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Abstract

Parameter estimation is an important tool in system
modelling. However parameter estimation is difficult
in many real-world application where continuous non-
linear dynamics interact with discrete-event dynamics.
Nonlinear least-squares algorithms have been success-
fully applied. This paper establishes a connection be-
tween parameter identifiability and ill-conditioning of
the least-squares algorithms. It is shown that a set of
parameters is only identifiable if the trajectory sensi-
tivities corresponding to those parameters are linearly
independent. The importance of an appropriate choice
of measurements is established.

1 Introduction

Parameter estimation is an important tool for develop-
ing and validating system models. Applications abound
wherever it is important to match model predictions
with observed behaviour. For example in power sys-
tems, system-wide measurements of disturbances are
frequently used in post-mortem analysis to gain a better
understanding of system behaviour [1, 2].

System identification concepts are well established for
linear systems [3]. However, few real-world systems
are linear. In fact, it is becoming more common to
find applications where behaviour is governed by in-
teractions between nonlinear continuous dynamics and
discrete-event dynamics. Power systems again provide
an important example. Components such as electric
machines exhibit nonlinear continuous dynamics, whilst
relay-driven components like tap-changing transformers
display discrete-event behaviour. Such systems have be-
come known as hybrid systems.

Parameter estimation for hybrid systems is a difficult
task. A common approach has been to formulate the
estimation problem as a nonlinear least-squares mini-
mization [4], which is solved using the Gauss-Newton
algorithm [5, 6, 7, 8]. That approach often works well,
at least for finding local estimates of parameters. How-
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ever it fails when the Jacobian, formed from trajectory
sensitivities, is not full rank or is ill-conditioned. This
paper establishes a connection between rank deficiency
and parameter identifiability.

The paper is organized as follows. Section 2 provides
background to a hybrid system model, and trajectory
sensitivities. These sensitivities form the basis for a pa-
rameter estimation algorithm summarized in Section 3.
The main results of the paper, on parameter identifia-
bility, are presented in Section 4. Conclusions are given
in Section 5.

2 Background

2.1 Model

Hybrid systems generally exhibit a mix of continuous
time dynamics, discrete-time and discrete-event dynam-
ics, switching action and jump phenomena. It is shown
in [9] that such systems can be modelled by a set of
switched differential-algebraic equations, coupled with
equations to describe state resetting, 1.e.,

z = f(z,9) (1)
0=9g"9z,y) (2
(i-) .
g Nz,y) Y4 <0
0 = . ’ = 1’ ceey d 3
{ g (z,y)  Yai>0 ®)
zt =hi(z",y7) Yej =0 je€{l,..,e} (4)
where
T f T
= z ? i = 0 ’ EJ = h’]
A 0 A
and

e z are the continuous dynamic states,
e z are discrete dynamic states,
e y are algebraic states,

e ) are parameters.

133



The model can capture complex-behaviour such as hys-
teresis, non-windup limits and rule-based systems [9].

In this model, the parameters A form part of the ex-
tended state z. This allows a convenient development
of trajectory sensitivities, which are used in the parame-
ter estimation algorithm and described in Section 2.2.
To ensure that parameters remain fixed at their initial
values, the corresponding differential equations (1) are
defined as A = 0.

Away from events, system dynamics evolve smoothly
according to the familiar differential-algebraic model

z = flz,y) (5)
0 = g(z,9) (6)

where g is composed of ¢{® together with appropriate
choices of g¢*~) or g{*+), depending on the signs of the
corresponding elements of y4. At switching events (3),
some component equations of g change. To satisfy the
new g = 0 equation, algebraic variables y may undergo
a step change. Reset events (4) force a discrete change
in elements of z. Algebraic variables may again step to
ensure g=10is always satisfied.

We define the system flow as
_ ¢£(§o:t) _ :’E(t)
»¢(§0at) = [ ¢y(§0,t) ] = [ y(t) ] (7

where z(t) and y(t) satisfy (1)-(4), along with initial
conditions,

$z(Zo,t0) = Zg (8)
9(zo, #y(Zo, t0)) = 0. ©

2.2 Trajectory sensitivities

Trajectory sensitivities provide a way of quantifying the
variation of a trajectory resulting from (small) changes
to parameters and/or initial conditions [10]. To obtain
the sensitivity of the flows ¢ and ¢, to initial condi-
tions z,, and hence to parameter variations, the Taylor
series expansion of (7) is formed. Neglecting higher or-
der terms gives

Az(t) = Bz, Azy =z, (t)Azg (10)
) = Bngy =i 082 ()

It is important to keep in mind that z; incorporates
parameters A, so sensitivity to g, includes sensitivity
to A\. Equations (10) and (11) describe the changes
Az(t) and Ay(t) in a trajectory, at time t along the tra-
" jectory, for a given (small) change in'initial conditions
Az, = [Azh Az AMN]'. The time-varying partial
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derivatives z, and Yz, are known as trajectory sensitiv-
ities. A detailed investigation of these sensitivities can
be found in [11].

3 Parameter Estimation

The algebraic state corresponding to a measurement se-
quence m will be denoted §. The estimation process
involves varying a subset of parameters  to obtain the
best match between the sequence m and the flow §(2)
provided by the model (7).

The model produces the flow §(0,t) for all t > t5. But
the samples in the sequence m are measured at certain
time instants. Therefore the model is sampled at each
time instant tx, k =0,1,... , g, resulting in the sequence
90(8),91(6), . .. ,¥q(0), where §(0) = 3(0,tx). The aim
is to determine the value of 6 that makes the model

response i (6) closest to the measured sample my for
each k.

Let the mismatch between the measured value and the
model output at each sample time be

ek(o)zijk(e)_mk k=0,1,...,q
or in vector form
e(8) = §(6) - m (12)
where
e(6) = leo(8) er(8) ---eq(O)]f
§0) = [50(8) $1.(60) -+ F (O
m = [mogmy -+ mq]t.

The desired value of @ minimizes the least squares cost

q
Vo) = 2 3 |ek@F = Sle@I3.  (19)
2 = 2

The problem has been reduced to a nonlinear least
squares formulation that can be solved using the Gauss-
Newton method [4]. This is an iterative approach which
is based on linearizing (@) around the point 67,

&(6,6%) =e(0j)+a—eézﬂ(9—0j). (14)
From (12) it follows that
e
% - - yowg’tl) =5) (19
Jo(67,t,)



where 7y is composed of the columns of trajectory sensi-
tivities §iz, that correspond to the subset of parameters
6. Because S(#7) is formed from @y, evaluated at time
steps 2,11, ... ,tq, it shall be referred to as the sensitiv-
ity matriz.

Assuming S(67)!S(¢?) is well-conditioned, Gauss-
Newton minimization of (13) is achieved through the
iterative scheme

S(69)tS(67)v = S(6%)te(69)
= S@)@O) ~m)  (16)
i+l = 97 — oiy (17)

where o’ is a scalar that determines the step size. The
invertibility of S5 relates directly to identifiability, and
is the subject of Section 4. Equation (16) could be solved
by inverting $*S, however algorithms that are faster and
more numerically robust are available [12].

An estimate of 8 which (locally) minimizes the cost func-
tion V() is obtained when A#? = 69+ — 67 s close to
zero. Note that this procedure will only give local min-
ima though, as it is based on a first-order approximation
of e(9). However if the initial guess for 8 is good then a
local minimum is sufficient.

4 Identifiability

The parameter estimation procedure (16)-(17) requires
the matrix S*S to be invertible at each iteration. If S*S
is not invertible, or equivalently if $ does not have full
rank, then estimation is not possible. This observation
is now formalized in terms of model identifiability.

In discussing identifiability it is important to clearly de-
fine the concept of a model. If the hybrid system is
described by the DAD representation (1)-(4) then the
following definition can be stated:

Definition 1 (Models) A model is a triple

M =[f(z,y),
{99z, v), 6" (z,v), 9"z, ), vai,i = 1,...,d},
{.}_I’](Eyy)y ye,j,j = 1, ey e}]

Models are parameterized by initial conditions z,. As-
sociated with each parameterized model M(z,) is the
flow ¢(z,,t). Model equality can therefore be defined as
follows.

Definition 2 (Model equality) Two models M) and
M@ are equal, i.e., MV (z}) = M () if

oW (zd,2) = ¢ (zd,t)  Vtto.

Generally we are not interested in estimating all initial
conditions z,. (Recall that the parameters A are in-
corporated into z,.) More commonly only a subset ¢
of initial conditions (parameters) are required to be es-
timated. Thererfore we shall assume that models are
parameterized only by 6, i.e., model M(6) gives rise
to the flow ¢(8,t). It is now appropriate to define the
concept of local identifiability in terms of the unknown
parameters 6.

Definition 3 (Local identifiability) A model M is
locally identifiable at 8* if there exists an € > O such
that

M) =M(6*), 6€pB,e) = 6=06"
where 5(6,€) denotes an e-neighbourhood of 6*.

In terms of flows, this definition states that the model
M is locally identifiable if

@(0,t)=¢(8%,t),Vt>2ty, = 6=60"
or taking account of the local nature of the definition,

P(6,t) — p(6%,1) = Ag(t) =0 Vi >tg
=60-60*=A0=0. (18)

From (10)-(11) and (7) it can be seen that

ot = [ 5200 ] - [ 209 ao

where z, and yp are appropriate columns of Ty and yg,

respectively. Consider sampling A¢(t) at timesteps ty,
k =0,1,...,g and let

Ag(to)

A
AG= ¢:(t1)
Ad(ty)
Then

BEAORR
yo(to) |
zo(t1) |

Yo(t1) | | A6 =SA6. (19)

?Za(.tq) ]
L yo(tq) 1

A lemma regarding local identifiability follows directly.

Lemma 1 (Local identifiability)
“Ad=0 = Af=0
& S has full rank.

Proof: Consider A¢tAd = AGESISAS.



= If StS is not full rank, then there exists a A9 # 0
such that AG*StSAS = 0, i.e., A¢g = 0. Therefore,
for Ag = 0 = AO = 0, S'S must be full rank.
Hence S has full column rank.

< If S has full column rank, then S!S has full rank.
Hence A8*S*SAG = 0 if and only if Af = 0. So if

A¢ =0 then A8 = 0.
a

The following theorem links the ideas together.

Theorem 1 (Local identifiability) A model M is
locally identifiable at 8* iff S has full rank.

Proof: Using (19) together with (18) and Lemma 1
proves the theorem.
m}

It is important to note that the definition of local iden-
tifiability says that

¢1 (0, t) = ¢1 (0* 3 t)
and ¢2 (0, t) = ¢2(9*, t)
. . = 0=0*
and : :
and  Gnym(0,t) = Gnym(0*,t)

where ¢; refers to the ith component of ¢. The contra-
positive of the definition is that

¢1 (9, t) #
or ¢2 (07 t) :/é

¢ (9*1 t)

6*,t
0#:0* N 452('3)
or .

of Gnim@8) # Gnim(®0).

Hence it is possible for a locally identifiable model to
have ¢;(0,t) = ¢;(6*,t) when 8 # 6* for one or more
i, provided ¢;(0,t) # ¢;(6*,t) for at least one j. In
other words, some components of the flow may be com-
pletely uninfluenced by the parameters 8. However for
the model to be identifiable there must be at least one
component that is influenced by 4.

This concept is important because it confirms that
model identifiability does not guarantee identifiability
based on any arbitrary set of measurements. (Recall
that measurements correspond to components of the
flow ¢). However it does guarantee that a set of mea-
surements can be found such that the model is identifi-
able from those measurements.

The states (or components of ¢) corresponding to mea-
surements are given by . Therefore, referring to (15),

Ady = Aj = SAH

where S is constructed from appropriate rows of &, with
- each component of ¥, i.e., each measurement, introduc-
ing ¢ + 1 rows into S. Earlier it was shown that model
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identifiability was associated with the rank of S. In the
same way, identifiability from measurements is related
to the rank of S.

Theorem 2 (Identifiability from measurements)
A model M is locally identifiable at 6* from measure-
ments § iff S has full rank.

Proof: Follows the same argument as the proof of The-
orem 1. )
0

This allows another useful result.

Lemma 2 (Identifiability from measurements) If
a model M is not locally identifiable at 6* then it is not
identifiable from any set of measurements.

Proof: If a model M is not locally identifiable then S
does not have full rank. But 5 is constructed from rows
of 8§ so S cannot have higher rank than that of S, no
matter which rows (measurements) are chosen. Hence
S cannot have full rank. By Theorem 2, the model is
not identifiable for any choice of measurements.

0

These results indicate the importance of the choice of
measurements. An inappropriate choice could result in
the model not being identifiable, in which case the para-
meter estimation process will fail. (This failure appears
as a very small pivot when attempting to factorize the
singular matrix StS.)

This discussion of identifiability also highlights the case
where a parameter may have only a small influence on
the flow corresponding to a measurement. In that case
S may have full rank, but §'S is ill-conditioned. This
problem can often be overcome by a better choice of
measurements. However if the measurement set cannot
be adjusted, numerically robust algorithms for factoriz-
ing the nearly singular S*S should be used {12].

Theorem 2 motivates the use of trajectory sensitivities in
selecting an appropriate measurement set. The Jacobian
S is composed of sampled trajectory sensitivities, which
are available from simulation. The conditioning of S can
be maximized, i.e., the best measurement set chosen,
by selectively adding (or removing) trajectory sensitiv-
ities that correspond to available measurements. This
same process can assist in determining new measure-
ments that would further improve identifiability. These
ideas are explored in [13].

Note that the discussion of identifiability is limited to
local identifiability. This is a consequence of Gauss-
Newton minimization ignoring the higher order terms
in the Taylor series expansion of ¢. As justification, it



is assumed that the initial guesses for unknown parame-
ters are close to their actual values. We cannot however
reach any conclusions regarding global identifiability.

5 Conclusions

Parameter estimation of hybrid system models can be
formulated as a nonlinear least-squares minimization.
Solution of this minimization using Gauss-Newton in-
volves the (effective) inversion of a Jacobian matrix
formed from trajectory sensitivities.

It is shown in the paper that the Jacobian will be full
rank (nonsingular) if the model is identifiable from avail-
able measurements. Parameter estimation is therefore
possible (though convergence is not guaranteed.) How-
ever if the model is not identifiable from available mea-
surements, then the Jacobian will be singular, and the
estimation process will fail.

Trajectory sensitivities can be used to guide the selec-
tion of measurements that maximize the conditioning of
the estimation process.
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