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Lyapunov Functions for Multimachine Power
Systems with Dynamic Loads

Robert J. Davy and Ian A. Hiskens,Senior Member, IEEE

Abstract—This paper develops Lyapunov functions for power
systems which have dynamic reactive power loads. These func-
tions are extensions of earlier Lyapunov functions derived for
structure preserving power system models having static loads. In
order to obtain strict Lyapunov functions, the transient response
of the dynamic load must have a logarithmic dependence on
voltage. A Lyapunov function is initially generated using a “first
integral” analysis. A Popov criterion analysis is then undertaken
for comparison. The developed Lyapunov functions enable the
investigation of the interaction between generator (angle) and
load dynamics in multimachine power systems.

Index Terms—Load dynamics, Lyapunov functions, power sys-
tem stability.

I. INTRODUCTION

SIGNIFICANT progress has been made over the last few
decades in the development and use of Lyapunov (energy)

functions for multimachine power systems [11], [30], [31].
Energy functions have been proposed for power system models
which include the full network topology [14], [26], [27], con-
stant real power and static voltage dependent reactive power
loads [20], higher order generator models [2], [28], and FACTS
devices [9], [22], [29]. The focus of these developments
has been the assessment of generator (angle) stability, i.e.,
determining whether all generators in the system remain in
synchronism following a disturbance.

Energy functions provide a direct approach to such assess-
ment. First, a “critical” value of energy is determined [3],
[4]. This critical value provides an estimate of the maxi-
mum amount of energy that can be gained by the system
during a disturbance without the system losing stability. If
the system acquires less energy, stability will be guaranteed.
However if the system acquires a greater amount of energy,
it may be unstable. Stability assessment therefore reduces
to a comparison of the critical energy with the energy of
the system at the beginning of the postdisturbance period.
The advantage of energy function methods is that stability
can be determined without the need to obtain the system’s
postdisturbance trajectory.
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While energy function techniques have been shown to be
useful for angle stability assessment, little work has been
undertaken in the development of energy function ideas for
voltage stability (voltage collapse) assessment. Generically,
the voltage collapse process involves an initiating disturbance
which reduces the ability of the power system to supply
the load demand. Voltages fall, causing an initial reduction
in load demand. However load demand subsequently (at
least partially) recovers, leading to further overloading of the
weakened system, and further depression of voltages. Hence
the voltage collapse process is driven largely by the dynamics
of load recovery, rather than generator dynamics. Therefore
energy functions must capture these extra dynamics.

Some initial ideas for energy functions of load systems were
proposed in [18] and [19]. However these energy functions
did not include generator dynamics. As explained in [21],
while voltage collapse may be largely load driven, there is
often some interaction between angle and voltage dynamics.
This paper therefore proposes an energy function which takes
account of both generator and load dynamics. One of the
important features of voltage collapse is the limiting of reactive
power which can be supplied from generators and other
devices such as static var compensators (SVC’s). It is shown
in [22] how this limiting can be rigorously incorporated into
energy functions. Those ideas are directly applicable to the
energy functions proposed here.

Lyapunov functions for multimachine systems (without load
dynamics) have been obtained through the use of a number
of techniques. A first integral approach has been used for
undamped systems, see for example, [5], [31], [32]. This is
a somewhatad hoc method, but has yielded some useful
results. A more general approach to establishing Lyapunov
functions is based on the multivariable Popov criterion. This
approach follows from work of Anderson [1], and establishes
Lyapunov stability for linear systems with nonlinear feedback.
The resulting Lyapunov function has the Luré-Postnikov form.
This method was used in a power systems context by Willems
for the reduced network model [34], and by Hill and others
for the structure preserving model [12], [14].

The paper is structured as follows. Section II provides
background to the structure preserving power system model.
The center of angle (COA) formulation is developed. The
dynamic load model is established. First integral analysis
is undertaken in Section III to obtain a Lyapunov function.
The Popov criterion in then used in Section IV to provide
a systematic development of the energy function. Section V
uses the Popov criterion to establish energy functions for
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the machine reference angle model of the power system.
Connections to gradient system ideas are made in Section VI.
Also an extension to the dynamic load model is considered.
Examples are presented in Section VII. Conclusions are drawn
in Section VIII.

II. M ODELING

A. System Structure

The usual assumptions underlying the structure preserving
model of the power system shall be made for convenience. The
first of those assumptions is the use of the classical machine
model for synchronous machines. Such machines are therefore
represented by a constant voltage in series with the transient
reactance.

Let the power system consist of buses, with generators
attached to of the buses. Hence there are load buses
with no generation. The power system is augmented by
fictitious buses representing the generator internal buses. The
total number of buses in the augmented network is therefore

.
The network is assumed to be lossless, so all lines are

modeled as series reactances. The bus admittance matrix
is therefore purely imaginary, with elements .

Let the complex voltage at theth bus be the (time varying)
phasor where is the bus phase angle with respect to
a synchronously rotating reference frame. The bus frequency
deviation is given by . Define

where for with being the
(constant) voltage magnitude of the internal generator bus.

Let and denote the total real and reactive power
leaving the th bus via transmission lines. Then

(1)

(2)

Define

where subscripts and refer to -vectors and -vectors,
respectively.

Synchronous machines are assumed to obey the usual swing
equations

(3)

where are the machine inertia, damping constant
and mechanical power, respectively. In the center of angle
analysis it will be assumed that all machine damping constants
are zero. However damping will be allowed in the analysis of
the machine reference angle model.

Fig. 1. Generic load response to a step in voltage.

B. Load Modeling

In the development of strict Lyapunov functions of the form
commonly used in power system analysis, it is necessary to
assume real power demand is composed of a constant com-
ponent and a frequency dependent component [14]. Therefore
we shall assume real power demand is given by

(4)

Fig. 1 shows the generic behavior of aggregate reactive
power demand in response to a step change in voltage. It
has been observed [25] and analytically justified [15] that in
response to a step reduction in voltage, load demand falls
quickly, then recovers to a new steady-state value. The aim
of this paper is to develop Lyapunov functions which capture
that form of response. A model for this dynamic recovery
behavior was proposed in [15]

(5)

(6)

for . This model gives a steady-state reactive
power demand of . We shall assume for now that

is a constant. This makes the analysis clearer. However
this assumption is relaxed in Section VI-B, where we show
that can be voltage dependent.

The initial transient step change in the reactive power
demand is described by . Typically this transient load
characteristic is a polynomial or exponential function of volt-
age. However to establish Lyapunov functions, must
take the form

(7)

where and are positive constants. Note though that the
ability to choose and independently means that ‘normal’
voltage dependent functions can be approximated (at least
locally) using this logarithmic form. To illustrate, consider
a conventional transient load characteristic .
This can be locally approximated around the operating point

1.04 pu by the logarithmic load characteristic
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Fig. 2. Conventional transient load characteristic and a logarithmic approx-
imation.

Fig. 3. Load reactive power for conventional and logarithmic characteristics
following a large disturbance.

0.8634 , i.e., 0.8634 and 0.6301. Fig. 2
shows a comparison of the two load characteristics. Variations
in reactive power load following a typical large disturbance
are shown in Fig. 3.

For later analysis it is useful to define

(8)

so that

(9)

Establishing power balance at the load buses gives the
power flow equations

(10)

(11)

for .

C. Center of Angle (COA) Formulation

Power systems possess translational symmetry because bus
phase angles are only defined relative to other phase
angles. It is therefore convenient to establish a reference angle.
Initially we shall use a weighted average angle, called the
center-of-angle (COA), as the reference. In establishing this
center of angle formulation, it is assumed that all generator
and load damping is zero. In Section V-A, a machine angle
reference formulation shall be developed. In that case, there
is no restriction on damping.

The COA of an -machine system is defined as

(12)

where . It follows that

(13)

The machine rotor angles and bus phase angles referred to the
COA are

(14)

Define

where subscripts refer to load and generator buses, respec-
tively. Equation (14) gives

for . Summing the swing equations (3) over all
machines (with ), and noting that gives

It is common to assume that . The swing equations
(3) can then be written in the COA reference frame as

(15)

(16)

where is the COA form of (1). Similarly
refers to the COA form of (2).

D. System Model

Combining the machine swing equations with the load
model and power balance equations gives the singularly per-
turbed form of the COA structure preserving model

(17)

(18)

(19)

(20)
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where

The equations are singularly perturbed through the introduc-
tion of the term into the real power balance equations for
load buses, and the term into the reactive power balance
equations for load buses. These singular perturbations are not
required for the first integral analysis of Section III, and in that
case are set to zero. However they are required for the later
Popov criterion analysis, though they are set to zero in the
final Lyapunov function. (Note that in a sense the term
can be physically interpreted as load damping. However recall
that the COA formulation required load damping to be zero.
The machine angle reference formulation of Section V has
no such requirement of zero load damping. Therefore in that
formulation can be validly interpreted as load damping.)

For later analysis, it is convenient to define

and vector functions

(21)

(22)

III. FIRST INTEGRAL ANALYSIS

Our initial approach to constructing a Lyapunov function is
to use first integral analysis. A clear outline of the first integral
analysis is given in [31] and [32]. Basically the (nonsingu-
larly perturbed) system equations are scaled appropriately and
summed together. The procedure given in [31] and [32] will
be followed here.

The first step is to multiply the reactive power balance
equations (11) by , taking into account (2)

(23)

Multiply the swing equations (16) by , taking
account of (1)

(24)

Multiply the real power equations (10) by, taking account
of (1)

(25)

Multiply (5) by giving

(26)

Sum (23) over all the load buses. Since at all generator
internal buses, the summation involving terms can be
performed over all buses. Hence, using (6) we obtain

i.e.,

(27)

Sum (24) over the machine equations

(28)

Sum (25) over the real power flow equations

(29)

Sum (26) over the load buses

(30)
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Adding (28) and (29) gives

If we add this equation to (27) and (30), we obtain

It follows via integration of the left-hand side (LHS) that

(31)

The right-hand side (RHS) of (31) follows from (5) and (9).
Integrating the LHS of (31) from where

and results in the energy function

(32)

The last summation of (32) can be simplified by noting that

. This gives

The energy function then becomes

(33)

From (31) it can be seen that is negative semidefinite.
Assume that 0 for all . Then from (31), 0
for , i.e., for all buses at which there
are dynamic loads. Equations (5) and (6) therefore imply
that voltage magnitudes and reactive power loads at those
buses are constant. By definition, reactive power loads at
buses are constant. Also, real power
loads at all load buses are constant. Therefore when ,
solutions satisfy steady-state power balance equations.
Generically, because are constant, then

must also be constant, so the system is in steady-state.
Therefore there exists no nontrivial trajectory over which
0. This means that the function can be used to establish the
stability properties of an equilibrium point. If for example
is positive definite about the equilibrium point then that point
is asymptotically stable. Conditions for positive definiteness
are examined in Section IV-C.

It should be remembered that can only be a Lyapunov
function if has the form given by (7). This is because
of the mathematical constraints involved in formulating. It
was necessary to obtain a path-independent integral on the
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LHS of (31), whilst maintaining a nonpositive expression on
the RHS.

IV. POPOV CRITERION ANALYSIS OF THE COA MODEL

A. Stability Criterion Background

The development of Lyapunov functions using the Popov
stability criterion is based upon establishing the system equa-
tions in the form

(34)

The transfer function of the linear part of the system is

(35)

Consider the modified transfer function

(36)

where does not give any pole-zero cancellations
with , and and . Based on results of [1],
[12], and [13], if is positive real then there exist real
matrices , and with positive definite symmetric,
such that

(37)

(38)

(39)

The Lyapunov function subsequently generated is

(40)

The derivative of this function along system trajectories is

where and .

B. Lyapunov Function Development

In order to match the system equations (17)–(20) to the
form (34) we define

The transfer function then has a block diagonal struc-
ture, with the diagonal blocks given by

We require the transfer function to be positive real.
Let

Conditions were established in [13] which ensured was
positive real for the static load case. Those conditions were

0 and 0. In addition to these conditions we require
that the transfer function

be positive real. This is satisfied if the transfer functions

are positive real. It can be shown that

Hence, is positive real for any 0 and 0. It
will be shown in Section IV-D that it is necessary also to take

.
If was a minimal state-space representation of

, the Popov criterion would imply the existence of matri-
ces and which satisfy (37)–(39). For the COA model,
minimality is not satisfied, so we assume their existence.
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The rigorous development of Lyapunov functions for the
COA model is documented in [6]. That analysis leads to

In obtaining and , it was convenient to let .
An algebraic Riccati equation was solved to find the unique
solution for .

The Lyapunov function candidate developed from the Popov
criterion analysis is therefore given by

(41)

In the system model (17)–(20), the singular perturbations
and were introduced on the power balance equations so
that the model took on the differential equation form required
for the Popov criterion analysis. Having obtained the desired
Lyapunov function candidate, we shall now allow 0 and

0 in (17)–(20) and in (41). Also, with 0 it can be
seen from (41) that acts as a scaling factor. Without loss of
generality, we can therefore let 1. The resulting function

(42)

can be interpreted as a Lyapunov function candidate for the
corresponding differential-algebraic system [16], [17].

C. Validity of the Lyapunov Function

The precise conditions required for the Popov stability
criterion have not been met exactly. There may be pole-
zero cancellation between and , and
is not (globally) strictly passive. Also, the COA model is not
minimal. Therefore it is important to check that the function
(42) satisfies Lyapunov function properties. The first property
relates to the (local) positive definiteness of the function.

Lemma 1: The function given by (42) is locally
positive definite in a neighborhood of the equilibrium of
the system (17)–(20) if the matrix

evaluated at the equilibrium point is positive definite.
The proof of this lemma follows immediately from similar

results in [7] and [17].
Notice that is positive definite iff

(43)

is positive definite. But is the Jacobian of the equations
describing equilibria of the system (17)–(20). Further, because
the principal diagonal submatrices of a positive definite matrix
are themselves positive definite, it follows by rearranging rows
and columns that can only be positive definite if
is positive definite, and if

is positive definite. Matrix is the Jacobian of (scaled)
power flow equations, in which the reactive power demand
is effectively given by the transient characteristic [18],
[23], i.e.,

at an equilibrium point. Hence the subscript.
The following result also establishes a connection between

the positive definiteness of and the “steady-state” Jacobian
.
Theorem 2: is positive definite iff the Jacobian

(44)

is positive definite, where .
The proof of this theorem is given in Appendix I.
The matrix is the Jacobian of the power flow equations

in which reactive power demand is given by the steady-state
values , i.e., the normal power flow Jacobian. Hence we
can conclude that at equilibrium points where is positive
definite, and will also be positive definite, and the
Lyapunov function (42) will be (locally) positive definite.
This condition on corresponds to local regularity of the
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equilibrium point [18], and is generally satisfied at normal
operating points. Further, the positive definiteness ofrelates
to conditions established in [18] for small disturbance stability
of load systems.

The second condition which must be checked to ensure the
validity of the Lyapunov function is that the derivative of
the Lyapunov function along trajectories is locally nonpositive
about the operating point. This derivative is given by

(45)

where and .
With 0, the last term in this equation evaluates to

In general, to ensure this term remains nonpositive we require
0. In the development of the Lyapunov function

candidate, we arbitrarily set 0. We have now established
that that condition is mandatory.

Consider trajectories along which . Then from (45)

(46)

Consider initially the singularly perturbed system, with
. Then (46) implies

(47)

(48)

(49)

Substituting and into (49) gives

So , and hence . Substituting (47) and (48) into
the system model equations (18), (20) results in and

. This implies and . It follows from
an argument similar to that presented at the end of Section III
that . Hence .

In the differential-algebraic (DA) system which results when
and , (47) and (48) are satisfied explicitly.

Equation (49) again follows from (46), so , and
. In this case we

cannot state directly that and . However
the same argument as presented at the end of Section III
allows us to conclude that generically only at
isolated equilibria. The positive-definiteness of the DA energy
function is inherited from the energy function for the singularly
perturbed system, since the function is the same except for the
additional constraints (47) and (48).

In both the DA and singularly perturbed cases, under certain
generic conditions we can conclude that implies

. Therefore if

is positive definite, it follows from LaSalle’s Invariance
Theorem [33] that is asymptotically stable. The formal
proof is similar to a result presented in [13]. (Recall that the
singularly perturbed system with COA coordinates does not
have a physical interpretation. However the energy function
for the DA system may be used for stability assessment.)

The set of Lyapunov functions (41) generated in Section IV-
B was derived under the assumption 0. However, as
we saw above, that condition was necessary to ensure
0. Further, the free parameterwas only a scalar multiplier
which could be factored from the functions. Therefore we
conclude that there is only one Lyapunov function which may
be generated in this way for the COA model. The damping
provided by the dynamic loads does not appear to give any
extra freedom in forming a Lyapunov function. (This is in
contrast with the case of machine damping where the damping
introduces some freedom in the Lyapunov function. Section V-
B considers this case.)

D. Conditions for Integral Path-Independence

The Lyapunov function integral term

is path-independent iff the following conditions hold:

and are symmetric

and

Due to the structure of and , all of these conditions are
satisfied if . Hence our earlier requirement
that .

E. Evaluating the Lyapunov Function

The desired Lyapunov function (40) is composed of a
quadratic term and an integral term. The quadratic term was
given in (42). The integral term

shall now be evaluated. It was shown in Section IV-D that
this integral is path-independent. We shall therefore evaluate
it by integrating with respect to one variable at a time, whilst
keeping all other variables constant. Therefore

(50)
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The first integral of (50) was evaluated in [13] and [14] as

The second integral is zero. The third integral can be written

(51)

The first term of (51) was evaluated in [13] and [14]. The
expression (51) becomes

When these integral terms are added with the quadratic
terms of (42), we obtain the Lyapunov function

(52)

This Lyapunov function is exactly the same as the function
(33) produced from first integral analysis. (The summations in
(33) and (52) are expressed slightly differently though.)

It follows that given by (45) must be the same as for the
first-integral analysis (31). Consider (45) and (46), recalling
that . With , matrices and were
evaluated as

For the DA system, functions and are identically
zero. So by making use of the load model (19) and substituting
into (45) it follows that

which is precisely the desired result.

V. POPOV CRITERION ANALYSIS OF

THE MACHINE REFERENCEMODEL

The COA model studied previously is convenient for the
purposes of analysis. However the machine angle (MA) ref-
erence model is in a sense a more natural representation of

the power system. In the MA model, all angles are referred to
the angle of the th machine, i.e., the th bus, rather than to
a fictitious center of angle. Another benefit of the MA model
over the COA model is that it allows for generator and/or
load damping to be nonzero. The MA model tends to be more
commonly used.

In [5], [13], [14], a Popov criterion analysis was undertaken
for the machine reference model with static loads. It was found
that if generator damping is present, there is some freedom in
the choice of Lyapunov function. A similar analysis will be
undertaken in this section for the case where reactive power
loads exhibit dynamic behavior.

A. Machine Reference Model

In the machine reference model, all angles are referenced
to the th bus angle, i.e., . We therefore define

where refers to a matrix with all elements equal
to 1. (In cases where the dimensions are unambiguous, the
subscripts will be dropped.) Matrix is partitioned so that
is an matrix. We then define

so that

Also define as the MA forms of (1),
(2), respectively, and as the MA forms
of (21), (22), respectively. Let

The singularly perturbed form of the MA structure preserv-
ing model can then be written

(53)

(54)

(55)

(56)

Complete details of the model development can be found in a
number of references, including [14], [20]. The equations are
again singularly perturbed through the introduction of the term

into the real power balance equations for load buses, and
the term into the reactive power balance equations for load
buses. They are again required for the Popov criterion analysis,
though may be set to zero in the final Lyapunov function. Note
that in this model the term can be physically interpreted
as load damping.

B. Lyapunov Function Development

To facilitate the development of Lyapunov functions, using
the Popov analysis of Section IV-A, the system equations are
formulated as
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where

The transfer function of the linear part then has a block
diagonal form, with the diagonal blocks given by

Let

By combining results from the COA analysis and from [5],
we find that is positive real if

and provided and 0.
The rigorous development of Lyapunov functions for the

MA model is given in [6]. That analysis yields

In establishing those matrices, it was convenient to restrict
attention to the special case of 0. (Details become rather

involved for the general case of 0. A summary is given
in [21].) Also, for consistency with the COA analysis
0. It turns out that solutions for are precisely the same as
those outlined in [5]. In summary

(57)

where the scalar is chosen to ensure and

(58)

(59)

with . The possible choices for are investi-
gated in [5] and summarized in [14].

The Lyapunov function generated has the form given by (40)

(60)

From this Lyapunov function candidate, we shall now allow
in (53)–(56) and (60). The resulting function

(61)

can be interpreted as a Lyapunov function candidate for the
corresponding differential-algebraic system.

C. Validity of the Lyapunov Function

As explained in Section IV-C, it is important to check
that the Lyapunov function candidate (61) is indeed a strict
Lyapunov function for the power system. The first thing
to check is the local positive definiteness of the function.
Lemma 1 is again applicable here, with a slightly redefined.
Similarly, Theorem 2 may be used (with minor adjustments in
notation) to infer positive definiteness from the regularity of
the operating point.

Analysis similar to that of Section IV-C can be used to show
that along system trajectories when
. Also, a similar argument can be used to conclude that when

along a trajectory, the trajectory must be that of the
system in equilibrium. LaSalle’s Invariance Theorem [33] can
again be used to prove asymptotic stability of the equilibrium
point .
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D. Lyapunov Function Evaluation

From the work in [5] and in Section IV-E, the integral term
of the Lyapunov function (61) evaluates to

(62)

When evaluating (61), it is normal to set .
It is interesting to compare this energy function with (52),

the energy function for the COA model. Firstly, recall that for
the COA model, 0. It can be seen from (59) that with

0, iff 0. From (57), equals .
Because of the assumption that 0, we

have . Now at steady-state, so by (13), 0
at steady-state. Therefore 0 for all time, and .
Hence .

Further, because , we have

and

So . All other terms
of the two energy functions are exactly the same.

VI. CONNECTIONS AND EXTENSIONS

A. Gradient Systems

An approach to constructing Lyapunov functions for “quasi-
gradient” systems was established in [8]. Assume a system
has the form

(63)

where

is continuously differentiable;
;

at ;
at .

Let

Then is a Lyapunov function if

1) the matrix is positive semidefinite;
2) the only complete trajectories of (63) contained in

are of the form for all , where
;

3) the linearization of (63) at the equilibrium point is
strictly stable.

Consider the MA model given by (53)–(56). In that case
we have

and it follows that

The matrix is positive semidefinite. All the other
conditions may be readily verified.

B. Allowing for Voltage-Dependent Steady-State
Load Characteristics

The load model established in Section II-B, and used in the
analysis so far, assumed a constant steady-state reactive power
demand . However that assumption can be lifted to allow
the steady-state characteristic to be voltage dependent. Let

(64)

then, if

(65)

where

Comparing (65) with (9), we see that the nonlinearity has
the same general form as before. However, with the system
formulated for the Popov criterion (see (34)), the new nonlin-
earity (65) causes a change in elements of thematrix. That
alters the positive-realness condition which must be satisfied
before the Popov criterion can be applied. To satisfy this
positive-realness condition, it is necessary for

(66)

In the case of the first integral analysis, this condition is
necessary in order to obtain a quantity whose derivative is
negative definite.
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Fig. 4. Two generator, single load system.

The restriction (66) is not unrealistic. It corresponds to a
load response of the general form shown in Fig. 1, where
the transient load variation is greater than the long term load
variation. This is the generic form of load behavior [15], [25].

The only change to the Lyapunov functions caused by
voltage-dependent steady-state load characteristics is that the
quadratic term relating to dynamic loads becomes

(67)

C. Comparison with Static Load Lyapunov Functions

It is interesting to compare the Lyapunov functions devel-
oped here for dynamic loads with corresponding functions
established for the static reactive power load case. We shall
undertake a comparison of these functions for the MA system
model. The dynamic load Lyapunov function is given by (61),
with the integral term evaluated at (62). The corresponding
static load Lyapunov function can be obtained from [14] and
[20] as

(68)

where the reactive power demand is given (statically) by
.

Recall from (6) and (7) that for the dynamic load model

Therefore

So from (61), (62), the Lyapunov function for the MA model
can be written

TABLE I
SEP POWER FLOW

TABLE II
UEP POWER FLOW

(69)

The similarities and differences between (68) and (69) are
clear.

A comparison of the equilibrium point values of (for
the dynamic load model) and (for the static load model)
also yields an interesting result. Assume all dynamic loads
have a steady-state load response given by (64). To
ensure the static and dynamic load models have the same
equilibria, the static load model must be of the same form,
i.e., . Now it can be seen from (68) and
(69) that the only differences between and lie in the
terms related to the reactive power loads. Therefore consider
the contribution of each (dynamic) reactive power load to the
total energy at an equilibrium point . From
(61), (62), and taking into account (67), this contribution is
given by

(70)

Now from (5) we see that at an equilibrium point

(71)

and

(72)

Using (71) and (72) to manipulate the first term of gives
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Fig. 5. Stable trajectory in the potential energy well.

Again, using (71) and (72) in the manipulation of the last
term of gives

Adding the three terms of gives

But from (68) we see that because , the
contribution of each (static) reactive power load to the total
energy is

Hence,

so the energy at equilibria is independent of the load dynamics.
This result links with ideas developed in [10].

The function (68) assumes all reactive power loads are
static, whilst (69) assumes all such loads are dynamic. A
Lyapunov function can easily be adapted to allow a mix of
static and dynamic reactive power loads.

VII. EXAMPLES

The aim of the examples is to explore the characteristics of
the proposed Lyapunov functions. It is therefore convenient
to use simple illustrative power systems. However the ideas
extend naturally to large systems. Also, the examples satisfy
the modeling assumptions which underlie the (strict) Lyapunov
functions. Relaxation of these assumptions for practical anal-
ysis can be handled in the same way as for traditional static
load Lyapunov functions [31].

A. Two Machine, Single Dynamic Load System

The two machine, single load system of Fig. 4 involves
both generator and load dynamics. For a reasonably heavy
load, the operating point, i.e., stable equilibrium point (SEP),
is accompanied by a nearby unstable equilibrium point (UEP).
For this system there is only one UEP, so it is necessarily
the controlling UEP. (The potential energy of the controlling
UEP gives an estimate of the critical energy such that the
region of state-space defined by provides
a good estimate of the region of attraction [31].) The power
flow solutions for the SEP and UEP are given in Tables I and
II, respectively.

The inertia of the generator at bus 1 was set to a large value,
so that the bus acted as an infinite bus. The generator at bus
2 had an inertia constant of 0.1 pu. Machine damping was set
to zero to allow investigation of load damping effects. Load
parameters were: 1.0 s, 0.4 pu, 0.1 pu,

0.2 pu.
The potential energy of the UEP was evaluated as

0.0404 pu. As discussed in Section VI-C, this energy is
independent of load dynamics.
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Fig. 6. Energy versus time for various values ofTq .

Fig. 7. Dynamic load system.

The system was faulted by opening the feeder between
buses 1 and 3. The feeder was returned to service when
system energy reached the critical value 0.0404 pu. The
initial portion of the trajectory corresponding to this critically
cleared case is shown in Fig. 5. This three-dimensional plot
shows potential energy on the vertical axis. The potential
energy well, a characteristic of energy functions, is clearly
evident in this figure. Notice that the first oscillation passes
close to the UEP, but the second swing shows that significant
damping, due to the dynamic load, has occurred. The system
is clearly stable. Delayed restoration of the feeder resulted in
instability, with the trajectory exiting the potential energy well
near the UEP. The mode of instability corresponded to angle
separation.

It is interesting to study the effect of load time-constants
upon system damping. In this case, a disturbance was sim-
ulated by assigning a nonzero value for the initial angular
velocity of the generator at bus 2. A number of simulations
were conducted with various load time-constants. It can be
seen that the damping was smallest for both very small
and very large , i.e., rapid and slow reactive power load
recovery, respectively. Between these two extreme cases the
damping reached a maximum. This kind of behavior was also
observed in [24] for linearized systems. It can be explained
using (31) which gave the rate of decrease in energy as

Fig. 8. Critical capacitor switching.

TABLE III
LOAD PARAMETERS

When is very small it dominates the expression for. The
fast recovery time means that the load reactive power never
deviates very far from its steady-state value. When is
very large, becomes very small and is the dominating
factor in . In this case the load behaves statically according to
the logarithmic function . Systems with static reactive
power (in addition to the assumptions made in Section II) are
known to be conservative, i.e., have zero damping. In each
of the two limiting cases mentioned, conservative systems are
being approached.

B. Two Load System

The system shown in Fig. 7 will be used to illustrate
stability analysis of load systems. Load parameters are given
in Table III. Bus 1 is an infinite bus, so there are no generator
dynamics.

In this case the system was disturbed by tripping the
feeder between buses 1 and 2. With no corrective switching
action, the system was unstable. The voltage at bus 2 steadily
declined. This is shown in Fig. 8. However stability could
be maintained by switching in a shunt capacitor at bus 2
(with a susceptance of 0.4 pu) before the system acquired
energy equal to the critical value given by the controlling
UEP. Time domain simulation of this stable case is also
shown in Fig. 8, along with a delayed switching case. A
potential energy well view of critical capacitor switching
is shown in Fig. 9. This clearly illustrates the significance
of the UEP energy in determining the critical switching
time.

An energy-type analysis of critical capacitor switching was
undertaken in [35]. This example reinforces the value of such
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Fig. 9. Energy view of critically switched system.

an approach. However the ideas can now be justified on the
basis of rigorous Lyapunov stability arguments.

VIII. C ONCLUSION

This paper has developed Lyapunov functions for multima-
chine power systems with multiple dynamic reactive power
loads. Both center of angle (COA) and machine angle (MA)
model formulations have been used. The Lyapunov functions
have been developed using a first integral analysis approach,
and a more formalized approach based on the Popov stability
criterion. These functions are extensions of similar functions
developed for static reactive power loads. The paper under-
takes a comparison of the static and dynamic load Lyapunov
functions, and shows that they give the same value of energy
at equilibria.

In order to obtain strict Lyapunov functions of the Luré-
Postnikov form, the transient response of the dynamic reactive
power loads must have a logarithmic dependence on voltage.
Real power loads must satisfy the usual constant power
constraint. Relaxation of these modeling assumptions can be
handled in the usual way by approximating some of the
Lyapunov function terms.

The incorporation of load dynamics into a Lyapunov func-
tion has opened up a number of possibilities for energy
function analysis of voltage collapse. From an analytical
perspective, the Lyapunov functions provide a very useful
tool for analysis of the interaction between generator angle
dynamics and load voltage dynamics. Practical direct stability
assessment of voltage collapse also appears promising. An
example illustrates the use of a direct approach to determine
the critical switching time of a capacitor such that voltage
collapse is avoided.

APPENDIX

PROOF OF THEOREM 2

The proof of Theorem 2 is dependent upon the following
definition and theorem.

Definition I.1: The inertia of a matrix is the triplet
of integers where , and are the number of
eigenvalues of with negative, zero and positive real parts,
respectively.

Theorem I.2 (Sylvester’s Law of Inertia):For any nonsin-
gular matrix , the symmetric matrices and have
the same inertia.

Proof of Theorem 2:Consider the Jacobiangiven at (43).
It is easy to show that . So,

with all matrices evaluated at . The bottom diagonal
term of can be evaluated as
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where and are diagonal matrices with elements
of the corresponding vectors down the diagonal.

Because the Jacobian elements are evaluated at ,
from (5) we have . Let be the diagonal
matrix whose diagonal entries are the elements of. Then

Therefore

where . By Theorem I.2,
and have the same inertia, so is positive definite iff
is positive definite. Recall that by definition. Then
by rearranging rows and columns of it follows that is
positive definite iff , given at (44), is positive definite.
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stability analysis and control,” inProc. NSF/ECC Workshop on Bulk
Power System Voltage Phenomena III, Davos, Switzerland, Aug. 1994,
pp. 579–595.

[19] D. J. Hill and I. A. Hiskens, “Dynamic analysis of voltage collapse
in power systems,” inSystems and Control Theory for Power Systems,
J. H. Chow, P. V. Kokotovic, and R. J. Thomas, Eds. New York:
Springer-Verlag, 1995, pp. 157–172.

[20] I. A. Hiskens and D. J. Hill, “Energy functions, transient stability and
voltage behavior in power systems with nonlinear loads,”IEEE Trans.
Power Syst., vol. 4, pp. 1525–1533, Nov. 1989.

[21] , “Failure modes of a collapsing power system,” inProc.
NSF/ECC Workshop on Bulk Power System Voltage Phenomena II,
Deep Creek Lake, MD, Aug. 1991, pp. 53–64.

[22] , “Incorporation of SVC’s into energy function methods,”IEEE
Trans. Power Syst., vol. 7, pp. 133–140, Feb. 1992.

[23] , “Modeling of dynamic load behavior,” inProc. NSF/ECC Work-
shop on Bulk Power System Voltage Phenomena III, Davos, Switzerland,
Aug. 1994, pp. 501–508.

[24] I. A. Hiskens and J. V. Milanović, “Load modeling in studies of power
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