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Abstract: The paper explores the influence of a
voltage-dependent local load on electromechanical
oscillations of a synchronous generator. The
analysis is performed with different generator
models, both with and without control devices.
The classical static-load models were used as well
as a generic model of dynamic load. It is shown
that a voltage-dependent load can influence the
damping of the electromechanical oscillations and
thus the overall stability of the generator. This
influence is very dependent on load parameters
and on the generator’s parameters and operating
conditions. It is also shown that the use of
dynamic-load models instead of static can have a
significant influence on the evaluation of the total
cffect that voltage-dependent loads have on elec-
tromechanical oscillations of the generator.

1 Introduction

The problem of stability of synchronous generators has
occupied the attention of the technical world for many
years. The increase in unit sizes for steam generators
above 1300 MW, and for hydro-electric generators above
900 MW for power-system-economics reasons, was pos-
sible only through an increase in current density in both
stator and rotor. This is because all other parameters
which contribute to the unit’s apparent power increase
have already reached limits determined by centrifugal
forces, rotor sagging, rated frequency or saturation
effects. The increase in current density and rated power is
directly connected with an increase in per-unit reactances
of the machine and a decrease in the inertia coefficient.
This deterioration of parameters strongly affects small-
and large-disturbance stability of generators. Significant
effort has gone into overcoming the reductions in stabil-
ity margin caused by these trends in machine design. The
main method for compensation of parameter deteriora-
tion was, and still is, the use of different control devices.
In previous studies, many aspects of the stability of gen-
erators have been discussed.

Appropriate settings of automatic-voltage-regulator
parameters have been explored in search of improve-
ments in damping and stability of synchronous gener-
ators [1]. Effects of power-system stabilisers [2, 3], static
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VAr compensators and control systems of HVDC links
[4] have also been analysed, as these elements of power
systems contribute greatly to stability and damping of
the generator oscillations.

One of the main principles in all previous studies was
how to damp electromechanical oscillations in generators.
Electromechanical oscillations inevitably occur in multi-
machine power systems. They result from rotors of
machines oscillating with respect to one another. Oscil-
lation energy is exchanged between machines through the
transmission system [2]. These oscillations are called
local mode if they occur between a single machine, or a
small group of machines, and the rest of the system.
Typical local-mode frequencies range from 0.7-2.0 Hz
(5, 6]. Oscillations can also occur between large groups
of machines. In that case they are called interarca oscil-
lations, and typically have a frequency in the range from
0.1-0.8 Hz [5, 6].

Sustained oscillations in the power system are undesir-
able for many reasons. They can lead to fatigue of
machine shafts, cause excessive wear of mechanical actu-
ators of machine controllers and also make system oper-
ation more difficult. It therefore is desirable that
oscillations are well damped.

Close attention has always been given to modelling of
generators, with or without turbines, their associated
controls, and transmission equipment. However the repe-
sentation of loads has not traditionally been considered
so thoroughly, even though it has been shown that loads
can have a significant impact on analysis results [7-11].
The accurate modelling of loads is a difficult task for
several reasons [12] such as: the large number of diverse
load components, ownership and location of load devices
in customer facilities that are not directly accessible to
the electric utility, changing load composition with time
of day and week, seasons and weather, lack of precise
information on the composition of loads, and uncer-
tainties regarding the characteristics of many load com-
ponents.

One of the most significant effects of load on power-
system behaviour is its influence on damping of power-
system oscillations. In addition to the excitation controls,
the inherent governor torque/speed characteristic and the
generator amortisseurs, the load/frequency dependency
was recognised as an important contributor to damping
of system oscillations. This is especially important for
interarea oscillations where the only sources of positive
damping other than the generator excitation system are
governor torque/speed and load/frequency characteristics
because the effects of generator amortisseurs are mainly
timited to local oscillations among nearby generators
[13]. However, recently it has been shown that load-
voltage dynamics can also have significant effects on
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damping [14-16]. In these studies only the active-power
component of the load was treated as dynamic, while
reactive power was modelled as a static function of
voltage. The effects of both active and reactive-power
dynamics on damping of oscillations are presented in
[17] from the power-system point of view.

In this paper the effects of a nonlinear static and
dynamic voltage-dependent load, connected at a gener-
ator’s terminals, on damping of electromechanical oscil-
lations and stability of the generator are presented. The
effects are analysed with different, commonly used gener-
ators models, both with and without an exciter and gov-
ernor. For a dynamic load, the effects of active-power
and reactive-power dynamics, when taken into account
separately and simultaneously, are also analysed.

2 Load modelling in power-system studies

Because of difficulties in defining actual load character-
istics, utilities have attempted to use characteristics that
would lead to conservative designs [8]. However, as a
number of studies in the past have shown, there is no
single load characteristic which leads to a conservative
design for all system configurations [8]. The assumptions
regarding the load model can influence predicted system
behaviour as much as the models chosen for synchronous
generators and associated controls.

2.1 Static-load models
Power-system-stability studies have traditionally used
static-load models. Loads were represented as constant
power, constant current or constant impedances, or in a
general exponential form:

A%

P(V) = Po(;;) m
A

o) = Q.,(70> 2

where P,, (0, and V, are nominal active and reactive
power and voltage of the bus, respectively. Coefficients
n,, and n, are voltage exponents for real and reactive
power, respectively.

22 Aggregate dynamic-load models

Many measurements in different power systems around
the world have been made to establish load models for
different purposes. The form of response of different loads
to a voltage step is given in a number of reports [11,
18-23]. It is of a general form shown in Fig. 1. The initial
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Fig. 1 Typical load response to a step in voltage
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power step, the final power mismatch and the rate of
recovery of the load are parameters which can vary
greatly across different load types [7, 9, 12, 21]. A
detailed mathematical model of the general form of expo-
nential load response is given in [25].

As explained in [21, 25] nonlinear voltage-dependent
dynamic load can be represented in the form of a set of
differential-algebraic equations as follows:

T,%,= —x,+ P(V)— P(V) 3)
Py=x,+ PV) 4

A similar aggregate-dynamic-load model was proposed in
[26] in a form:

T, %, = —x, + P(V) — PV) (5
Py =x,P(V) (6)

In both previous models x, is a state variable, P, is the
actual load demand, P(V) and P,(V) are steady-state and
transient load/voltage characteristics and T, is a time
constant which characterises the response of the load.
The previcus equations are for modelling active-power
dynamics only, but reactive-power dynamics can be mod-
elled in a similar way. It was shown in [27] that these
two models can be tuned to have almost the same
response to a step in voltage. However, they differ in
terms of solvability of the differential-algebraic model.

In the sequel only the model given by eqns. 3 and 4
will be considered. The functions P(V) and P(V) can be

defined as
Vs
PyV) = PO(VG) (M
V"
P(V) = Po<70) (8)

where ¥, and P, are nominal voltage of the bus and the
corresponding active power of the load, respectively, and
n, and n, arc steady-state and transient voltage expo-
nents. Reactive-power functions are defined in a similar
manner. Voltage exponents are generally in the ranges
given in Table 1.

Table 1: Ranges of voltage exponents

Exponent References
0<n, <3 7,9.12,19. 11
0<n, <7 7.9.12,19. 21

15<n,, <25 21,26
4<n,, <7 21,26

Time constants T, and T, which characterise the
recovery response of the load, can be chosen to represent
different types of load. For industrial, agricultural and
air-conditioning loads consisting predominantly of induc-
tion motors [8, 12, 13, 23], T, and T, are in the range of
0.02's to a few seconds depending on the proportion of
induction motors in the combined load. For responses of
industrial plants such as aluminum smeiters [24] or for
power-plant-auxiliary system responses {22], they are in
the range 0.1-0.5s, while for tap changers and other
control devices they are in the range of minutes. The time
constants of heating load can be of the order of hours
[21].

In [14], it was shown that linearisation of the load
model of eqns. 3 and 4 yields

P
T A%, = —Ax, + =2 (n,
v,

P P P

na)AV ©
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P,
APd=Axp+-I7n,,rAV (10)

This linearised model has the form of a lead/lag block,
with the lead/lag time constants dependent on the load
parameters. It was shown that, if g, > np (g > Ay,
which is the normal situation, the phase shift through the
real (reactive) load was always positive. The dependence
on load parameters of the gain and phase shift of the
load-transfer function was discussed in detail in [14].

3 Example system and analysis method

The simple system, given in Fig. 2, was used as a basis for
exploration of the synchronous-generator—dynamic-load
interaction. Third-order [15, 28, 29] and sixth-order [30-
32] models of the synchronous generator were used.

Vg Vint

2 |

@ — |
P=p{Vt)
Q=q(Vv,t)

Fig. 2  Single-machine infinite-bus system

Local load was assumed to be voltage dependent, either
in the form of the static-load model given by eqns. 1 and
2 or the dynamic load model given by eqns. 3 and 4 for
active-power dynamics, with a similar model for reactive-
power dynamics. The block diagrams of the governor, and
of the exciter and power-system stabiliser are presented
in Figs. 3 and 4, respectively. The complete model of this
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Fig. 3  Block diagram of the governor and single-reheat steam turbine

used in the study
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Fig. 4 Block diagram of the exciter and power-system stabiliser used
in the study
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system was linearised around the steady-state operating
point. Small-disturbance stability analysis was used for
evaluating stable or unstable operation and the level of
damping of electromechanical oscillations.

Special software was developed for the purpose of ana-
fysing the effects of multiple dynamic loads in multi-
machine power systems. This investigation focused on the
effects that variation of load-model parameters had on
damping and frequency of electromechanical modes. The
simple system of Fig. 2 only has one electromechanical
mode. The complex conjugate pair of poles correspond-
ing to this single electromechanical mode is dominant, i.e.
the least damped poles for the range of load-model
parameters which was of interest in this study. Hence the
analysis was based on observing the effects that load-
model-parameter variation had on this pair of poles. The
more detailed description of building the state-space
model of the system is given in [17].

4 Effects of voltage-dependent load

4.1 Differences between static and dynamic load
effects

For the purpose of establishing the effects that the type of
local load had on the damping of electromechanical
oscillations, a sixth-order generator model was used. This
model included a governor, automatic voltage regulator
(AVR) and power-system stabiliser (PSS). Two general
types of loads were used, namely static-exponential-load
models and aggregate-dynamic-load models. In Fig. 5 the
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Fig. 5  Static- and dynamic-load effects on damping of oscillations with
control devices included

stars mark the locations of the electromechanical mode
when load was modelled by the exponential static model.
The numbers beside the stars give the voltage exponents
n,e/n, used to determine each particular point. It can be
seen that the worst case, from the point of view of
damping, is constant power load. The best damping is
achieved when load was modelled as a constant imped-
ance. It is also noticeable that the increase in both active-
and reactive-voltage exponents leads to better damped
oscillations. However, the increase of the active-power
voltage exponent has approximately twice the effect of an
increase of the reactive power exponent.

1t was concluded in [14] that, when the dynamic-load
time constants T,, T, were very small, the load effectively
behaved as a static load, with indices n,, n.. When T,
T, were very large, the load again behaved as a static
load, but this time with indices n,,, 1y, .

This effect is also shown in Fig. 5. In producing the
root locus indicated by the solid line, time constants T,,
T, were varied from O's, which is effectively static load, to
100 s. At the same time steady-state voltage-exponents n,,
and n,, were fixed at 0 and transient-voltage exponents
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n,, and n,, were fixed at 2. The arrow denotes movement
of the electromechanical mode for time constant varia-
tion as mentioned. The root locus starts and finishes at
the same points obtained with a static-load model with
corresponding voltage exponents.

A similar effect is presented in Fig. 6. In this case the
generator was considered alone, without any of the
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Fig. 6  Static- and dynamic-load effects on damping of oscillations
without control devices

control devices. For the dynamic-load model, the time
constants T,, T, were varied from Os to 100s, and
voltage exponents were fixed at n,, = 0.1, n, =2, Ny =
2.5 and n, = 5. This root locus is presented as a solid
line. For the static-load model, the voltage indices were
varied from n,,, n, to n,, n,. This is shown in Fig. 6 as
a broken line. A small circle marks the location of the
electromechanical mode when the static-load model was
used, with indices of n,, n,. In these curves, the arrows
denote the direction of movement of the mode as the
time constants (for the dynamic load) and voltage expo-
nents (for the static load) were varied as described.

As expected, the two curves start and finish at the
same points. However they trace out significantly differ-
ent paths. It can be seen that dynamic loads with time
constants in the range from 0.1 s to a few seconds cannot
be adequately described by a static representation. Note
that this range of time constants corresponds to most
dynamic loads, e.g. industrial and power-plant auxiliary
power systems.

The differences in the shapes of the root loci for the
two cases given by Figs. 5 and 6 can be explained by
considering load/system interaction as shown in Fig. 7.
This is discussed in detail in [14, 17].

dynamic load

+
APd av
b3 power system

+

Fig. 7

Power-system/dynamic-load interaction

Basically, a disturbance in P,, the power demand of a
bus, will cause some variation in V, the load-bus voltage,
as the system responds to the load disturbance, but varia-
tion of V will cause load to respond, resulting in varia-
tion of P,. The phase difference between the input
disturbance and the load variations, together with the
gain through the load, will determine whether the load
damps the disturbance or reinforces it. If the load varia-
tion is in phase with the P, variation, the load will cause
a decrease in damping. If load variation is 180° out of
phase, the load will contribute to damping.

Bode plots of the system response, ie. the frequency
response of the feedforward block labelled ‘power system’
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in Fig. 7, are given in Fig. 8. The Figure shows the two
cases previously considered: the generator with and
without controls. The average modal frequencies, from
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Fig. 8  Bode plots for the system with and without control devices

a Generator
b Generator + AVR + governor + PSS

Figs. 5 and 6, are 14.76 rad/s and 10.44 rad/s for the cases
with and without control, respectively. From Fig. 8, it
can be seen that the gain through the system for the two
cases is about the same, i.¢. approximately —32 dB. The
phase shifts through the system at these resonant fre-
quencies are completely different through, being
—193.71° and 255.87°, respectively. This difference in
phase shift is a major factor contributing to the difference
in the shapes of the root loci.

For normal values of time constants and voltage
exponents, the dynamic load always has a positive phase
shift [17]. The amount of the phase shift depends on the
load parameters. Consider first the case of the system
with controls. Table 2 gives the load phase shift and

Table 2: Damping phase-shift dependence: case with con-
trols

T, T, Load, Open-loop Damping
phase shift phase shift
(s) (deg) (deg) (1/s)
0.00 0.00 -183.71 —-3.899
0.02 72.58 -123.13 -3.963
0.04 58.95 -134.76 -4.070
0.10 33.92 -1569.79 -4.280
016  22.83 -179.89 —4.309
0.30 12.66 -181.05 -4.292
0.40 9.56 -184.15 —4.281
0.50 7.68 —-186.03 -4.273
0.70 5.50 -188.21 -4.263
1.00 3.86 -189.85 —4.255

overall open-loop phase shift {the sum of the phase shifts
through the system and the load), as well as system
damping for increasing load time constant. These results
confirm that as the open-loop phase shift approaches
—180°, damping increases, then deteriorates again as the
open-loop phase shift moves away from —180°. Note,
though, that as the load time constant varies, so does the
gain through the load. This has a secondary influence on
the level of damping, and means that the system is not
necessarily best damped when the load time constant
gives a — 180° phase shift.

Table 3 gives load phase shift, open-loop phase shift
and damping for the second case, where the generator
was without control devices. In this case it can be seen
that the open-loop phase shift initially moves toward
360° as the load time constant increases from zero.
Therefore a decrease in damping would be expected. This
is consistent with the trend observed in Fig. 6. However,
the vanation in the gain through the system is now the
dominant factor. Referring to Fig. 8, it can be seen that
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Table 3: Damping phase shift dependence: case without
controls

T, 7, Load, Open-loop Damping
phase shift phase shift

(s) (deg) (deg) (1/8)

0.00 0.00 255.87 —-0.6988
0.02 33.64 289.51 -0.6841
0.04 40.39 296.26 -0.6701
0.10 26,58 282.45 -0.6324
0.20 19.95 275.82 -0.6014
0.28 10.97 266.84 -0.5968
0.40 1064 266.51 —0.6007
0.50 6.25 262.12 ~0.6222
0.70 6.17 262.04 -0.6372
1.00 434 260.21 -0.6524

system gain is very sensitive to oscillation frequency. As
the load time constant increases, the modal frequency
changes a little, so the gain through the system will aiso
vary. This example illustrates the complex nature of load/
system interaction.

The higher gain over a wider range of frequency in the
case with control devices contributes to higher sensitivity
to load-parameter variation. The transfer function of the
system without controls has a zero at 9.24 rad/s, which is
close to the resonmant frequency of 10.44 rad/s. This is
shown clearly in Fig. 8 This zero is only effectively
removed after inclusion of a PSS. Removal of this zero
causes the significant change in phase shift through the
system.

4.2 Effects of type of generator model

In some recent studies [15}, a third-order machine model
was used for studies of the effects of dynamic-load-model
parameters on power-system damping. However, it has
been found that the use of different generator models
leads to different shapes of the root loci of the electro-
mechanical mode as load-model parameters are varied.
These differences are clearly evident in Fig. 9. In produc-
ing these root loci, control devices haven’t been taken

10-6
6th-order-machine model
04 T >
P 10-2F
T
g 100t
3
98t
9-6t+
3rd-order-machine model
94 . , R . -
-07 -0-6 -0 04 -03 -02
damping, ™!
Fig. 9 Root locus of electromechanical mode with different machine

models for active power dynamics only

into account. It can be seen that, with the higher-order
machine model, which 1s a more accurate model, the
effects of load dynamics are more pronounced. Note that
the higher-order model is better damped because of the
modelling of the generator’s amortisseurs. As mentioned
above, such differences can be explained by observing the
frequency response of the system as seen from the bus
where the dynamic load is connected. Recall that this is a
frequency response of the feedforward block labelled
‘power system’ in Fig. 7. The input is the incremental
change in bus power and the output is the change in bus
voltage. These Bode plots are given in Fig. 10. It can be
seen that, for the sixth-order machine model, the system
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has higher gain and the difference in phase shift between
the two models is 162°. This difference in phase shift is
largely due to a zero at 8.39 rad/s in the transfer function
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Fig. 10  Bode plots for the system with different machine models for
active power dynamics only

obtained using the third-order machine model. This zero
is close to the modal frequency of 9.24 rad/s. In the case
of the sixth-order machine model, the zero is no longer
present. This explains why load time constant variation
leads to damping improvement in one case, and a de-
terioration in damping in the other.

From the point of view of the load time constants
which provoke the best or worst damping, depending on
the shape of the root locus, they are not altered signifi-
cantly by the use of the more precise machine model.
They are completely determined by load-model param-
eters and the resonant frequency of the modelled power
system [14]. For the sixth-order machine model the
power-system resonant frequency is 10.45 rad/s, and for
the third-order machine model 9.43 rad/s. The corre-
sponding critical time constants of the load are 0.14 s and
0.26 s, respectively. In all cases presented in this paper,
the maximum eflect on damping is achieved with time
constants in the range 0.10-0.30 s.

4.3 Comparison of active and reactive-power
dynamics

In all previous cases, both active and reactive power were
treated as dynamic.

1t has been shown [17] that there are differences in the
effects that active and reactive power have on damping of
interarea oscillations of a power system. These differences
can be traced from the load model itself. In Fig. 11, step
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time s

Fig. 11  Step response of the load to step in voltage

responses of the load to a step in voltage are shown when
different components of load (active or reactive power, or
both) were modelled as dynamic. In Fig. 12, Bode plots of
gain and phase shift through the load are shown for dif-
ferent load dynamics. (These plots show the frequency
response of the block labelled ‘dynamic load’ in Fig. 7))
Curves marked with a P indicate that only active power
was modelled as dynamic, i.e. the Bode plot shows the
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relationship between voltage and real power. Curves
marked with a Q indicate that only reactive power was
modelled as dynamic. The ‘P and @’ corresponds to the
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Fig. 12 Bode plots of the gain and phase shift through the load when
various components of apparent power are considered as dynamic

Bode plot when both real and reactive power were
dynamic. In this case the Bode plot shows the relation-
ship between voltage and the output |S| = \/(P? + Q7).
Time constants T, = T, = 0.3 s were used, along with dif-
ferent voltage exponents of n, =01, n, =25, n,, =2
and n, = 5. It can be seen from Fig. 12 that the phase
shift and the gain through the load are different for differ-
ent types of load dynamics.

The effects of real- and reactive-power load dynamics
on the damping of the electromechanical mode are pre-
sented in Fig. 13. The root loci correspond to variation of
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Fig. 13  Root locus of electromechanical mode with different dynamics
modelled

time constants T, and/or T, from Os to 1s. (When real
power is modelled as dynamic, 7, is varied. With reactive
power dynamic, T, is varied. In the third case, when real
and reactive power are both dynamic, T, and T, are
varied equally.) It can be seen that active-power
dynamics can cause a greater deterioration in damping
than can the reactive-power dynamics. (This follows from
the relative sizes of the loci.) When both real and reactive
power are treated as dynamic, the deterioration of
damping can be even more pronounced. For this particu-
lar choice of AVR and governor parameters, the system is
stable when load is represented by the static model. (This
corresponds to the starting point of all root loci.) If only
the reactive power of the load has significant dynamics,
damping deteriorates but the system remain stable.
However, if active power exhibits a dynamic response, or
if both active and reactive power together respond
dynamically, then instability will result for a range of
time constants.

4.4 Damping sensitivity to dynamic-model
parameters

To gain a better understanding of the correspondence

between values of load time constants and points on the
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root loci, one of the root loci of Fig. 13 is repeated in Fig.
14. The starting point in this Figure, denoted by 0, rep-
resents the static-load model. The region between points
1054
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10501
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damping, 57!
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1

Fig. 14  Root locus of electromechanical mode with different ranges of
time constants marked
0 and 1 (the point marked with the first small cross) was
obtained by varying time constants T, and T, from 0 s—
1s. The worst damping occurred with time constants
T,= T, = 0.28 5. The region between points 1 and 2 was
obtained by varying time constants T, and T, over the
range 1-10 s. Finally, the region between points 2 and 3
was obtained by varying time constants 7, and T, over
the range of 10-100s. Note that points 2 and 3 almost
overlap for the scaling used in Fig. 14. In all these cases
steady-state active- and reactive-power voltage exponents
M, M, were equal to O, and transient active- and
reactive-power voltage exponents n,,, n, were equal to
2.5. The governor and AVR were modeiled. It was shown
in [14] that, for frequencies in the range of 0.2-2 Hz,
which are of interest in this study, the highest gains and
phase shifts through the load, and hence the most signifi-
cant effects of load dynamics, occur for load time con-
stants up to 1s. A more detailed explanation of the
sensitivity of the load model to small values of time con-
stants is given in [14].

Fig. 15 shows positions of the electromechanical mode
when the parameters of the dynamic load were varied
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Fig. 16  System damping when load parameters randomly chosen

randomly. The values of n,; and n,, were held constant at
0.1 and 2, respectively, and no control devices were
included. The following parameter ranges were used:

0<T,, T,<100

P>
1.5 < ny <25
2, <5

In the Figure, the small circle shows the location of the
clectromechanical mode when load was represented
statically. All other points correspond to dynamic loads.
Note that the dynamic-load points cover quite a wide
area. Stars represent variation of time constants in the
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range 0-1 s, plus signs represent variation of time con-
stants in the range 1-10s, and encircled plus signs show
variation of time constants in the range 10-100s.
Depending on load parameters, it is possible to have
better or worse damping of the mode.

4.5 [Influence of AVR and governor parameters

To determine which of the automatic-voltage-regulator
and governor parameters are of most influence on the
mode of interest, the participation matrix of the system
was used. It has been found that those parameters are K,
and 7, for the AVR and K, and T, for the governor.
These parameters are therefore shown in Figs. 3 and 4 as
free parameters, while all others are fixed. The effects of
their variation, together with load time constant varia-
ticn in the range 01 s are presented in Figs. 16 and 17.
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Fig. 17 Effects of governor parameters and load time constant varid-
tion

The following values of voltage exponents were used in
producing the root loci: n,,=n, =0; n,, =n, =2 In
both Figures, an a marks the root locus obtained when
no control devices were connected to the generator.

In Fig. 16 the solid lines marked with the letters b—i
are root loci for the following settings of AVR param-
eters: K, = 30, 60, 120, 180, 210, 240, 300, 400; and T, =
0.023 5. The broken lines present root loci for fixed K,
and different T, for two cases: K, = 30; T, = 055, 0.25 s,
0.1 s, 0.05 s marked by 1, 2, 3, 4, respectively; and K, =
400; T,=0.5s, 0.25s, 0.1 s, 0.05 s marked by 11, 22, 33,
44, respectively. It can be seen that, for different values of
AVR parameters (especially for fast-acting AVRs), use of
a dynamic load would indicate instability for certain
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values of time constants while a static-load model
would indicate stable operation. In these investigations, it
was assumed that PSS parameters were constant. The
PSS was not retuned for the different values of AVR
parameters, as the desire was to show the sensitivity to
AVR parameters only.

In Fig. 17 the solid lines marked with the letters b-f
are root loci for the following settings of governor
parameters: K, = 0.2, 0.5, 1, 2, §; and T; =04s. The
broken lines present root loci for fixed K, and different
T, for two cases: K; =02; 7T, =015, 15 marked by 1, 5,
respectively and K, =5; T, =0.15s, 02s, 075, 1Is,
marked by 22, 33, 44, 55, respectively. It can be seen that,
for different values of governor parameters, the electro-
mechanical mode can be more or less damped.

From Figs. 16 and 17, it can be concluded that differ-
ent values of parameters of generator control devices, if
within standard ranges, do not alter the general shape of
the root loci. (Recall though, from Fig. 8 that the addi-
tion of controls, in particular a PSS, could have a major
effect on the shape) It is possible, however, that, for
certain controller parameter settings, the system may be
stable or unstable, depending on dynamic-load param-
eters.

4.6 Influence of the impedance between generator
and load

The results of the previous Sections have been based on
the power system shown in Fig. 2. In that system the load
is at the generator bus. However, we now wish to see
how results change when the load is supplied from a bus
which is not the generator bus. The effect on damping of
the impedances between the generator, the infinite bus
and the load is shown in Fig. 18. Variation of these
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Fig. 18  Effects of impedance between generator and load

impedances does not alter the shape of the root loci, but
does affect the overall sensitivity of damping to load
parameters. The loci shrink, i.e. sensitivity reduces, as the
impedance between the generator and the load bus
grows, and the impedance between the load bus and the
infinite bus decreases (the load bus moves closer to the
infinite bus). Referring to Fig. 18, the loci follow the
sequence 1 —2 — 3. This can be explained by the fact
that, with a decrease in impedance between the load and
the infinite bus, the voltage at the load bus becomes more
rigid, i.e. the variation in voltage is less, so ultimately the
effect of the voltage dependent load is reduced.

Note though that, as the load moves towards the
infinite bus, the overall level of damping reduces. This
behaviour can be explained by conmsidering the system
power flows. At steady state, the generator produces
0.9 p.u. real power, and the load absorbs 0.6 p.u. real
power. In the situation with the load at the generator
bus, real power flow over the line between the generator
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and the infinite bus is 0.3 p.u. As the load bus is moved
toward the infinite bus, the section of line between the
generator and load carries 0.9 p.u., so the transmission
line becomes more heavily loaded. It follows from clas-
sical analysis that damping will decrease.

5 Conclusions

A standard static-load model and a generic nonlinear-
dynamic-load model have been used to investigate the
influence of load on the damping of the electromechan-
ical oscillations of a generator, and thus on its stability.

The paper shows that loads which respond dynamic-
ally to voltage variations can have an influence on the
stability of generators by affecting the damping of elec-
tromechanical modes. It is shown that, depending on
load and system parameters, a dynamic load can rein-
force oscillations, and so cause a deterioration in
damping and stability. It is also possible, though, that the
load may oscillate out of phase with the system, and so
lead to an improvement in damping.

Use of different-order machine models may lead to dif-
ferent results as far as the effects of load dynamics on
damping are concerned. This indicates that, by using
simpler models of synchronous machines, incorrect con-
clusions could be drawn regarding the effects of load on
damping and stability.

The nature of the influence of load dynamics on the
stability of the generator is not changed by the inclusion
of exciters and governors. All these components, in the
cases examined (without retuning of the PSS), contrib-
uted mainly to a deterioration in damping. It was pos-
sible to find cases which were stable for certain sets of
load model parameters, e.g. static load, but unstable for
others.

The study has demonstrated the need for accurate
modelling of loads. A static representation of loads that
in reality exhibit significant dynamic behaviour can give
very misleading results.

The significance of load-model uncertainty was con-
sidered. To do this, load parameters were randomly
varied, with damping being determined for each set of
parameters. This study indicated that the calculated
values of damping could be quite widespread.
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