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Distributed MPC Strategies With Application to
Power System Automatic Generation Control

Aswin N. Venkat, Ian A. Hiskens, Fellow, IEEE, James B. Rawlings, and Stephen J. Wright

Abstract—A distributed model predictive control (MPC) frame-
work, suitable for controlling large-scale networked systems
such as power systems, is presented. The overall system is de-
composed into subsystems, each with its own MPC controller.
These subsystem-based MPCs work iteratively and cooperatively
towards satisfying systemwide control objectives. If available
computational time allows convergence, the proposed distributed
MPC framework achieves performance equivalent to centralized
MPC. Furthermore, the distributed MPC algorithm is feasible
and closed-loop stable under intermediate termination. Automatic
generation control (AGC) provides a practical example for illus-
trating the efficacy of the proposed distributed MPC framework.

Index Terms—Automatic generation control, distributed model
predictive control, power system control.

I. INTRODUCTION

M ODEL predictive control (MPC) is widely recognized
as a high performance, yet practical, control technology.

This model-based control strategy uses a prediction of system
response to establish an appropriate control response. An at-
tractive attribute of MPC technology is its ability to systemati-
cally account for process constraints. The effectiveness of MPC
is dependent on a model of acceptable accuracy and the avail-
ability of sufficiently fast computational resources. These re-
quirements limit the application base for MPC. Even so, appli-
cations abound in the process industries, and are becoming more
widespread [7], [28].

Traditionally, control of large, networked systems is achieved
by designing local, subsystem-based controllers that ignore the
interactions between the different subsystems. A survey of de-
centralized control methods for large-scale systems is available
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in [29]. It is well known that a decentralized control philosophy
may result in poor systemwide control performance if the sub-
systems interact significantly. Centralized MPC, on the other
hand, is impractical for control of large-scale, geographically
expansive systems, such as power systems. A distributed MPC
framework is appealing in this context; the distributed MPC
controllers must, however, account for the interactions between
the subsystems. These and other issues critical to the success of
distributed MPC are examined in this paper.

Each MPC, in addition to determining the optimal current
response, also generates a prediction of future subsystem
behavior. By suitably leveraging this prediction of future sub-
system behavior, the various subsystem-based MPCs can be
integrated and the overall system performance improved. A
discussion on economic and performance benefits attainable
by integrating subsystem-based MPCs is available in [17] and
[24]. One of the goals of this paper, however, is to illustrate
that a simple exchange of predicted subsystem trajectories
(communication) does not necessarily improve overall system
control performance.

A few distributed MPC formulations are available in the
literature. A distributed MPC framework was proposed in
[13], for the class of systems that have independent subsystem
dynamics but are linked through their cost functions. More
recently in [12], an extension of the method described in
[13] that handles systems with weakly interacting subsystem
dynamics was proposed. Stability is proved through the use of
a conservative, consistency constraint that forces the predicted
and assumed input trajectories to be close to each other. Also,
as pointed out by the author, the performance of the distributed
MPC framework in [12] is, in most cases, different from that
of centralized MPC. A distributed MPC algorithm for uncon-
strained, linear time-invariant (LTI) systems was proposed in
[8] and [20]. For the models considered in [8] and [20], the
evolution of the states of each subsystem is assumed to be in-
fluenced only by the states of interacting subsystems and local
subsystem inputs. This choice of modeling framework can be
restrictive. In many cases, such as the two area power network
with FACTS device (see Section V-G3) and most chemical
plants, the evolution of the subsystem states is also influenced
by the inputs of interconnected subsystems. More crucially for
the distributed MPC framework proposed in [8] and [20], the
subsystem-based MPCs have no knowledge of each other’s
cost/utility functions. It is known from noncooperative game
theory that if such pure communication-based strategies (in
which competing agents have no knowledge of each others cost
functions) converge, they converge to the Nash equilibrium
(NE) [2], [3]. In most cases involving a finite number of agents,
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the NE is different from the Pareto optimal (PO) solution
[10], [11], [26]. In fact, nonconvergence or suboptimality of
pure communication-based strategies may result in unstable
closed-loop behavior in some cases. A four area power network
example is used here (see Section V-G2) to illustrate instability
due to communication-based MPC. Such examples are not un-
common. A distributed MPC framework in which the effect of
interconnected subsystems are treated as bounded uncertainties
was proposed in [21]. Stability and optimality properties have
not been established however.

Most interconnected power systems rely on automatic gen-
eration control (AGC) for regulating system frequency and tie-
line interchange [37]. These objectives are achieved by control-
ling the real power output of generators throughout the system,
taking into account restrictions on the amount and rate of gen-
erator power deviations. To cope with the expansive nature of
power systems, a distributed control structure has been adopted
for AGC. The current form of AGC may not, however, be well
suited to future power systems [1], with various trends set to im-
pact its effectiveness.

Future power systems will see greater use of flexible ac trans-
mission system (FACTS) devices [18]. These devices allow con-
trol of power flows over selected paths through a transmission
network, offering economic benefits [23] and improved secu-
rity [14]. However, FACTS controllers must be coordinated with
other power system controls, including AGC. On the other hand,
greater utilization of intermittent renewable resources, such as
wind generation, brings with it power flow fluctuations that are
difficult to regulate [27].

These changes provide an opportunity to rethink AGC. Dis-
tributed MPC offers an effective means of achieving the desired
controller coordination and performance improvements, whilst
alleviating the organizational and computational burden asso-
ciated with centralized control. AGC therefore provides a very
relevant example for illustrating the performance of distributed
MPC in a power system setting.

This paper is organized as follows. In Section II, a brief
description of the different modeling frameworks is presented.
Notation used in this paper is introduced in Section III. In
Section IV, a description of the different MPC-based sys-
temwide control frameworks is provided. An implementable
algorithm for terminal penalty distributed MPC is described in
Section V. Properties of this distributed MPC algorithm and
closed-loop properties of the resulting distributed controller
are established subsequently. Three examples are presented
to highlight the performance benefits of terminal penalty dis-
tributed MPC. A framework for terminal control distributed
MPC is introduced in Section VI. In Section VII, the main con-
tributions of this study are summarized, and various extensions
are reported.

II. MODELS

Distributed MPC relies on decomposing the overall system
model into appropriate subsystem models. A system comprised
of interconnected subsystems will be used to establish these
concepts.

Centralized Model: The overall system model is represented
as a discrete, linear time-invariant (LTI) model of the form

in which denotes discrete time and

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

For each subsystem , the triplet rep-
resents the subsystem input, state, and output vector, respec-
tively. The centralized model pair is assumed to be sta-
bilizable and is detectable.1

Decentralized Model: In the decentralized modeling frame-
work, it is assumed that the interaction between the subsystems
is negligible. Subsequently, the effect of the external subsystems
on the local subsystem is ignored in this modeling framework.
The decentralized model for subsystem is

Partitioned Model (PM): The PM for subsystem combines
the effect of the local subsystem variables and the effect of the
states and inputs of the interconnected subsystems. The PM for
subsystem is obtained by considering the relevant partition of
the centralized model and can be explicitly written as

(1a)

(1b)

III. NOTATION

For any matrix , and denote the max-
imum and minimum (absolute) eigenvalue of , respectively.
For any subsystem , let the predicted state and

1In the applications considered here, local measurements are typically a
subset of subsystem states. The structure selected for the � matrix reflects this
observation. A general � matrix may be used, but impacts possible choices for
distributed estimation techniques [35].
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input at time instant , based on data at time be de-
noted by and , re-
spectively, where is the set of admissible controls for subsys-
tems . We have the following definitions for the infinite horizon
predicted state and input trajectory vectors in the different MPC
frameworks:

Centralized state trajectory:

Centralized input trajectory:

State trajectory

Input trajectory

Let denote the control horizon. Define
. The following notation is used to represent the

finite horizon predicted state and input trajectory vectors in the
different MPC frameworks

Centralized state trajectory:

Centralized input trajectory:

State trajectory

Input trajectory

IV. MPC FRAMEWORKS FOR SYSTEMWIDE CONTROL

Let each set of admissible controls be a nonempty, com-
pact, convex set with . The set of admissible controls
for the whole plant is defined to be the Cartesian product of
the admissible control sets .

The stage cost at stage along the prediction horizon is
defined as

(2)

in which are symmetric weighting matrices and
is detectable. The cost function for subsystem

is defined over an infinite horizon and is written as

(3)

with . For any system, the constrained stabi-
lizable set (also termed Null controllable domain) is the set
of all initial states that can be steered to the origin by

applying a sequence of admissible controls (see [32, Def. 2]). It
is assumed throughout that the initial system state vector

, in which denotes the constrained stabilizable set for the
overall system. A feasible solution to the corresponding opti-
mization problem, therefore, exists. For notational simplicity,
we drop the time dependence of the state and input trajecto-
ries in each MPC framework. For instance, in the centralized
MPC framework, we write and . In the
distributed MPC framework, we use and

.
Four MPC-based systemwide control frameworks are de-

scribed in the following. In each MPC framework, the controller
is defined by implementing the first input of the solution to the
corresponding optimization problem.

Centralized MPC: In the centralized MPC framework, the
MPC for the overall system solves the following optimization
problem:

subject to

where .
For any system, centralized MPC achieves the best attainable

performance (Pareto optimal) as the effect of interconnections
among subsystems are accounted for exactly. Furthermore, any
conflicts among controller objectives are resolved optimally.

Decentralized MPC: In the decentralized MPC framework,
each subsystem-based MPC solves the following optimization
problem:

subject to

Each decentralized MPC solves an optimization problem to
minimize its (local) cost function. The effects of the inter-
connected subsystems are assumed to be negligible and are
ignored. In many situations, however, the previous assumption
is not valid and leads to reduced control performance.

Distributed MPC: The partitioned model for each subsystem
is assumed to be available. Two formulations

for distributed MPC, namely communication-based MPC
and cooperation-based MPC, are considered. Communica-
tion-based strategies form the basis for the distributed MPC
formulations in [8] and [20]. In the sequel, the suitability of
pure communication-based MPC, as a candidate systemwide
control formulation, is assessed. For both communication and
cooperation-based MPC, several subsystem optimizations and
exchanges of variables between subsystems are performed
during a sample time. An optimization and exchange of vari-
ables is termed an iterate. We may choose not to iterate to
convergence. The iteration number is denoted by .

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 14:59 from IEEE Xplore.  Restrictions apply.



VENKAT et al.: DISTRIBUTED MPC STRATEGIES WITH APPLICATION TO POWER SYSTEM AUTOMATIC GENERATION CONTROL 1195

Communication-Based MPC: For communication-based
MPC,2 the optimal state-input trajectory for subsystem

at iterate is obtained as the solution to the
optimization problem

subject to

Each communication-based MPC utilizes the objective
function for that subsystem only. For each subsystem at
iteration , only that subsystem input sequence is opti-
mized and updated. The other subsystems’ inputs remain at

. If the communication-based
iterates converge, then at convergence, a Nash equilibrium
(NE) is achieved. In this work, the term communication-based
MPC alludes to the previous framework at convergence of the
exchanged trajectories. Examples are presented in Section V-G
for which communication-based MPC leads to either unaccept-
able closed-loop performance or closed-loop instability.

Feasible Cooperation-Based MPC (FC-MPC): To arrive at a
reliable distributed MPC framework, we need to ensure that the
subsystems’ MPCs cooperate, rather than compete, with each
other in achieving systemwide objectives. The local controller
objective is replaced by an objective that measures the
systemwide impact of local control actions. The simplest choice
for such an objective is a strict convex combination of the con-
troller objectives, i.e.,

.
In large-scale implementations, the system sampling interval

may be insufficient to allow convergence of an iterative, cooper-
ation-based algorithm. In such cases, the cooperation-based al-
gorithm has to be terminated prior to convergence of exchanged
trajectories. The final calculated input trajectories are used to
define a suitable distributed MPC control law. To enable inter-
mediate termination, it is necessary that all iterates generated
by the cooperation-based algorithm are strictly systemwide fea-
sible (i.e., satisfy all model and inequality constraints) and the
resulting nominal distributed control law is closed-loop stable.
Such a distributed MPC algorithm is presented in Section V.

For notational convenience, we drop the dependence of
. It is shown in [34] that each

can be expressed as

(6)

We consider the more practical case of open-loop stable sys-
tems first. A distributed MPC methodology capable of handling
large, open-loop unstable systems is described in Section VI.

For open-loop stable systems, the FC-MPC optimization
problem for subsystem , denoted , is defined as

(7a)

2Similar strategies have been proposed by [8] and [20].

subject to (7b)

(7c)

The infinite horizon input trajectory is obtained by aug-
menting with the input sequence .
The infinite horizon state trajectory is derived from by
propagating the terminal state using (1) and

. The cost function
is obtained by eliminating the state trajectory from

(3) using (6) and the input, state parameterization described
before. The solution to the optimization problem is denoted
by . By definition

V. TERMINAL PENALTY FC-MPC

A. Optimization

For the quadratic form of given by (3), the FC-MPC
optimization problem (7), for each subsystem ,
can be written as

(8a)

subject to (8b)

in which

and

...
...

. . .
. . .

...
(9)

is a suitable terminal penalty matrix. Restricting attention (for
now) to open-loop stable systems simplifies the choice of . For
each , let

. The terminal penalty can be obtained as the solution to
the centralized Lyapunov equation

(10)
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in which . The central-
ized Lyapunov equation (10) is solved offline. The solution
to (10) has to be recomputed if the subsystems’ models and/or
cost functions are altered.

B. Algorithm and Properties

At time , let represent the maximum number of per-
missible iterates for the sampling interval. The following algo-
rithm is employed for cooperation-based distributed MPC.

Algorithm 1 (Terminal penalty FC-MPC)

Given

and

while for some and

do

, (see (8))

end (do)

for each

Transmit to each interconnected subsystem
.

end (for)

end (while)

The state trajectory for subsystem generated by the input tra-
jectories and initial state is represented as

. At each iterate in Algorithm 1, the state
trajectory for subsystem can be calculated as

. At each represents a de-
sign limit on the number of iterates; the user may choose to ter-
minate Algorithm 1 prior to this limit.

The infinite horizon input and state trajectories can
be obtained following the discussion in Section IV. Denote the
cooperation-based cost function after iterates by

The following properties can be established for the FC-MPC
formulation (8) employing Algorithm 1.

Lemma 1: Given the distributed MPC formulation defined
in (7) and (8), , the sequence of cost functions

generated by Algorithm 1 is non-
increasing with iteration number .

A proof is given in Appendix A.

Using Lemma 1 and the fact that is bounded below as-
sures convergence of the sequence of cost functions with itera-
tion number.

Consider the centralized MPC optimization problem obtained
by eliminating the subsystem states using the PM equations (1),

(11a)

subject to

(11b)

(11c)

From the definition of given by (3), we have .
Hence, in (8). It follows that
is strictly convex. Using convexity of

and strict convexity of , the solution
to the centralized MPC optimization problem (11) exists and is
unique. By definition, .

Lemma 2: Consider positive definite quadratic and
let , be convex, compact. Assume the
solution to Algorithm 1 after iterates is with
an associated cost function value , in
which . Denote the unique solution to (11)
by , in which , and let

represent the optimal cost function
value. The solution obtained at convergence of Algorithm 1
satisfies

A proof is given in Appendix A.

C. Distributed MPC Control Law

At time , let the FC-MPC algorithm (Algorithm 1) be termi-
nated after iterates, with

representing the solution to Algorithm 1 after coopera-
tion-based iterates. The distributed MPC control law is obtained
through a receding horizon implementation of optimal control
whereby the input applied to subsystem is

(12)

D. Feasibility of FC-MPC Optimizations

Since , there exists a set of feasible, open-loop
input trajectories , such that ,

and sufficiently large. Convexity of ,
and Algorithm 1 guarantee that given a
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feasible input sequence at time , a feasible input se-
quence exists for all future times. One trivial choice for a
feasible input sequence at is ,

. This choice follows from our assumption
that each is nonempty and . Existence of a
feasible input sequence for each subsystem at ensures
that the FC-MPC optimization problem (7), (8) has a solution
for each and all .

E. Initialization

At discrete time , define

(13)

It follows that consti-
tute feasible subsystem input trajectories with an associated cost
function .

F. Nominal Closed-Loop Stability

Given the set of initial subsystem states ,
. Define to be the value of the coopera-

tion-based cost function with the set of zero input trajectories
, , . At time ,

let represent the value of the cooperation-based
cost function with the input trajectory initialization described
in (13). For notational convenience we drop the function
dependence of the generated state trajectories and write

, . The value
of the cooperation-based cost function after iterates is
denoted by . Thus

(14a)

(14b)

At , we have, using Lemma 1, that
. It follows from (13) and Lemma 1 that

(15)

Using the previous relationship recursively from time to time
0 gives

(16)

From (14), we have . Using
(16), gives

. From the previous two cost relationships,

we obtain , which
shows that the closed-loop system is Lyapunov stable [36, p.
265]. In fact, using the cost convergence relationship (15) the
closed-loop system is also attractive, which proves asymptotic
stability under the distributed MPC control law.

Lemmas 1 and 2 can be used to establish the following
(stronger) exponential closed-loop stability result.

Theorem 1: Given Algorithm 1 using the distributed MPC
optimization problem (8) with . In Algorithm 1, let

, . If is stable, is obtained from
(10), and

then the origin is an exponentially stable equilibrium for the
closed-loop system

in which

for all and any .
A proof is given in Appendix A.
Remark 1: If is detectable, then the weaker re-

quirement , is sufficient to
ensure exponential stability of the closed-loop system under the
distributed MPC control law.

G. Examples

Power System Terminology and Control Area Model: For the
purposes of AGC, power systems are decomposed into control
areas, with tie-lines providing interconnections between areas
[37]. Each area typically consists of numerous generators and
loads. It is common, though, for all generators in an area to be
lumped as a single equivalent generator, and likewise for loads.
Furthermore, because AGC operation is limited to relatively
small system disturbances, use of linearized models is standard
[37]. Those modeling simplifications are adopted in all subse-
quent examples. Some basic power systems terminology is pro-
vided in Table I. The notation is used to indicate a deviation
from steady state. For example, represents a deviation in the
angular frequency from its nominal operating value (60 Hz).

Consider any control area , interconnected to
control area through a tie line. A simplified model for
such a control area is given by
Area

(17a)

(17b)

(17c)
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Fig. 1. Performance of different control frameworks rejecting a load disturbance in area 2. Change in frequency�� , tie-line power flow�� , and load refer-
ence setpoints �� ��� .

TABLE I
BASIC POWER SYSTEMS TERMINOLOGY

Tie-line power flow between areas and

(17d)

(17e)

Performance comparison. The cumulative stage cost is used
as an index for comparing the performance of different MPC
frameworks. Define

(18)

where is the simulation horizon. For each example presented
in this paper, the model and controller parameters are omitted
for brevity; they are available in [33].

1) Two-Area Power System Network: An example with two
control areas interconnected through a tie line is considered ini-
tially. A control horizon is used for each MPC. The
controlled variable (CV) for area 1 is the frequency deviation

and the CV for area 2 is the deviation in the tie-line power
flow between the two control areas . From the control area
model (17), if and then .

For a 25% load increase in area 2, the load disturbance
rejection performance of the FC-MPC formulation is evaluated
and compared against the performance of centralized MPC
(cent-MPC), communication-based MPC (comm-MPC), and
standard AGC with anti-reset windup. The load reference
setpoint in each area is constrained between 0.3. In practice,
a large load change, such as the one considered above, would
result in curtailment of AGC and initiation of emergency
control measures such as load shedding. The purpose of this
exaggerated load disturbance is to illustrate the influence of
input constraints on the different control frameworks.

The relative performance of standard AGC, cent-MPC, and
FC-MPC (terminated after one iterate) rejecting the load dis-
turbance in area 2 is depicted in Fig. 1. The closed-loop trajec-
tory of the FC-MPC controller, obtained by terminating Algo-
rithm 1 after one iterate, is almost indistinguishable from the
closed-loop trajectory of cent-MPC. Standard AGC performs
nearly as well as cent-MPC and FC-MPC in driving the local
frequency changes to zero. Under standard AGC, however, the
system takes in excess of 400 s to drive the deviational tie-line
power flow to zero. With the cent-MPC or the FC-MPC frame-
work, the tie-line power flow disturbance is rejected in about
100 s. A closed-loop performance comparison of the different
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TABLE II
PERFORMANCE OF DIFFERENT CONTROL FORMULATIONS W.R.T. CENT-MPC,

��% � �� � � ���� � � ���

Fig. 2. Four-area power system.

control frameworks is given in Table II. The comm-MPC frame-
work stabilizes the system but incurs a control cost that is nearly
18% greater than that incurred by FC-MPC (one iterate). If five
iterates per sampling interval are allowed, the performance of
FC-MPC is almost identical to that of cent-MPC.

Notice from Fig. 1 that the initial response of AGC is to in-
crease generation in both areas. This causes a large deviation in
the tie-line power flow. On the other hand, under comm-MPC
and FC-MPC, initially reduces area 1 generation and

orders a large increase in area 2 generation (the area
where the load disturbance occurred). This strategy enables a
much more rapid restoration of tie-line power flow.

2) Four-Area Power System Network: Consider the four-
area power system shown in Fig. 2. The model for each control
area follows from (17). In each control area, a change in local
power demand (load) alters the nominal operating frequency.
The MPC in each control area manipulates the load reference
setpoint to drive the frequency deviations and tie-line
power flow deviations to zero. Power flow through the tie
lines gives rise to interactions among the control areas. Hence, a
load change in area 1, for instance, causes a transient frequency
change in all control areas.

The relative performance of cent-MPC, comm-MPC, and
FC-MPC is analyzed for a 25% load increase in area 2 and a
simultaneous 25% load drop in area 3. This load disturbance
occurs at 5 s. For each MPC, we choose a control horizon of

. In the comm-MPC and FC-MPC formulations, the
load reference setpoint in each area is manipulated
to reject the load disturbance and drive the change in local
frequencies and tie-line power flows to zero. In
the cent-MPC framework, a single MPC manipulates all four

. The load reference setpoint for each area is constrained
between 0.5.

The performances of cent-MPC, comm-MPC, and FC-MPC
(one iterate) are shown in Fig. 3. Only and are

TABLE III
PERFORMANCE OF DIFFERENT MPC FRAMEWORKS RELATIVE TO CENT-MPC,

��% � �� � � ���� � � ���

shown as the frequency and tie-line power flow deviations in
the other areas display similar qualitative behavior. Likewise,
only and are shown as other load reference
setpoints behave similarly. The control costs are given in
Table III. Under comm-MPC, the load reference setpoints for
areas 2 and 3 switch repeatedly between their upper and lower
saturation limits. Consequently, the power system network is
unstable under comm-MPC. The closed-loop performance of
the FC-MPC formulation, terminated after just one iterate,
is within 26% of cent-MPC performance. If the FC-MPC
algorithm is terminated after five iterates, the performance
of FC-MPC is within 4% of cent-MPC performance. By al-
lowing the cooperation-based iterative process to converge, the
closed-loop performance of FC-MPC can be driven to within
any prespecified tolerance of cent-MPC performance.

3) Two-Area Power System With FACTS Device: In this
example, we revisit the two area network considered in
Section V-G1. In this case though, a FACTS device is employed
by area 1 to manipulate the effective impedance of the tie
line and control power flow between the two interconnected
control areas. The control area models follow from (17). In
order to incorporate the FACTS device, though, (17a) in area
1 is replaced by

and in area 2 by

where is the impedence deviation induced by the FACTS
device. The tie-line power flow deviation becomes

Notice that if , the model reverts to (17). The MPC
for area 1 manipulates and to drive and the
relative phase difference to zero. The MPC
for area 2 manipulates to drive to zero.

The relative performance of cent-MPC, comm-MPC, and
FC-MPC rejecting a simultaneous 25% increase in the load
of areas 1 and 2 is investigated. The closed-loop performance
of the different MPC frameworks is shown in Fig. 4. The
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Fig. 3. Performance of different control frameworks rejecting a load disturbance in areas 2 and 3. Change in frequency�� , tie-line power flow�� , and load
reference setpoints �� ��� .

Fig. 4. Performance of different control frameworks rejecting a load disturbance in area 2. Change in relative phase difference �� , frequency �� , tie-line
impedence �� due to the FACTS device and load reference setpoint �� .

associated control costs are given in Table IV. The perfor-
mance of FC-MPC (one iterate) is within 28% of cent-MPC
performance. The performance of comm-MPC, on the other
hand, is highly oscillatory and significantly worse than that of
FC-MPC (one iterate). While comm-MPC is stabilizing, the
system takes nearly 400 s to reject the load disturbance. With
FC-MPC (one iterate), the load disturbance is rejected in less
than 80 s. If five iterates per sampling interval are possible, the

FC-MPC framework achieves performance that is within 2.5%
of cent-MPC performance.

VI. TERMINAL CONTROL FC-MPC

The terminal penalty-based FC-MPC framework considered
earlier utilizes a suboptimal parameterization of the postulated
input trajectories. Accordingly, performance is infinite horizon
optimal only in the limit as . Otherwise, convergence
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TABLE IV
PERFORMANCE OF DIFFERENT MPC FRAMEWORKS RELATIVE TO CENT-MPC,

��% � �� � � ���� � � ���

achieves performance that is within a prespecified tolerance of a
modified infinite horizon optimal control problem (11). The mo-
tivation behind terminal control-based FC-MPC is to achieve in-
finite horizon optimal (centralized, constrained, LQR [30]) per-
formance at convergence using finite values of .

For terminal control FC-MPC, the unconstrained centralized
feedback law is employed as the terminal feedback law. The
idea is to force the collection of subsystem-based MPCs to drive
the system state to a neighborhood of the origin in which the
unconstrained centralized feedback law is feasible. From [15],
we know that such a neighborhood of the origin is well defined
and can be computed offline. Following the description in [15],
we use to denote the maximal output admissible set
for the overall system . Since ,
and are convex, we have from [15, Th. 2.1] that is convex.
We assume that each is a polytope, i.e.,

. The determination of , in this case, involves the
solution to a set of linear programs. Because is detectable
only (and not observable), is a cylinder with infinite
extent along directions in the unobservable subspace.

Let denote the optimal, centralized linear quadratic reg-
ulator (LQR) gain and let denote the solution to the corre-
sponding centralized discrete steady-state Riccati equation, i.e.,

(19a)

(19b)

in which and
. Conditions for existence of a

solution to (19) are well known [4], [9]. Using a subsystem-wise
partitioning for and gives

...
. . .

. . .
...

...
. . .

. . .
...

The terminal control law for subsystem at time
is, therefore,

. To arrive at the terminal control FC-MPC optimization
problem, we use existing definitions in (8) and redefine

The terminal control FC-MPC optimization problem is then
given by (8), with these modifications. Algorithm 1 is again
utilized for terminal control FC-MPC.

Initialization: To initialize Algorithm 1 for terminal control
FC-MPC, it is necessary to calculate a set of subsystem input tra-
jectories that steers the terminal system state (i.e., the predicted
state at the end of the control horizon of each subsystem-based
MPC) inside . For the initial system state

, such a set of subsystem input trajectories can be
computed by solving a simple quadratic program (QP). One for-
mulation for this initialization QP is described as follows:

(20a)

subject to (20b)

(20c)

in which

...
. . .

. . .
...

...

...
...

...

, with defined in (6), and
defined in (8). The definition of is such that

. The QP (20) is a centralized cal-
culation; distributed versions for this initialization QP can be
derived using techniques similar to those presented here, but
are not pursued in this paper.

Define the steerable set

such that

The set denotes the set of all for which the initialization
QP (20) is feasible for a given . We have . Constrained
stabilizability, therefore, follows.

At each iterate of the terminal control FC-MPC algorithm,
the validity of the terminal set constraint

must be verified. Two approaches are available
for ensuring the validity of the postulated terminal control
law without explicitly enforcing a terminal set constraint. In
the first approach, the value of is altered online to ensure
validity of the terminal set constraint. At each iterate, a sub-
system-based procedure is used to verify the validity of the
postulated terminal control law. If the selected control horizon
is not sufficient to ensure feasibility of the terminal control law,

is increased and the subsystems’ terminal control FC-MPC
optimizations are resolved using the new value of . Strategies
for increasing online to enable efficient implementation have
been investigated in [30] for single MPCs.

Rather than increase online, a second approach may be
adopted. The idea in this case is to restrict the set of permissible
initial states to a positively invariant set in which the terminal
set constraint is feasible for each subsystem .
This positively invariant set depends on the choice of . For
a given , we first construct the steerable set . Next, we
determine the set of all possible combinations of system states
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Fig. 5. Performance of FC-MPC (tc) and CLQR, rejecting a load disturbance in areas 2 and 3. Change in local frequency �� , tie-line power flow �� , and
load reference setpoint �� .

and assumed subsystem input trajectories for which the solution
to the terminal control FC-MPC optimization problem for each
subsystem satisfies the terminal set constraint. Finally, the do-
main of the controller, which is the largest positively invariant
set for which the terminal control FC-MPC control law is sta-
bilizing, is constructed. To construct this invariant set, one may
employ standard techniques available in the literature for back-
ward construction of polytopic invariant sets under constraints
[6], [16], [22]. Space restrictions preclude further development
of either approach in this paper; details of both are available in
[33].

For the nominal case, the set of shifted input trajectories (13),
obtained using the solution to Algorithm 1 for terminal con-
trol FC-MPC at time , is a feasible set of input trajectories at
time . For this case, therefore, the initialization QP (20)
has to be solved only once at . Lemmas 1 and 2 estab-
lished for terminal penalty FC-MPC (see Section V) are also
valid for terminal control FC-MPC. At convergence of the ex-
changed input trajectories, the performance of terminal control
FC-MPC is within a prespecified tolerance of the centralized,
constrained LQR [30], [32] performance. If is stabiliz-
able, and are detectable, and

, the terminal control FC-MPC control law
is nominally asymptotically stable for all values of the iteration
number .

Unstable Four-Area Power Network: Consider the four-area
power network described in Section V-G2. In this case though,
the value of was increased to force the system to be open-
loop unstable. At time 10 s, the load in area 2 increases by
15% and simultaneously, the load in area 3 decreases by 15%.
The load disturbance rejection performance of terminal con-
trol FC-MPC [FC-MPC (tc)] is investigated and compared to
the performance of the benchmark centralized constrained LQR
(CLQR) [30].

TABLE V
PERFORMANCE OF TERMINAL CONTROL FC-MPC RELATIVE TO CENTRALIZED

CONSTRAINED LQR (CLQR) FOR CONTROL OF UNSTABLE FOUR AREA

NETWORK. ��% � �� � � ���� �� ���

Fig. 5 depicts the stabilizing and disturbance rejection perfor-
mance of FC-MPC (tc) and CLQR. Only quantities relating to
area 2 are shown as variables in other areas displayed similar
qualitative behavior. The associated control costs are given in
Table V. For terminal control FC-MPC terminated after one it-
erate, the load disturbance rejection performance is within 13%
of CLQR performance. If five iterates per sampling interval are
possible, the incurred performance loss drops to 1.5%.

VII. DISCUSSION AND CONCLUSION

Centralized MPC is not well suited for control of large-scale,
geographically expansive systems such as power systems. How-
ever, performance benefits obtained with centralized MPC can
be realized through distributed MPC strategies. For distributed
MPC, the overall system is decomposed into interconnected
subsystems. Iterative optimization and exchange of informa-
tion among the subsystems is performed. An MPC optimiza-
tion problem is solved within each subsystem, using local mea-
surements and the latest available external information (from the
previous iterate).

Various forms of distributed MPC have been considered.
It is shown that communication-based MPC is an unreli-
able strategy for systemwide control and may even result
in closed-loop instability. Feasible cooperation-based MPC
(FC-MPC), on the other hand, precludes the possibility of
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parochial controller behavior by forcing the MPCs to cooperate
towards achieving systemwide control objectives. A terminal
penalty version of FC-MPC was initially established. The
solution obtained at convergence of the FC-MPC algorithm
is identical to the centralized MPC solution (and therefore,
Pareto optimal). In addition, the FC-MPC algorithm can be
terminated prior to convergence without compromising fea-
sibility or closed-loop stability of the resulting distributed
controller. This feature allows the practitioner to terminate
the algorithm at the end of the sampling interval, even if
convergence is not achieved. The FC-MPC framework allows
smooth transitioning from completely decentralized control to
completely centralized control. For each subsystem , by setting

in the FC-MPC optimization
problem, we revert to decentralized MPC. On the other hand,
by iterating the FC-MPC algorithm to convergence, centralized
MPC performance is realized. Intermediate termination of the
FC-MPC algorithm results in performance between decentral-
ized MPC and centralized MPC control limits.

Several extensions for the terminal penalty distributed MPC
framework are possible. The proposed distributed MPC frame-
work can be extended to penalize and constrain the rate of
change of inputs. The state for subsystem is augmented with
the input from the previous time step (see [25]). Incorporation
of the rate of change of input penalty results in additional terms
in the FC-MPC cost function and additional input constraints.
All established properties apply however. Details can be found
in [33, Ch. 10]. To ensure closed-loop stability while dealing
with open-loop unstable systems, a terminal state constraint
that forces the unstable modes to be at the origin at the end
of the control horizon is necessary. The control horizon must
satisfy , in which is the number of unstable modes for
the system. The FC-MPC optimization problem of (8) is solved
with an additional coupled input constraint which forces the
unstable modes to the origin at the end of the control horizon.
The details for the terminal penalty-based FC-MPC optimiza-
tion problem for open-loop unstable systems are available in
[33, Ch. 10]. It follows that all iterates generated by Algo-
rithm 1 (solving the modified FC-MPC optimization problem
with coupled input constraints) are systemwide feasible, the
cooperation-based cost function is
a non-increasing function of the iteration number , and the
sequence of iterates converges. An important distinction, which
arises due to the presence of the coupled input constraint,
is that the limit points of Algorithm 1 need not be optimal.
The distributed MPC control law based on any intermediate
iterate is feasible and closed-loop stable, but may not achieve
centralized MPC performance at convergence of the iterates.

Because terminal penalty FC-MPC is reliant on a suboptimal
parametrization of postulated control trajectories, it cannot
achieve infinite horizon optimal performance for finite values
of . In Section VI, a terminal control FC-MPC framework,
which achieves infinite horizon optimal performance at conver-
gence with finite values of , was described. Unlike terminal
penalty FC-MPC, the proposed terminal control FC-MPC for-
mulation also allows the handling of unstable systems without
the need for a coupled input constraint. Consequently for
unstable systems, optimality at convergence can be guaranteed
with terminal control FC-MPC. For small values of , the

performance of terminal control FC-MPC is observed to be
superior to that of terminal penalty FC-MPC. An alternate
strategy for terminal control FC-MPC is to explicitly enforce a
terminal constraint that forces each subsystem-based estimate
of the state vector to be in . For small , this strategy
typically leads to excessively aggressive controller response,
which is undesirable. Enforcing the terminal set constraint
explicitly also introduces a coupled input constraint. For this
formulation, feasibility and stability of the resulting control
law can be shown. Optimality at convergence, however, is not
necessarily obtained. Further details are available in [33].

Examples were presented to illustrate the applicability and
effectiveness of the proposed distributed MPC framework for
AGC. First, a two-area network was considered. Both commu-
nication-based MPC and cooperation-based MPC outperformed
AGC due to their ability to handle process constraints. The
controller defined by terminating Algorithm 1 after five iterates
achieved performance that was almost identical to centralized
MPC. Next, the performance of the different MPC frameworks
was evaluated for a four-area network. For this case, communi-
cation-based MPC led to closed-loop instability. FC-MPC (one
iterate) stabilized the system and achieved performance that
was within 26% of centralized MPC performance. The two-area
network considered earlier, with an additional FACTS device
to control tie-line impedance, was examined subsequently.
Communication-based MPC stabilized the system but gave
unacceptable closed-loop performance. The FC-MPC frame-
work was shown to allow coordination of FACTS controls with
AGC. The controller defined by terminating Algorithm 1 after
just one iterate gave an improvement in performance of around
190% compared to communication-based MPC. For this case,
therefore, the cooperative aspect of FC-MPC was very impor-
tant for achieving acceptable response. Finally, terminal control
FC-MPC was employed for control of an open-loop unstable
four area network. Terminal control FC-MPC, terminated after
five iterates gave performance that was within 1.5% of the
infinite horizon optimal control performance. At convergence,
the performance of terminal control FC-MPC is always within
a prespecified tolerance of the infinite horizon optimal control
performance.

APPENDIX A
TERMINAL PENALTY FC-MPC

Lemma 3 (Minimum Principle for Constrained, Convex Op-
timization): Let be a convex set and let be a convex func-
tion over . A necessary and sufficient condition for to be a
global minimum of over is

A proof is given in [5, p. 194].
Proof of Lemma 1: From Algorithm 1, we know that

(21)
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Therefore, from the definition of (Algorithm 1), we have

By convexity of

(22)

in which equality is obtained if
.

Proof of Lemma 2: Since the level set

is closed and bounded (hence compact), a limit point for Al-
gorithm 1 exists. We know that is the unique so-
lution for the centralized MPC optimization problem (11). Let

. Define .
Assume that the sequence , generated by Al-
gorithm 1, converges to a feasible subset of the non-optimal
level set

Since is strictly convex and by assumption of non-opti-
mality . Let be generated by
Algorithm 1 for large. To establish convergence of Algorithm
1 to a point rather than a limit set, we assume the contrary and
show a contradiction. Suppose that Algorithm 1 does not con-
verge to a point. Our assumption here implies that there exists

generated by the next iterate of Algorithm
1 with . Consider the set of op-
timization problems

(23a)

(23b)

(23c)

We have in which
. By assumption, there exists at

least one for which . WLOG let . By
definition, . It
follows that . Since

. Using convexity of , we
have

in which the strict inequality follows from for at least
one . Hence, a contradiction. Suppose now that

.
From uniqueness of the optimizer,

. Since , generated
using Algorithm 1, converges to , we have

(24a)

(24b)

(24c)

From Lemma 3

Define and
, . We have, from our

assumption , that
for at least one index .

A second-order Taylor series expansion around
gives

...
...

(25)

Using (25) and optimality of gives

(26)

in which is a positive definite function (from
(25)). We have from (26) that , which im-
plies . It follows, therefore, that
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. Using the previous relation
gives . Hence,

.
Lemma 4: Let the input constraints in (8) be specified in terms

of a collection of linear inequalities. Consider the closed ball
, in which is chosen such that the input constraints

in each FC-MPC optimization problem (8) are inactive for each
. The distributed MPC control law defined by the

FC-MPC formulation of Theorem 1 is a Lipschitz continuous
function of , for all .

A proof is available in [33, Ch. 10].
Proof of Theorem 1: Since and is stable,

[31]. The constrained stabilizable set for the system is
. To prove exponential stability, we use the value function

as a candidate Lyapunov function. We need to show
[36, p. 267] that there exists constants , such that

(27a)

(27b)

in which .
Let be chosen such that the input constraints remain in-

active for . Such an exists because the origin is Lya-
punov stable and . Since is compact

, there exists such that . For
any satisfying .
For , we have from Lemma 4 that
is a Lipschitz continuous function of . There exists, there-
fore, a constant , such that

. Define , in which
and independent of . The previous definition gives

and all . For , define
.

By definition, . We have

. Similarly,

define ,
. By definition . Since is stable, there

exists , such that [19, Corollary 5.6.13, p.
199], in which . Hence

since .
Let and

. Then

in which
.

Also, . Furthermore

(28)

which proves the theorem.

REFERENCES
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