points, there always exist at least
two solutions, even though two other solutions may be
coalescing.) Fig. 5 illustrates this. It follows from the
Implicit Function Theorem that at bifurcation points, the
Jacobian of (8)—(10) must be singular. Normal power flow
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Fig. 5. Power flow solutions for the 3 bus system.

solution techniques rely (at least implicitly) on inverting
this Jacobian. Therefore solving the power flow equations
at bifurcation points is not possible using traditional tech-
niques. This is discussed by Kwatny ez al. [55], and is
considered further in later sections of this paper. Solving
for points near bifurcations can also be difficult due to
Jacobian ill-conditioning.

Some power system devices, such as tap-changing trans-
formers, have controllers which regulate to within a dead-
band, rather than to a particular setpoint. In the transformer
case, no tap changing is initiated if the voltage lies within
a specified range. Therefore, rather than the steady state
equations (8)—(10) defining equilibrium points, equilibria
cover regions of state space. This is difficult to handle
computationally. Traditionally this difficulty was overcome
by assuming that any solution point which lay within the
solution regions was acceptable. However that introduced a
problem with repeatability of results. (Starting the solution
process from different initial points would generally result
in slightly different final solutions.) A more reliable way of
overcoming this problem is to approximate deadbands by
continuous curves which force the system to point solutions.
Results are then repeatable. Returning to the tap-changing
transformer illustration, solutions will usually be forced to
the midpoint of the deadband range.

III. INDUSTRY ANALYSIS TECHNIQUES

A. Power Flow Analysis

The power flow equations (8)—(10) can be formulated
in either polar or rectangular form. Polar form is more
intuitive because the state variables are voltage magnitudes
and angles, and so have physical meaning. Also, there is
a close connection between the inertia of the power flow
Jacobian matrix and the small disturbance stability proper-
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ties of the equilibrium point. However, when formulated in
rectangular form, the power flow equations are quadratic.
Some numerical advantages flow from that form. Also,
the properties of quadratic equations provide some clearer
insights into questions of multiple equilibria [57], [63].

Traditionally the Newton—Raphson algorithm has been
used for power flow algorithms. Let the power flow equa-
tions have the general form

F(x;p) = 0. (1

(Note that the ‘x’ in this equation is not the same as the z
of previous equations.) The ¢th iteration of the power flow
solution process solves the equations,

Ax; = —J(x-1) " F(x-1;p) (12)
X = X1 + N AX; (13)

where J is the power flow Jacobian, i.e., J = 9F/9x. The
Jacobian J is usually large and sparse. The inversion of
J in (12) is normally achieved through LU factorization.
Special care must be taken in ordering nodes so that fill-in
is minimized during the factorization process.

The A; in (13) is a scalar multiplier used to control the
updating of variables at each iteration. In the traditional
Newton—-Raphson method, A; = 1 at each iteration. Other
choices have been proposed. The rectangular form of the
power - flow problem leads naturally to the idea of an
‘optimal multiplier’ [46], [57]. This multiplier ensures that
the updates of variables at each iteration converge in a
(locally) optimal way to the solution point. It is obtained
as a solution of

H/l\ip | F(xi—1 + Aidxi; p)||? 14

which can be manipulated to yield a cubic function.

One of the features of the optimal multiplier is that it
reduces if the Jacobian becomes ill-conditioned. This results
in superior convergence properties when the solution point
lies near the solution space boundary, e.g., when the power
system is heavily stressed. Another interesting property is
that the optimal multiplier can be used to find multiple
power flow solutions [86]. The cubic that results from (14)
usually has a single real solution (and a complex pair of
solutions.) However it can have three real solutions. In that
case, the largest multiplier will force the solution process
toward a second solution point. A number of voltage
collapse proximity indicators rely on this second solution
[63], [861. [93].

Power systems tend to exhibit a reasonably strong cou-
pling between real power and voltage angle (P — ¢), and
between reactive power and voltage magnitude (@ — V).
This has been exploited in the Fast Decoupled power flow
formulation [84], where the (P — V) and (@ — ¢) cross
coupling terms are ignored. That assumption, together with
the assumptions that voltage magnitudes are all close to
1.0 pu, and that voltage angles are all nearly zero, allows
a (2n X 2n) Jacobian to be replaced by two constant
(n x n) matrices. Therefore, rather than inverting the full
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Jacobian at each iteration, it is only necessary to invert
the (n X n) matrices once, before the start of the iterative
process. So an iteration of the Fast Decoupled method is
faster than a Newton—Raphson iteration. However these
simplifications destroy the quadratic convergence properties
of the Newton—Raphson algorithm, so the Fast Decoupled
power flow requires more iterations.

Iterative solution procedures such as Newton—Raphson
and its derivative the Fast Decoupled power flow, ¢an be
viewed as nonlinear dynamical systems [67]. The region
of convergence of the solution procedure equates to the
stability region in the dynamical systems view. Power flow
techniques can display an interesting range of nonlinear
behavior. Examples include:

+ The boundary of the convergence region has a fractal
form [67], [91]. :

* Fast Decoupled power flows can occasionally exhibit
sustained oscillations as iterations proceed around, but
never converge to, a solution point.

e When a power flow diverges, iterations display a
chaotic form of behavior.

* The optimal multiplier, given by (14), acts as an
adaptive gain which seeks to maximize the rate of
convergence at each iteration, ' :

It is shown in [57] that when the Newton-Raphson
power flow is formulated in rectangular coordinates,
and the optimal multiplier is used, then a line through
any pair of solutions is an invariant manifold. If
iterations encounter that line, then they never again
leave it.

As systems become more heavily stressed, the (P — V)
and (@ — ¢) cross coupling terms become significant. Also,
the assumptions of 1.0 pu voltage magnitudes and angles
close to zero become less acceptable. For that reason, the
region of convergence of the Newton-Raphson power flow
is generally larger than that of Fast Decoupled techniques.
However the fractal nature of the boundary ensures that
convergence behavior is not totally predictable. Further,
for both techniques, the convergence region shrinks as
solution points approach the solution space boundary, e.g.,
as systems become more heavily loaded.

B. Power Flow Curves

In the usual formulation of the power flow problem (11),
the dimension of F” and x are the same. So, for a given value
of parameters p, solution points are specified. However it
can be useful to introduce an extra variable, by allowing
a parameter to vary. The power flow equations are then
underconstrained because there is one more -variable than
constraint. The set of equations defines a 1-manifold, or
curve. Such curves can be useful for:

* investigating the sensitivity of the:system state to

parameter variation :

¢ finding the point of maximum loadability (saddle node

bifurcation point) in a particular direction

* finding multiple solution points.

Figs. 1 and 4 show examples of power flow curves.
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Fig. 6. Predictor-corrector process.

A number of continuation methods have been proposed
for numerically determining power flow curves; see for
example [2], [10], [11], [55], [75]. (Figs. 1 and 4 were
produced using the algorithm described in [75].) Typically
some form of predictor/corrector technique is employed
[28], [80]. The Euler homotopy approach [28] shall be used
to illustrate this process.

Referring to Fig. 6, the first step in moving from a point
z1 on the curve to the next point z; on the curve is to
obtain an estimate of 23, i.e., to predict ahead to z,. To
do that, the vector v which is tangent to the curve at z; is
obtained. (Once two points on the curve have been found,
the tangent vector v can be approximated by the unit vector
which passes through those two points.) The predicted point
2, is obtained by moving along v a predefined distance .

The next step is to correct to the point zz on the curve.
In the Euler method, this is achieved by solving for the
point of intersection of the curve and the hyperplane that
is perpendicular to v and which passes through z,. The
intersection point is therefore defined by the original under-
determined set of equations (11) which describe the curve,
together with an extra equation describing the hyperplane.
The corrector problem therefore involves the same number
of equations as unknowns, and so can be solved using a
standard technique such as Newton—Raphson.

Industry exposure to and acceptance of power flow curves
is still rather limited. It is quite common for power system
analysts to manually vary parameters to obtain sensitiv-
ity information around operating points. This procedure
of manual parameter variation is also used to determine
points of maximum loadability. The system is progressively
loaded until the power flow ceases to converge. This
process assumes that power flow divergence implies Jaco-
bian singularity and hence maximum loadability. This may
be misleading though. Power flow divergence is certainly
related to Jacobian singularity, but may well be due to a
poor initial guess, or the particular implementation of the
power flow algorithm.

The use of power flow curves is beginning to gain
industry acceptance however. Concern over the possibil-
ity of system failure via some form of voltage collapse
mechanism has prompted greater interest in methods for
determining points of maximum loadability. Continuation
methods are a simple way of obtaining such points [10].

Note that as a curve is traversed, points will generally be
found where the network constraints change. For example,
a generator may encounter its reactive power limit. It would

then cease regulating voltage, but may instead maintain a
constant reactive power output. At such points the tangent
to the curve will undergo a step change. This can be
easily handled in most continuation methods, but slows
them down. In large systems, with many machines and tap
changing transformers encountering limits, the effect on
the performance of the continuation method can be quite
significant.

C. Small Disturbance Analysis

Small disturbance analysis is the analysis of system
behavior in response to small perturbations about an oper-
ating point [88]. This analysis is undertaken by linearizing
the system description (2)—(4) at an operating point of
interest. The eigenstructure of the linearized system is then
determined. Small disturbance stability corresponds to all
eigenvalues lying in the open left half of the complex plane.

The focus of this publication is on nonlinear behavior
of power systems. Therefore we shall not dwell on small
disturbance (linear) behavior. However small disturbance
analysis can provide quite valuable qualitative information
about the large disturbance behavior of a system. Cer-
tain ‘slower’ eigenvalues correspond to electromechanical
modes of oscillation of thé. power system. Information
can be obtained from the associated eigenvectors which
provides an indication of the way in which groups of
machines participate in oscillatory behavior [69]. This par-
ticipation information is also very useful for understanding
the effects of controls on oscillatory behavior, and for
tuning controllers.

Unstable equilibrium points (UEP’s) are often classified
by the number of unstable eigenvalues of the system
when it is linearized at the UEP. A type-n UEP has
n unstable eigenvalues. The stable manifolds of type-1
UEP’s that lie on the stability boundary form important
sections of the stability boundary [12]. Therefore -(small
disturbance) classification of UEP’s can be important in
the large disturbance analysis of systems. Eigenvectors of
type-1 UEP’s on the stability boundary can also provide
valuable information about modes of instability.

Power system analysts are often interested in the sensitiv-
ity of system behavior to parameter variation. In particular,
sensitivity information is useful for determining the ro-
bustness of an operating point to parameter uncertainty.
Eigenvalue sensitivity is helpful for such investigations. For
example, the sensitivity of modes to load model parameters
is explored in [42]. Sensitivity information is frequently
used in the tuning of control loops [60]. In such studies
the objective is to maximize damping by moving relevant
eigenvalues away from the imaginary axis.

Small disturbance studies indicate the existence or other-
wise of Hopf bifurcations [30], [55]. In the power system
context, Hopf bifurcations have traditionally been asso-
ciated with electromechanical modes, and in particular
with poor tuning of generator control loops [1], [3], [17],
[66]. However recent studies have shown that interactions
between load-end devices can lead to oscillatory instability
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through Hopf bifurcations [72], [98]. This is considered
further in Section IV-D.

D. Large Disturbance Analysis

Large disturbance analysis of power systems is the study
of the response of the (nonlinear) system over time fol-
lowing some (large) disturbance. Two important features
of large disturbance analysis are, 1) nonlinearities must
be modeled, and 2) the time domain response is required.
Numerical simulation techniques therefore form the basis
for large disturbance investigations.

Sections II-A through II-C provide an overview of the
modeling of power systems. From that overview it can be
seen that there are a number of modeling issues which sim-
ulation tools must contend with. They can be summarized
as follows:

» nonlinearities of components cannot be ignored,

 the model has a differential-algebraic-discrete struc-
ture, so algebraic singularity may occur,

* the power system model is generally stiff, i.e., a large
range of time constants are often present,

« relative to the smallest time constants, long simulation
times are generally required,

¢ discontinuities are a major feature of large disturbance
behavior, and

e events are likely to occur midway through a time step.

Different analysis packages handle these modeling re-
quirements in different ways. Consider the algebraic sin-
gularity problem. Algebraic singularity manifests as non-
convergence of the algebraic constraints. To overcome
this problem, a number of commercial packages arbitrarily
alter load characteristics at low voltages. The loads are
modified to behave like constant admittances, independent
of the user specified load models. The network constraints
become linear and solvable. Whilst this generally solves
a symptom of the problem, viz., nonconvergence of the
algebraic constraints, it does nothing to address the real
problem, namely incorrect modeling. Further, it hides from
the analyst the fact that modeling is not accurately reflecting
true system behavior. Unfortunately such packages gener-
ally do not even inform the user when this alteration has
occurred during a simulation. Repeatability of results using
a different package can become extremely difficult. Also,
care must be taken in postmortem analysis of disturbances
where the aim is to match simulated and observed behavior.

Until comparatively recently, power system simulation
programs used Euler-based numerical integration tech-
niques. However these explicit techniques are prome to
numerical instability, no matter how small the integration
step size is made [82]. Therefore, considering the wide
range of time constants and long simulation times which
are typical of power system studies, these techniques are
inappropriate for power system applications.

An alternative approach is based on implicit techniques
such as trapezoidal integration [82]. Trapezoidal techniques
are numerically stable for large time steps, but they are
not necessarily very accurate when the systern has small
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time constants and a large time step is used. However they
have been adapted to handle this situation [27]. Initially
an appropriately small time step is chosen. Activity of the
states is monitored as the simulation progresses. When there
is comparatively little change between time intervals, the
time step is increased. Subsequent disturbances may again
excite fast states though. Care must be taken to ensure that
the time step is reduced when necessary, and that the fast
states are reinitialized correctly.

The time step variation idea described above duplicates,
in a rather ad hoc way, the behavior of variable step size
algorithms such as Gear’s method [82]. Some power system
simulation packages have adopted such variable order,
variable step size algorithms [23], [85]. The implementation
is much more difficult, but there are benefits in being able
to discard the heuristic rules that are built into the other
techniques.

Variable step size algorithms work well for long term
simulations when there are only a few discontinuities. Each
time a discontinuity occurs though, it subjects the system
to a step change, which excites fast states. Therefore at
each discontinuity, the time step must shrink to a value
small enough to accurately simulate the behavior of the
fastest states. In some studies however, discontinuities such
as protection operations and/or transformer tap steps can
dominate behavior. The study of voltage collapse is one
such case. :

Voltage collapse often involves many limits, such as gen-
erator overexcitation limits and transformer tap limits, being
encountered. Also, typically many switching operations
occur, for example cascaded tripping of feeders, connection
of capacitors and disconnection of loads and reactors. An
approach which is specifically aimed at simulating those
types of scenarios has therefore been developed. It is
based on time scale decoupling (singular perturbation) ideas
[92]. The fast states are ignored, and instead effectively
replaced by equilibrium equations. The simulation consists
of a number of ‘snapshots’ of the system as the collapse
process proceeds. This approach 'certainly; introduces some
approximations. However it appears to fairly accurately
capture the slowly evolving phenomena of interest.

IV. RESEARCH ANALYSIS TOOLS

In Section III we discussed analysis ‘tools which had
generally been adopted by industry. There exist other
tools, and variations of those in Section III, which to date
remain largely within the fesearch community. This section
provides an overview of some of those tools.

A. Continuation Methods

It can be seen from Figs. 1, 3, and -5 that considerable
information is available from continuation methods. Such
techniques can provide valuable insights into the geometry
of the power flow solution space, and questions of multiple
equilibria. Industry is not directly interested in such ques-
tions, but it remains a fairly active research area. Multiple
equilibria are important for voltage collapse proximity
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Fig. 7. Saddle node bifurcation curves for the 3 bus system.

indicators (VCPI’s) [63], [86], [93]. An understanding of
the solution space geometry may lead to better techniques
for finding multiple equilibria, and ultimately to better
VCPI’s for industry.

Continuation methods can also be used to produce bi-
furcation curves, e.g., curves composed of points where
saddle node or Hopf bifurcations occur. Fig. 7 provides an
example of saddle node bifurcation curves. It was produced
using the predictor/corrector technique described in [43].
The solid lines show the saddle node bifurcation curves that
correspond to Fig. 5. The dotted curve shows the distortion
which occurs as the resistance in the line between buses
Gen2 and Gen3 of Fig. 4 is increased from 0.25-0.5 pu.
Note that the system is structurally unstable [66] for this
parameter change, with the inner and outer curves becoming
connected. These types of curves are helpful in addressing
questions, such as posed in [48], relating to the geometry
of the solution space boundary.

The continuation method used to produce bifurcation
curves such as shown in Fig. 7 is effectively the same as
that used to obtain power flow curves. The only difference
is in the formulation of the problem. We saw in Section
III-B that power flow curves were obtained by releasing
a single parameter of the power flow problem (11). To
produce bifurcation curves, the equations describing a bi-
furcation point must first be established. For saddle node
bifurcations, the equations can be written as [4]

F(x;p) =0 (15)
DxF(x;p)v =0 (16)
viv =1. (17

Equation (15) ensures that solutions satisfy the power flow
equations. Equations (16) and (17) force the power flow
Jacobian Dy I to be singular, with v being the right eigen-
vector corresponding to a zero eigenvalue. (Singularity of
D, F is a necessary condition for a saddle node bifurcation.)
When there is one free parameter p & R, (15-(17)
describe saddle node bifurcation points. When there are
two free parameters though, curves of bifurcation points
are described. In producing the curves of Fig. 7, the two

free parameters were P, and Ps, the real powers at Gen2
and Gen3, respectively.

Continuation methods are also useful for exploring the
constraint manifold of differential-algebraic systems. Fig. 3
is an example. A clearer picture of the geometry of the
constraint manifold can assist in interpreting DA system
behavior.

B. Closest Bifurcation Points

In Section III-B, it was mentioned that continuation
methods could be used to find the saddle node bifurcation
point in a particular loading direction. The distance to that
bifurcation point provides a measure of system vulnerability
to voltage collapse. However in determining the robustness
of an operating point, it is appealing to have a measure
of the absolute minimum distance from the operating point
to a bifurcation, rather than a distance in some arbitrary
direction. Various algorithms have been proposed [19], [20],
[49], [58] for determining such critical points, i.e., closest
bifurcation points. The ideas are applicable for both saddle
node and Hopf bifurcations [20], [59]. However we shall
focus on saddle node bifurcations.

As we saw from (15)<(17), if one parameter is free
to vary, bifurcations occur at points. With two free pa-
rameters, curves of bifurcations are formed. Examples
are given in Fig. 7. If more than two parameters are
free, then bifurcations exist as surfaces or hypersurfaces.
In establishing procedures for finding critical points, i.e.,
points on bifurcation surfaces which are (locally) closest
to the operating point, we use the fact that the vector
from a critical point to the operating point is normal to
the bifurcation surface. (This criterion is also satisfied by
points which are (locally) furthest from the operating point.
However those points can be subsequently eliminated.)

To illustrate these ideas, we will use the approach given
in [58]. That approach is based on reformulating the power
flow (11) as

oy = | F1(%) +pos |
F(x;po) = {FZ(X)+PO,2:| =0 (18)

where pg gives the values of the parameters at the oper-
ating point. F' is partitioned such that the first equations
correspond to parameters that are free to vary at the critical
point, while the parameters of the second equations remain
fixed at their operating point values pg 2.

The critical points are given by nontrivial solutions of

—s+po1+ Fi(x) =0 (19)
po,2 + Fa(x) =0 (20)
DyFis+ DyFEA =0 e3))

where s is the change in parameters between the operating
point and the critical point. Note that (21) ensures that
vector s is normal to the saddle node bifurcation surface
by forcing [s*Af]* to be the left eigenvector of DyF'
corresponding to a zero eigenvalue. The magnitude of s
is a measure of system robustness. The orientation of s in
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parameter space provides information on the most sensitive

parameters.

The procedure for finding critical points initially involves
taking a guess as to the direction in parameter space of
the critical point. This is required because the numerical
techniques only find local minima. However it is generally
not restrictive, because power system analysts usually have
a good feel for reasonable loading directions. The saddle
node bifurcation point in that specific direction is obtained.
A continuation method is then used to move from that
initial bifurcation point to the critical point. The procedure
described in [58] ensures that the distance to the operating
point. always reduces along the continuation path. This
guarantees that a local minima is obtained.

The analysis and numerical techniques that have been ap-
plied to this problem rely on smoothness of the bifurcation
surface. If that smoothness property is lost due to limits
and/or discontinuities, the problem becomes immensely
more difficult. This is an area for future research.

C. Energy Function Techniques

Energy (Lyapunov) functions provide a way of quickly,
though approximately, determining the large disturbance
stability of power systems [25], [65]. As discussed in [13],
during the faulted period, the system acquires “energy.”
At the end of the faulted period, the energy acquired by
the system is compared with a critical value of energy to
determine whether or not stability will be maintained. If
the system has obtained less energy than the critical value,
then it will be stable. If not, stability may be lost. Note that
it is possible to obtain a measure of how stable a system is,
rather than just determining whether it is stable or unstable.

There are two main challenges with energy function
techniques [13]: 1) development of energy functions that
(at least approximately) satisfy Lyapunov criteria, and 2)
calculation of the critical value of energy. They are now
considered.

Energy function techniques are motivated by Lyapunov
stability concepts, and so are reliant on the development of
functions of the appropriate form. Strict Lyapunov func-
tions are positive definite, and have a nonpositive time
derivative along trajectories [51]. Unfortunately, functions
which satisfy those conditions have only been found for
rather restrictive power system models. For example, no
Lyapunov function has been developed for systems which
include sixth order machine models, though functions do
exist for third order models. Transfer conductance and
voltage dependent real power loads present some funda-
mental problems, as they introduce path dependent integral
terms into the Lyapunov function. A Lyapunov function of
nonstandard form which incorporates transfer conductances
was proposed in [73]. Its usefulness for practical power sys-
tems has not been reported though. To overcome modeling
limitations, often the troublesome terms are approximated
in some way [25], [65]. Rigorous stability results are then
not possible, but the resulting energy functions generally
appear to provide reliable stability assessment for practical
power systems.
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The second main challenge of energy function techniques
is the calculation of the critical value of energy. The critical
energy is the minimum amount of energy required by the
system to exit the stability region following a particular
disturbance. A number of techniques have been proposed
for estimating that energy value. Among those techniques,
the controlling unstable equilibrium point (UEP) approach
appears to give the most reliable results [13]. Using this
approach, the critical energy is given by the potential energy
of the UEP which the system would pass close to if the
disturbance was critically cleared. Practical systems have
many UEP’s. Therefore the task of determining which UEP
is the appropriate one is nontrivial. The most promising
procedure is the BCU method [12], [13], but even it is not
completely reliable [56]. .

Energy function techniques have traditionally been ap-
plied to generator (angle) stability assessment. By including
the effects of (static) load models, some conclusions have
been drawn regarding transient voltage collapse [37], [74].
However it is appealing to considered the inclusion of
load dynamics, a fundamental aspect of longer-term voltage
collapse. With this aim, Lyapunov functions for systems of
dynamic loads were proposed in [36]. Also, dynamic loads
were incorporated into ‘standard’ multimachine Lyapunoy
functions in [15]. By taking account of reactive power
limits, as explained in [39], energy function analysis can
therefore be extended to voltage collapse scenarios. Further,
the energy function of [15] provides a framework for
investigating dynamic interaction between generators and
loads. '

As well as being useful for estimating the stability region
about an operating point, energy functions can provide a
geometric interpretation of system behavior. There are some
interesting connections between modes of oscillation (as
discussed in Section HI-C), unstable equilibrium points and
the geometry of the potential energy surface. The energy
flows can also provide a picture of the stabilizing and
destabilizing forces within a system.

Recently energy functions have been used to motivate
control strategies for FACTS devices [29]. The proposed
control strategies ensure that energy dissipation is a maxi-
mum along the system trajectory.

D. Hopf Bifurcation Computations

Hopf bifurcations correspond to a transition from stable
oscillatory to unstable oscillatory behavior or vice versa
[55]. Small disturbance (linear) analysis can be used to de-
tect a Hopf bifurcation. However the information available
from linear analysis is incomplete. Limit.cycles, which are a
nonlinear phenomenon, are generally associated with Hopf
bifurcations. A subcritical Hopf bifurcation corresponds to
the coalescing of a stable oscillatory equilibrium point and
an ‘unstable limit cycle. A supercritical Hopf bifurcation
occurs when an unstable equilibrium point'and a stable limit
cycle coalesce [30]. Because of the nonlinear nature of limit
cycles, they cannot be analyzed using small disturbance
analysis. ~
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Information about limit cycles can be very important
though. When a stable equilibrium point is surrounded
by an unstable limit cycle, the limit cycle determines the
boundary of the stability region. If a disturbance bumps the
system to a point outside the limit cycle, stability will be
lost. As system parameters vary, the unstable limit cycle can
shrink around the equilibrium point, resulting is a reduction
of the stability region, and hence the security of the power
system.

Further, it is important to be able to distinguish be-
tween subcritical and supercritical Hopf bifurcations. When
stability of the equilibrium point is lost at a subcritical bifur-
cation, the system loses stability. However when stability of
the equilibrium point is lost via a supercritical bifurcation,
the system remains stable, though with sustained oscilla-
tions. In the operation of a power system, this distinction
would be crucial. It is very difficult though, using traditional
analysis techniques, to determine limit cycle details.

AUTO [21] is a general bifurcation analysis tool which
is proving useful for analyzing power system behavior [3],
[72]. It uses a continuation method to identify bifurcations
and track equilibria and limit cycles as a parameter of the
system is varied. It also provides information regarding the
nature of equilibria and limit cycles. Unfortunately AUTO
cannot be used directly with large systems. It does not
employ sparsity techniques, and so suffers from dimension-
ing limitations. Also, it is restricted to systems of ordinary
differential equations. Though if algebraic singularity is not
an issue, DA systems can be transformed to the required
form.

The computations associated with identifying and clas-
sifying Hopf bifurcations and limit cycles are presented
in [55]. Those numerical techniques provide a basis for
the analysis of large power systems. Development of these
tools is progressing.

V. FUTURE DIRECTIONS

As power system operating paradigms move toward
more heavily stressed, less secure systems, the influence
of nonlinearities on system behavior will increase. Power
system analysts will need to be equipped with tools which
are capable of providing insights into quite complicated
behavior. The trend will be for research tools to be increas-
ingly accepted and adopted by industry.

As systems become more heavily loaded, limits and
protection devices will come into effect more frequently.
Such discontinuities can introduce complicated nonlinear
behavior such as limit induced bifurcations and sustained
oscillations [97], [98]. Also, they cause considerable diffi-
culties for tools that rely on smoothness properties, such as
the techniques for finding closest bifurcation points given
in Section IV-B. Those difficulties must be addressed.

The role of sophisticated controls, for example adaptive,
robust and/or nonlinear techniques, will increase as power
systems become more heavily stressed and more flexibly
operated [33]. Investigating and tuning such controllers
will require advanced analysis tools, generally beyond the

capability of those currently used for power systems. Such
tools will grow from techniques used in dynamical systems
theory [30], [83].

VI. CONCLUSIONS

Power system components are inherently nonlinear. Fur-
ther, the interconnection of components results in a nonlin-
ear differential-algebraic-discrete model for the complete
system. With traditional system operation, nonlinear effects
were largely insignificant. However, as systems become
more heavily, and less predictably loaded, nonlinearities
will begin to have a noticeable influence on system behav-
ior.

A major issue in the analysis of power systems is the
modeling of the multitude of components that make up such
complex systems. Analysis tools and techniques can only
provide useful information if the models accurately reflect
true component behavior over the range of interest. The
paper highlights areas where analysis tools, and the users
of those tools, can be particularly vulnerable to nonlinear
behavior. These areas include the inherent nonlinearities
of components, modeling uncertainty and assumptions, and
the influence of limits and switching.

Analysis tools must continue to work reliably and accu-
rately in the presence of nonlinearities. The paper provides
an overview of factors which can adversely affect existing
analysis tools. These include Jacobian ill-conditioning near
the power flow solution space boundary, algebraic singular-
ity, stiffness of the system time constants, and nonsmooth
behavior.

The paper identifies a number of analysis tools which
are generally accepted in industry, and other tools which are
presently more orientated toward research applications. It is
likely that as nonlinearities become more dominant, existing
industry tools will be unable to effectively probe some of
the more complex forms of observed behavior. Industry
analysts will need to supplement their present tools with
newer, more systematic techniques which currently reside
largely within the research community.
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