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Lyapunov Functions for Multimachine Power
Systems with Dynamic Loads

Robert J. Davy and lan A. HiskenSgnior Member, IEEE

Abstract—This paper develops Lyapunov functions for power While energy function techniques have been shown to be
systems which have dynamic reactive power loads. These func-yseful for angle stability assessment, little work has been
tions are extensions of earlier Lyapunov functions derived for undertaken in the development of energy function ideas for

structure preserving power system models having static loads. In It tabilit It I LG icall
order to obtain strict Lyapunov functions, the transient response voltage stability (voltage collapse) assessment. Generically,

of the dynamic load must have a logarithmic dependence on the voltage collapse process involves an initiating disturbance
voltage. A Lyapunov function is initially generated using a “first which reduces the ability of the power system to supply
integral” analysis. A Popov criterion analysis is then undertaken the |oad demand. \oltages fall, causing an initial reduction
for comparison. The developed Lyapunov functions enable the 554 demand. However load demand subsequently (at
investigation of the interaction between generator (angle) and . . .
load dynamics in multimachine power systems. least partially) recovers, leading to further overloading of the
weakened system, and further depression of voltages. Hence
the voltage collapse process is driven largely by the dynamics
of load recovery, rather than generator dynamics. Therefore
energy functions must capture these extra dynamics.

I. INTRODUCTION Some initial ideas for energy functions of load systems were

GNIFICANT progress has been made over the last fe@foposed in [18] and [19]. However these energy functions

ecades in the development and use of Lyapunov (ener§yd not include generator dynamics. As explained in [21],
functions for multimachine power systems [11], [30], [31]While voltage collapse may be largely load driven, there is
Energy functions have been proposed for power system modfi€n some interaction between angle and voltage dynamics.
which include the full network topology [14], [26], [27], con- This paper therefore proposes an energy function which takes
stant real power and static voltage dependent reactive po€gount of both generator and load dynamics. One of the
loads [20], higher order generator models [2], [28], and EACTgportant features of voltage collapse is the limiting of reactive
devices [9], [22], [29]. The focus of these developmenf@ower which can be supplied from generators and other
has been the assessment of generator (angle) stability, Hevices such as static var compensators (SVC's). It is shown
determining whether all generators in the system remain ifh [22] how this limiting can be rigorously incorporated into
synchronism following a disturbance. energy functions. Those ideas are directly applicable to the

Energy functions provide a direct approach to such asseggergy functions proposed here.
ment. First, a “critical” value of energy is determined [3], Lyapunov functions for multimachine systems (without load
[4]. This critical value provides an estimate of the maxidynamics) have been obtained through the use of a number
mum amount of energy that can be gained by the syst&h techniques. A first integral approach has been used for
during a disturbance without the system losing stability. Hndamped systems, see for example, [5], [31], [32]. This is
the system acquires less energy, stability will be guarante@dsomewhatad hoc method, but has yielded some useful
However if the system acquires a greater amount of energgsults. A more general approach to establishing Lyapunov
it may be unstable. Stability assessment therefore redufesctions is based on the multivariable Popov criterion. This
to a comparison of the critical energy with the energy afpproach follows from work of Anderson [1], and establishes
the system at the beginning of the postdisturbance peridg¢apunov stability for linear systems with nonlinear feedback.
The advantage of energy function methods is that stabilifyhe resulting Lyapunov function has the EdPostnikov form.
can be determined without the need to obtain the systenTBis method was used in a power systems context by Willems
postdisturbance trajectory. for the reduced network model [34], and by Hill and others

for the structure preserving model [12], [14].
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the machine reference angle model of the power system. Vo
Connections to gradient system ideas are made in Section VI.
Also an extension to the dynamic load model is considered. | Vi
Examples are presented in Section VII. Conclusions are drawn 1

in Section VIII.

t
IIl. MODELING 0 t sec

A. System Structure

The usual assumptions underlying the structure preserving
model of the power system shall be made for convenience. The
first of those assumptions is the use of the classical machine Qq
model for synchronous machines. Such machines are therefore
represented by a constant voltage in series with the transient
reactance.

Let the power system consist af buses, with generators
attached ton of the buses. Hence there atg—m load buses F9- 1. Generic load response to a step in voltage.
with no generation. The power system is augmentedrby
fictitious buses representing the generator internal buses. BidLoad Modeling

total number of buses in the augmented network is therefore, yhe geyelopment of strict Lyapunov functions of the form

Mo + M =N , commonly used in power system analysis, it is necessary to
The network IS assumed to be lossless, SO all lines HEsume real power demand is composed of a constant com-

modeled as series reactances. The bus admittance métr%onent and a frequency dependent component [14]. Therefore

is therefore purely imaginary, with elemerits, = JBij- .. we shall assume real power demand is given by
Let the complex voltage at thi#h bus be the (time varying)

phasorV; Z6; whereé; is the bus phase angle with respect to Py(w;) =P} +w;Dy, i=1,---,ng. (4)

a synghropou_sly rotating rgferenge frame. The bus frequencyFig. 1 shows the generic behavior of aggregate reactive
deviation is given byw; = é;. Define

power demand in response to a step change in voltage. It
8=1[b1,++,6,]" has been observed [25] and analytically justified [15] that in
W, = [Wngtt, o wnl’ response to a step reduction in voltage, load demand falls
V=[WV, Vil quickly, then recovers to a new steady-state value. The aim
- oo of this paper is to develop Lyapunov functions which capture

where V; = E; for ¢ = ng + 1,---,n with E; being the that form of response. A model for this dynamic recovery
(constant) voltage magnitude of the internal generator bus.pehavior was proposed in [15]

Let £, and @, denote the total real and reactive power

leaving theith bus via transmission lines. Then Tyiq = —tq + QS — Qu. (Vi) (5)
n Qu; (:L'qi ) Vl) =g + Q, (VZ) (6)
By, = iV Bijsin(6; — 6 1 ) . . )
bi (8, Y) ; ViV Bij sin(8; — ;) @) fori =1,---,n0—m. This model gives a steady-state reactive

" power demand of};, = QSZ_. We shall assume for now that
Qu,(8,V) = — Z ViV;Bij cos(6i — 6;). ) Q?i is a constant. This makes the analysis clearer. However
this assumption is relaxed in Section VI-B, where we show

J=1
Defi that @);, can be voltage dependent.
efine . The initial transient step change in the reactive power
Py, =[Py, B =[P P demand is described b@;. (V;). Typically this transient load
t h istic i I ial ial f [ f volt-
Q,= [Qu- O]t = [Q; Qt] characteristic is a polynomial or exponential function of volt

age. However to establish Lyapunov function, (V;) must
where subscripté and g refer tong-vectors andm-vectors, take the form

respectively. o Vi
Synchronous machines are assumed to obey the usual swing Q. (Vi) = Q% 1ﬂ<f> (7
equations Hi
0 ‘ .
Moy, + Dyoy, + Py, (8,V) = Py, 3) where@y. andy; are positive constants. Note though that the

ability to choosng andy; independently means that ‘normal’
whereM;, D, , Py, are the machine inertia, damping constantoltage dependent functions can be approximated (at least
and mechanical power, respectively. In the center of andtecally) using this logarithmic form. To illustrate, consider
analysis it will be assumed that all machine damping constamtsonventional transient load characteristig(V) = 0.4V2.

are zero. However damping will be allowed in the analysis dhis can be locally approximated around the operating point
the machine reference angle model. V' = 1.04 pu by the logarithmic load characteristig(V) =
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C. Center of Angle (COA) Formulation

Power systems possess translational symmetry because bus
phase angless;, are only defined relative to other phase
angles. It is therefore convenient to establish a reference angle.
Initially we shall use a weighted average angle, called the
center-of-angle (COA), as the reference. In establishing this
center of angle formulation, it is assumed that all generator
and load damping is zero. In Section V-A, a machine angle
reference formulation shall be developed. In that case, there
is no restriction on damping.

The COA of anm-machine system is defined as

0.7r

0.6r

0.5

QH(V3) (pu)
o
*

0.3

0.2 o
logarithmic

conventional 1 m
i bo=~— ) Mt (12)
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% 05 1 s Where My = 37" M,. It follows that
V3 (pu)
1 m 1 m
Fig. 2. Conventional transient load characteristic and a logarithmic approx- .
imation. “o = MT Z Miwg,, wo = MT Z Mg (13)
i=1 i=1
0.46 : . . The machine rotor angles and bus phase angles referred to the
logarithmic COA are
0.44r 1
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_. 04
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2 036 where subscriptg g refer to load and generator buses, respec-
e tively. Equation (14) gives
@

o
w
=

b; = & — bo

:wi—wozzdji

o
w
i)
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for ¢ = 1,---,n. Summing the swing equations (3) over all
machines (withD,, = 0), and noting thad ", P,, = 0 gives

t L

0.28

0 1 2 3 4 5
time (seconds)
: . , . . Mpio= (> Py, = > PJ | = Pooa.
Fig. 3. Load reactive power for conventional and logarithmic characteristics o . M; . d; coa

following a large disturbance.
It is common to assume th@lzpa = 0. The swing equations

0.86341n( 557 6301) i.e., QY ~ 0.8634 andu ~ 0.6301. Fig. 2 (3) can then be written in the COA reference frame as
shows a comparison of the two load characteristics. Variations ; .
. . . . . 9i+n0 = wgi (15)
in reactive power load following a typical large disturbance )
are shown in Fig. 3. Miwg, = Py, — By, (6,V) (16)
For later analysis it is useful to define where B, (6, V') is the COA form of (1). SimilarlyQ,. (6, V')
B Q2. refers to the COA form of (2).
Vi = €Xp 0 : (8)
Qr,
so that D. System Model
v Combining the machine swing equations with the load
0 _ . . .
s — Q. (Vi) = -y < ) (9)  model and power balance equations gives the singularly per-
‘ turbed form of the COA structure preserving model
Establishing power balance at the load buses gives the
power flow equations @, =—M7 P, (8,V) - Pyy) 17)
Py (wi) + B, (6, V) =0 (10) 0= Rab, — RaD;* (Py(6, V) + Py) (18)
Qu. (w4, Vi) + Qu,(6,V) =0 (11) &, = =T 2, = T QUR(Y) (19)

for i = 1,---,no. V=-E7 V]I HQE V) +Q e, V) (20)
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where Multiply the swing equations (16) by, . = 6¢;, taking
M, = diag{M;} account of (1)
D; = diag{Dlz.} Mi—n, (:bgi—ng a)gi—no
Tg - d?ag{Tq:)} = PJ\L—nO QZ — Z B“VZVJ Sin(ei — QJ)QZ (24)
Q; = dlag{Qti} j=1
E= d?ag{ei} Multiply the real power equations (10) W, taking account
[V] = diag{Vi} of (1)
L, Oy m 0= ByViVjsin(6; — 6,)0; + PL6;.  (25)
Rl - |:Orn><nO :|7 R2 - |: Irn :| i=1
Multi Lz Q) (¥ Ba\ e
ultiply (5) by o (7~ + —, ) (= —g¢") giving
Vi ty T bu t
ki) = 1“(7) AN
i dgn( ) + 20—~ (ay +Q0 - Qu (Vi
! <'7> Q) Q?i( @ = QW)
. Oln( ¥ i=1,---,ng—m Qo_ln(ﬁ)
(z,,V) = Tq + Qy, n(m) ¢ RN Zg, o L s
Qu,(z,, V) {0 i=ng—m+1.m “\7, +4Tqi . (26)

_ The equations aye_singularly perturbed through the _introdLgum (23) over all the load buses. Sirice= 0 at all generator
tion of the termD);, §; into the real power balance equations fofnternal buses, the summation involving;; terms can be

load puses, and the termV; into thg reactive power_ balanceperformeol over all buses. Hence, using (6) we obtain
equations for load buses. These singular perturbations are not . .
required for the first integral analysis of Section III, and in that I S R ) S R .
case are set to zero. However they are required for the later 0= Z V; + Z v, ZBiiViVi
Popov criterion analysis, though they are set to zero in the erll n =t

final Lyapunpv fuqction. (Note that in a sense the 6; term _ Z Z BijViVj cos 0;;

can be physically interpreted as load damping. However recall

=1

) : . i=1j=1, i

that the COA formulation required load damping to be zero. ’

The machine angle reference formulation of Section V h&§-

no such requirement of zero load damping. Therefore in that QLY T e Ve .

formulation D;,6; can be validly interpreted as load damping.) 0= Z % + Z qT - ZBiiViVi

For later analysis, it is convenient to define i=1 ! =1 " i=1
n—1 n
PP=[-pry Py =Y D By(ViVy + ViVj) cosbyy. (27)

i=1 j=i+1

and vector functions Sum (24) over then machine equations

i(Qv Z) = Bb (Q,Z) - BO m ) n ‘
Z M;0g,0q, — Z Py, 0
=1

= ? = |7 21 1=ng
[BQ(Q, vi-py | = fey)) @D W

90,2, V) = VI7HQ,6, V) + Q (z, V).  (22) + > > Bi;ViV;sin6,;6; =0. (28)

i=ng+1 j=1
[ll. FIRST INTEGRAL ANALYSIS Sum (25) over they, real power flow equations
Our initial approach to constructing a Lyapunov function is no . no .

to use first integral analysis. A clear outline of the first integral Z Pl o; + Z Z B;;V;V;sin0;;0; = 0. (29)
analysis is given in [31] and [32]. Basically the (nonsingu- i=1 i=1j=1

larly perturbed) system equations are scaled appropriately afighy (26) over the load buses
summed together. The procedure given in [31] and [32] will

be followed here. =", V; " dy T,
. . . . In | — L
The first step is to multiply the reactive power balance ; T <%> + ; Q.
equations (11) b% taking into account (2) no-m
: " =D o (— 7w + Q% —Qu()
i , . £ VT,
de‘ ($Qi ; ‘/Z)v - B;V;Vi = Z B“‘/Z‘/J COS(ei — 91) =0. ”
mh x (a:qz- + Q?Z-hl(—Z))- (30)
(23) Vi
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Adding (28) and (29) gives

ZM@Q@Q{ - Z P]\L_noe +Z.Pd
i=1

i=ng+1
n—1 n .
+ Z Z B“VZVJ Sineijeij =0.
i=1 j=itl

If we add this equation to (27) and (30), we obtain

ZM@Q@Q{ - Z P]\L_noe +Z.Pd

i—n0+1

=1

+n0§_:m <a: In <K) 4 Yaiki ) ZB ViV
q: Vi [

i=1 ¢

n—1 n .
+Z Z (B“VZVJ Sineijeij

i=1 j=it1l

— B“(VZV + VZVJ) CcOoS 9“)

— Ly, + QSZ - Qti (VZ))

—Z

X <a:q7. + Q?ﬁ.ln(

V.

)

T

It follows via integration of the left-hand side (LHS) that

Z P]\L_noe + Z.Pd

dl1 m
el el Mi~2
dt[zz Yo T
=1 t=ng+1
n—1 n

- %iBiiViQ - Z Z B;;V;Vjcos b;;

i=1 j=i+1

Z( o)+ F ()
- noz:m Ty (34,)° a;qz 31
v

The right-hand side (RHS) of (31) follows from (5) and (9).busesi = ng — m + 1, -

Integrating the LHS of (31) front = ¢* whereg, = 0,
0=0°V=V° andgq =z results in the energy function

ZMW&
8; — 67) +ZP§{ (6
=1

%52)

@0,z .V, 0% x* VS

=r1=q? 122G —

Z Puy,_,, (

i:ng +1

—Z Z

=1 j=i+1

V(&

55 (ViVjcos by — V2vy COSQ%)
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(2575 ()

ng—m

t

5
3

)

K2

2Qt

S
— T, In

+%<<m<%>>2—<m<%>>2>>-

The last summation of (32) can be simplified by noting that
= Qi (V) = =@5, In (). This gives

5

x(li =

() a()
= ($4f2;2§jf1f)2 x(i; T ‘IQJE(SI —i—a:qzln(‘/:) + 2, Qst
— ($4f2;2§jf1f)2 +xqzln<“//5>

The energy function then becomes

V(w 0,z ,V, 6% z° VS)

Lrdg P
ng m

) Zngz +3 Z
Z P]wf—”o (9

i—ng “+1
1
52

Z Z i (ViVj cos by — Vfocostj)
=1 j=i+1

E ()
) -(6GH))) e

ol &
2 i

From (31) it can be seen that is negative semidefinite.
Assume thaty = 0 for all t. Then from (31),4,, = O
for ¢ = 1,---,n9 — m, i.e., for all buses at which there
are dynamic loads. Equations (5) and (6) therefore imply
that voltage magnitudes and reactive power loads at those
buses are constant. By definition, reactive power loads at
,ng are constant. Also, real power
loads at all load buses are constant. Therefore whea 0,
solutions satisfy2n, steady-state power balance equations.
Generically, becausE;, i = 1,---,n9—m are constant, then
8, must also be constant, so the system is in steady-state.
Therefore there exists no nontrivial trajectory over whitke
0. This means that the function can be used to establish the
stability properties of an equilibrium point. If for examplé
is positive definite about the equilibrium point then that point
is asymptotically stable. Conditions for positive definiteness
are examined in Section IV-C.

It should be remembered th&t can only be a Lyapunov
function if @, (V;) has the form given by (7). This is because
of the mathematical constraints involved in formulativig It
was necessary to obtain a path-independent integral on the

7 2
xqz - i
Q,
+ Z P (6
=1

Vs?)

VS
1
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LHS of (31), whilst maintaining a nonpositive expression on r0 0 0 0
the RHS. F= Ry 0 0 0
0 0 -I;* 0
IV. Popov CRITERION ANALYSIS OF THE COA MODEL L0 0 0 0
MR, 0 0
-1t
A. Stability Criterion Background G = RlD(l) Ry T—?QO 8
The development of Lyapunov functions using the Popov I 0 B 0 ¢ E-1

stability criterion is based upon establishing the system equa-

tions in the form
The transfer function7(s) then has a block diagonal struc-

& =Fz— Gy(H'z). (34) ture, with the diagonal blocks given by

The transfer function of the linear part of the system is

1/1 _ _
Gi(s) = H'(sT — F)™\G. (35) Grlshn =3 <gR2Mg "Ry + RyD 135)
_1y—1,
Consider the modified transfer function Gr(s)22 = (shg-m + T, 1) T;71QY
1 .
Gu(s) = (N + Qs)Gr(s) (36) Grls)ss = B

where (N 4+ ()s) does not give any pole-zero cancellations

with G(s), and N > 0 and@ > 0. Based on results of [1], We require the transfer functio;(s) to be positive real.
[12], and [13], if Gas(s) is positive real then there exist reall-et

matrices P, L, and W with P positive definite symmetric,

such that (1, 0 0
PF+F'P = LI (37) N= 8 ”31’60‘"‘ n;} ]
PG = HN + FtHQ — LW (38) ol 0 0
W'W = QH'G + G'HQ. (39) Q=0 @lym O ]
The Lyapunov function subsequently generated is L 0 0 @21no
V(iz —-2°) = %(& —2°)' Pz — z°) Conditions were established in [13] which ensué&g (s) was

Hie positive real for the static load case. Those conditions were
+/ (&) — p(H'z?)]'Qd¢  (40) ™ = 0andg > 0. In addition to these conditions we require
Htzs - that the transfer function

The derivative of this function along system trajectories is .
Z(s) = (ng + q35) Ing—m (sTng—m + Tq_l) Tq_ngJ

1
W(y) = —5(L'y — We(H'y) (L'y - We(H'y))
—y*HN¢(H'y) be positive real. This is satisfied if the transfer functions

wherey = z — z° and¢(H'y) = Y(H'(y + 2°)) — Y (H'z®). (ms 4+ 435)00

Zi(s) =
B. Lyapunov Function Development Tgs+1
In order to match the system equations (17)—(20) to the
form (34) we define are positive real. It can be shown that
_[~t gt ottt
ol L Qs+ @)
Py(8,V) - P Re{Zi(jw)} = 3
¢ (Tpw)?+1
vHD=| kY
VI Q8. V) +Q, (24, 1)) _ »
T 56, V) Hence, Z(s) is positive real for anyrs > 0 andgs > 0. It
_ —ka/—) will be shown in Section IV-D that it is necessary also to take
g(9_a:_ V) a1 =49 =43 = q.
e If (F,G,H) was a minimal state-space representation of
. 0 I 0 0 G1(s), the Popov criterion would imply the existence of matri-
H =10 0 ILy-m 0 cesP, L andW which satisfy (37)—(39). For the COA model,
0 0 0 In, minimality is not satisfied, so we assume their existence.
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The rigorous development of Lyapunov functions for the Lemma 1: The functionV(z — z*) given by (42) is locally
COA model is documented in [6]. That analysis leads to positive definite in a neighborhood of the equilibriuth of
the system (17)—(20) if the matrix

0 0 _
M, 0 0 0
p=|0 0O 0 0 o ey 0 25(0.v)
0 0 q(@Q7) 0 " a8 X v
= - k(Y
L 0O O 0 no 0 0 Q) 5(7)
r0 0 00 o e,V 0ga,V)  Ogléz, V)
0 0 0 0 L a6 Oz, oV
_ 1 -
L= 0 \/ET(I b (Qt) Z 0 o0 Mg 0 0 0
0 0 0 0 |0 L 0
_\/ZDI 2Rt 0 0 0 (Q?) E
—1/0n% 0 g, 9 9,
W= 0 V24T % (Q7) . T
0 0 0 evaluated at the equilibrium poiat® is positive definite.
L 0 0 V2qE~3 The proof of this lemma follows immediately from similar
results in [7] and [17].
In obtaining P, L and W, it was convenient to lehsz = 0. Notice that?{ is positive definite iff
An algebraic Riccati equation was solved to find the unique
: f 0 f
solution for Pss. e o1 o
The Lyapunov function candidate developed from the Popov J=10 (Qt) k, (43)
criterion analysis is therefore given by 9 9., 0 N P
V(z - z°) is positive definite. But/ is the Jacobian of the equations
= = M. 0 0 0 describing equilibria of the system (17)—(20). Further, because
1 4 0 9 0 0 0 the principal diagonal submatrices of a positive definite matrix
=(z-2°) 0 0 0=l g (z —z°%) are themselves positive definite, it follows by rearranging rows
2 0 0 q(Q(t)) B and columns thay/ can only be positive definite if [;—z-
. 2 is positive definite, and if
vo [ WO - s b (41) J_FQL}
Htzgs =
B '90 gv r=z°

In the system model (17)—(20), the singular perturbatibnéi is positive definite. Matrix.J; is the Jacobian of (scaled)
and¢;V; were introduced on the power balance equations gower flow equations, in which the reactive power demand
that the model took on the differential equation form requireig effectively given by the transient characterisgig(V') [18],

for the Popov criterion analysis. Having obtained the desir¢d3], i.e.,

Lyapunov function candidate, we shall now alldwy — 0 and 9 .
E — 0in (17)=(20) and in (41). Also, witle — 0 it can be 9, = 5y (VI (@& V) + 2, +Q,(V)))
seen from (41) thay acts as a scaling factor. Without loss of L0
generality, we can therefore lgt= 1. The resulting function =V 57(Qe. Y) + @ (V)
1 at an equilibrium point. Hence the subscript
V(z —2°) = JtM Wyt g 5 (37 —Z ) (Qt) (£ - xq) The following result also establishes a connection between
Hiz the positive definiteness aof and the “steady-state” Jacobian
+/‘[4@—ﬂﬂzmwg “2) .
Htge Theorem 2: J is positive definite iff the Jacobian
can be interpreted as a Lyapunov function candidate for the J, = |:i0 ik} (44)
corresponding differential-algebraic system [16], [17]. 99 9y llo=as

is positive definite, wherg*(6,V) = [V]=4(Q,(6, V) + Q).

The proof of this theorem is given in Appendlx l.

The precise conditions required for the Popov stability The matrix.J; is the Jacobian of the power flow equations
criterion have not been met exactly. There may be pol& which reactive power demand is given by the steady-state
zero cancellation betweefW + Qs) and Gr(s), and (.) valuesQ0 i.e., the normal power flow Jacobian. Hence we
is not (globally) strictly passive. Also, the COA model is notan conclude that at equilibrium points whefg is positive
minimal. Therefore it is important to check that the functiodefinite, / and J; will also be positive definite, and the
(42) satisfies Lyapunov function properties. The first propertyapunov function (42) will be (locally) positive definite.
relates to the (local) positive definiteness of the function. This condition on.J, corresponds to local regularity of the

C. Validity of the Lyapunov Function
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equilibrium point [18], and is generally satisfied at normal; is positive definite, it follows from LaSalle’s Invariance
operating points. Further, the positive definitenesg,afelates Theorem [33] thatz® is asymptotically stable. The formal
to conditions established in [18] for small disturbance stabilityroof is similar to a result presented in [13]. (Recall that the
of load systems. singularly perturbed system with COA coordinates does not
The second condition which must be checked to ensure tha&ve a physical interpretation. However the energy function
validity of the Lyapunov function is that the derivative offor the DA system may be used for stability assessment.)
the Lyapunov function along trajectories is locally nonpositive The set of Lyapunov functions (41) generated in Section V-

about the operating point. This derivative is given by B was derived under the assumptieg = 0. However, as
) 1 we saw above, that condition was necessary to ensure
V(y) = —§(Ltg - Wo(H'y)) (L'y — Wp(H'y)) 0. Further, the free parametgrwas only a scalar multiplier

(45) which could be factored from the functions. Therefore we
conclude that there is only one Lyapunov function which may
wherey = z — z° and¢(H'y) = »(H'(y +2°)) —y(H'z®). be generated in this way for the COA model. The damping
With n; = 0, the last term in this equation evaluates to  provided by the dynamic loads does not appear to give any
o i . extra freedom in forming a Lyapunov function. (This is in

—na(V = V*)'g(0, 2., V) = na(z, — 23) (B(V) = E(¥")).  contrast with the case of machine damping where the damping
In general, to ensure this term remains nonpositive we requiféroduces some freedom in the Lyapunov function. Section V-
ny = ng = 0. In the development of the Lyapunov functiorP considers this case.)
candidate, we _a_rbitr_arily set; = 0. We have now establishedy ~qngitions for Integral Path-Independence
that that condition is mandatory.

Consider trajectories along whid?(g) = 0. Then from (45)

—y HN¢(H'y)

The Lyapunov function integral term

H'z
L'y - We(H'y) W= [(&) — P(H'z")]'Qd¢
~Wif() e
s = s is path-independent iff the following conditions hold:
Ly (z, —23) — I/1622 (E(V) — K(V?)) —0. (46) af ok dg
—=,—— and —= are symmetric
~Wiag(:) 08’ oz, * v 0
Consider initially the singularly perturbed system, with = and
0,E # 0. Then (46) implies of ﬁgy
d1 o, = 92| 55
a a6
£,0.7)=0 (47) a% et
Q(Qa &qu) =0 (48) qla—_ =q3 a—;:|
s z 0
Ly (z, — z3) = Waa(k(V) = k(V?)). (49) ‘ -
- . . ok _ 199
Substituting Lz, and Wa, mtoo (49) gives q3 v Q2 oz, .
2, — x5 = —Qp(k(V) - E(V7)) Due to the structure of, g andf, all of these conditions are
=Tyg, +z,— . satisfied if¢; = ¢2 = g3 = ¢. Hence our earlier requirement

Soz, = 0, and hence:, = z2. Substituting (47) and (48) into thatg, = g2 = g5 = ¢-
the system model equations (18), (20) resultdin= 0 and E. Evaluating the Lyapunov Function

¢, = 0. This impliesV. = V" and ¢, = ¢;. It follows from o0 Lyapunov function (40) is composed of a
an argument similar to that presented at the end of Section AUadratic term and an integral term. The quadratic term was

thatd = 6°. Hencef, = @, = 0. ; . .
= = =g — *g
In the differential-algebraic (DA) system which results Wheﬁlven in (42). The integral term

D; — 0and EF — 0, (47) and (48) are satisfied explicitly. W(Qviquv QS@(SNZS)
Equation (49) again follows from (46), s@, = 0, and (©z,.Y) + st
z, = zg,Vi = V7, i = 1,---,n0 —m. In this case we :/(05 o VS)@(@—MH& S

cannot state directly that = V*® and §;, = 6;. However

the same argument as presented at the end of Sectionsr!]fi", now tl)e, eval;lja}ted. It was shownhin”Sr(]actic;n IV-D tlhat
allows us to conclude that generical§)(y) = 0 only at this integral is path-independent. We shall therefore evaluate

isolated equilibria. The positive-definiteness of the DA enerdly/PY integrating with respect to one variable at a time, whilst
eeping all other variables constant. Therefore

function is inherited from the energy function for the singularl

perturbed system, since the function is the same except for the, g s 0t Zq s s\t
additional constraints (47) and (48). % T S (246 V7) = Pl de + s [L(V") - (V) dg
In both the DA and singularly perturbed cases, under certain R -
eneric conditions we can conclude t = 0 impli Nios t
9 ~t gt ot 1/t t pgst st yrstyt ha(tg) mp Ie§ + /fs [[Z] (QI(Q’ E) +Qd(£(1’§))] dz. (50)
z=[w, 0 z;, V']"=[0" ¢ z5' V'] = z°. Therefore if v
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The first integral of (50) was evaluated in [13] and [14] as the power system. In the MA model, all angles are referred to
the angle of thenth machine, i.e., theth bus, rather than to
—5 Z Z VPV; Bij(cos b;; — cos b;; Z P)(6; —67). afictitious center of angle. Another benefit of the MA model
i=1 j=1 over the COA model is that it allows for generator and/or
The second integral is zero. The third mtegral can be writtdnad damping to be nonzero. The MA model tends to be more
commonly used.
Z/ P (Qu, (0, V7, ziy -, Vo)) dzi In [5], [13], [14], a Popov criterion analysis was undertaken
(N for the machine reference model with static loads. It was found
no—m that if generator damping is present, there is some freedom in
+ Z / = <$qz + Q7 hl< )) dz.  (51) the choice of Lyapunov function. A similar analysis will be
" i undertaken in this section for the case where reactive power

The first term of (51) was evaluated in [13] and [14]. Th@yads exhibit dynamic behavior.
expression (51) becomes

roTm < v ) A. Machine Reference Model

_ZZ VSV VV)BUCOSHU—i— Z Zq;ln v

p e In the machine reference model, all angles are referenced

to thenth bus angle, i.eq; = 6; — é,,. We therefore define

() ()

When these integral terms are added with the quadratibere 1,, refers to ap x ¢ matrix with all elements equal

terms of (42), we obtain the Lyapunov function to 1. (In cases where the dimensions are unambiguous, the
s subscripts will be dropped.) MatriX is partitioned so thaf}
V(gy, e’x(I’V 0 ,a:lq,V ) is an(n — 1) x ng matrix. We then define
= SEM,E, + 5~ 20) (@) (g - 2)) o= [one o] = T8
1 - . S S S
-5 ZZ Bij (ViVj cosb;; — ViV cos 63)) so that
=1 j=1 QITQIT_
S ng—m V
- ZPO Z %hl(Vs) Also define B, (@, V), Qs (e, V) as the MA forms of (1),
= 12 , (2), respectively, and'(«, V), g(a,z,,V) as the MA forms
g < s of (21), (22), respectively. Let
X5 (( ) L ) A i
i i F=1 s fa]

This Lyapunov function is exactly the same as the function
(33) produced from first integral analysis. (The summations ,H
(33) and (52) are expressed slightly differently though.)

It follows that V given by (45) must be the same as for the w, = —Mg_nggg - Mg—lTQtf(g, V) (53)
first-integral analysis (31). Consider (45) and (46), recalling

The singularly perturbed form of the MA structure preserv-
g model can then be written

< _ —1pit § -
that N = 0. With ¢ = 1, matricesW;;, W,, and L3, were ‘g o TQQfl TlDl_lTloi(g’ v) (54)
evaluated as &, =T x, =T, Qk(V) (55)
Wi = V3D iR V- BV Q,(a. V) +Q,(z,, V). (56)
Way = \/_Tq (Qt)% Complete details of the model development can be found in a
1 number of references, including [14], [20]. The equations are
Lz = —\/iTq d (Qt) ° again singularly perturbed through the introduction of the term

For the DA system, functlong” (-) and g(-) are identically Dy, éy; into 'gh(_e real power balance equations for Ioa_ld buses, and
zero. So by making use of the | Ioad model (19) and substituti terme; V; into the reactive power balance equations for load

into (45) it follows that ses. They are again required for the Popov criterion analysis,
] . though may be set to zero in the final Lyapunov function. Note
V=—ilT,(Q) i, that in this model theéD;, &; term can be physically interpreted

load d ing.
which is precisely the desired result. as load damping

B. Lyapunov Function Development
V. Popov CRITERION ANALYSIS OF

THE MACHINE REFERENCE MODEL To facilitate the development of Lyapunov functions, using
the Popov analysis of Section IV-A, the system equations are

The COA model studied previously is convenient for th rmulated as

purposes of analysis. However the machine angle (MA) ref-
erence model is in a sense a more natural representation of & =Fz—Gyp(H'z)
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where
z=[w a2t V'
fa, V)
P(H'z)=| k()
L9(a, 2, V)
[0 1,1 0 0
H'=|0 0 IL,.m 0
0 0 0 I
r M%—ng 0 0 0
. > 0 0 0
b= 0 0 -1I;1 0
L 0 0 0 o0
[ M;T 0 0
Go | D 0o 0
0 7Y 0
| 0 0 E-!

The transfer function of the linear paitz,(s) then has a block

diagonal form, with the diagonal blocks given by

1 _
Gr(s)u = S (Ta(shn + M;YD,) T MY + TLDTMTY)

1y — 10—
GL(S)QQ = (SIng—rn + Tq 1) Tq IQ?

1

GL(S)gg = —E_l.

Let

By combining results from the COA analysis and from [5],
we find thatGas(s) = (N + Qs)G(s) is positive real if

S

_nl-[n—l 0 0
N = 0 ﬂgfno —-m 0
L 0 0 ﬂQInO
[alor O 0
Q= 0 pg—m O
| 0 0 qn,

>
n
qz ngi

and providedV > 0 and@ > 0.
The rigorous development of Lyapunov functions for the
MA model is given in [6]. That analysis yields

P=

9i =1,

,m

rPii(A) 0 0 0
0 0 0 . 0
0 0 (@) 0
L O 0 0 no Y
rL11 0 ng()\) 0
0 0 .0 0
0 —var @)t 0 o
L O 0 0 0
— 1
V2qD; * Tt 0 0
1 1
0 vEL@)E o
0 0 0
L0 0 V2qE~%

involved for the general case aff # 0. A summary is given
in [21].) Also, for consistency with the COA analysig =

0. It turns out that solutions faP;; are precisely the same as
those outlined in [5]. In summary

Pii(N) = ¢M, + A\M,1M, (57)

where the scalah is chosen to ensur&;; (A\) > 0 and
— L3l = Z;()) (58)

)\2
= | =240y = A(MLDy + DyLMy) + - diMy 1My

<0 (59)
with d; = 3, D;,. The possible choices fox are investi-
gated in [5] and summarized in [14].

The Lyapunov function generated has the form given by (40)

V(z — z%)
Pii(A) 0 0 0
= l(a:—azs)t 0 0 0 -1 0 (z —2%)
2 = 0 0 ¢(QY) 0 [ =
0 0 0 no
H'z
o[ - pH ) e (60

From this Lyapunov function candidate, we shall now allow
E — 0in (53)—(56) and (60). The resulting function

1 t -
V=) = qefPu(Ve, + Gz, —2) (@) (2, - 2))

(61)

Htgs

+g/EW@—ﬂme@

can be interpreted as a Lyapunov function candidate for the
corresponding differential-algebraic system.

C. Validity of the Lyapunov Function

As explained in Section IV-C, it is important to check
that the Lyapunov function candidate (61) is indeed a strict
Lyapunov function for the power system. The first thing
to check is the local positive definiteness of the function.
Lemma 1 is again applicable here, with a slightly redefitéd
Similarly, Theorem 2 may be used (with minor adjustments in
notation) to infer positive definiteness from the regularity of
the operating point.

Analysis similar to that of Section 1V-C can be used to show
thatV(y) < 0 along system trajectories when = ny = n3 =
0. Also, a similar argument can be used to conclude that when
V(y) = 0 along a trajectory, the trajectory must be that of the
system in equilibrium. LaSalle’s Invariance Theorem [33] can

In establishing those matrices, it was convenient to restragjain be used to prove asymptotic stability of the equilibrium
attention to the special caseof = 0. (Details become rather point z*.
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D. Lyapunov Function Evaluation ThenV(z, z®) is a Lyapunov function if
From the work in [5] and in Section IV-E, the integral term 1) the matrix(A4 + A*) is positive semidefinite;
of the Lyapunov function (61) evaluates to 2) the only complete trajectories of (63) containeddn
s are of the formz(¢) = z° for all ¢ € [0,00), where
W(a,a:q,V «a ,a:q,V ) VV(zt,2°) = 0;
srs 3) the linearization of (63) at the equilibrium point is
=73 Z ZBU (ViVj cos aij = VPV cos o)) strictly stable.

==t Consider the MA model given by (53)—(56). In that case

n—l ng—m
_Zﬂo(ai—af)—i— Z xqzln<“//s> we have

i=1 Myw

EHEE)-CE)) @ el
g

When evaluatmg (61), it is normal to set=1
It is interesting to compare this energy function with (52)and it follows that

the energy function for the COA model. Firstly, recall that for M'D,M7*  M7T} 0 0
the COA model,.D, = 0. It can be seen from (59) that with iT J\g/[—lg T 5—1Tt 0 0
g A — 2 g 147 1
D, =0, Z;(A\) <0iff A=0.From (57),F1(0) equals},,. 0 0 T-1Q° 0
Because of the assumption thatoa = Y . P? =0, we 0 0 ¢ 0 E-1

havew, = 0. Now w, = 0 at steady-state, so by (13) =
at steady-state. Therefo@ = 0 for all time, andgg = Qg_ The matrix (A + At) is positive semidefinite. All the other
Hencew Mo, = w! Myw conditions may be readily verified.

Further becausgZ ng = 0, we have

B. Allowing for Voltage-Dependent Steady-State

Z P28 - 63) = Z P26 — &) — Z PP (80— &) Load Characteristics
‘ ‘ ‘ The load model established in Section II-B, and used in the
_ z": PO(s. _ §° analysis so far, assumed a constant steady-state reactive power

£ v demand@?. However that assumption can be lifted to allow

B the steady-state characteristic to be voltage dependent. Let

and
n—1 n—1 n—1 0 ‘/z
> R0 = o) = S ROE - &) = S R0 - ) Q.00 = @21 9
=1 =1 =1
n-l then, if Q% # Q?,
=" P8 = 6) + P2 (6, - 63) s
=1 QS ( ) Qt ( )
— zn:-PzO(éz _ 6;9) - ( s Qti) (‘;1/) + Cz(t)7 ln(uz) - Cz(s)7 hl(O'i)
= = (@7, - Q?z.)ln(—?) (65)
SoS T, PY(6; — 67) = 07! PPay — of). All other terms Vi
of the two energy functions are exactly the same. where
VI. CONNECTIONS AND EXTENSIONS 0_927. QgiiQ?i
. Vi = ZQO
A. Gradient Systems e

An_ approach to constructing Lyapunov functions for * quasbomparmg (65) with (9), we see that the nonlinearity has
gradient” systems was established in [8]. Assume a SySI@M, same general form as before. However, with the system

has the form formulated for the Popov criterion (see (34)), the new nonlin-
= —AVV(z,z*) (63) earity (65) causes a change in elements ofGhmatrix. That
alters the positive-realness condition which must be satisfied
before the Popov criterion can be applied. To satisfy this
positive-realness condition, it is necessary for

. <@ (66)

In the case of the first integral analysis, this condition is
necessary in order to obtain a quantity whose derivative is
S ={z| VV(z,z*)' (A + A"HVV(z,z*) = 0}. negative definite.

where
V: R" x R* — R is continuously differentiable;
A€ R det(A4) # 0;
V(z,z°) = 0 atz = z°
VV(z,z°) =0atz =
Let

L
z°.
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V,=1.0 pu v, V, = 1.0pu TABLE |
6,=0 8, 0, SEP PWER FLow
| 0.6 | j0.s | Bus N E\lnglj r | g
\ i | ; number deg.
N
1 I 1 I 1.0000 | 0.00 | -0.5 | 0.5087
— P v -~ 2 1.0000 | 50.90 | 0.7 | 0.6581
oo v QW) P 3 | 0.7568 | 23.35 | -0.2 | -0.4000
Fig. 4. Two generator, single load system.
TABLE I
UEP Power FLow
The restriction (66) is not unrealistic. It corresponds to a Bus Angle
load response of the general form shown in Fig. 1, where number |V (deg.) | P Q
the transient load variation is greater than the long term load 1 1.0000 | 0.00 |-0.5| 1.0881
variation. This is the generic form of load behavior [15], [25]. 2 1.0000 | 90.55 | 0.7 | 1.4067
3 0.4588 | 40.84 | -0.2 | -0.4000

The only change to the Lyapunov functions caused by
voltage-dependent steady-state load characteristics is that the
guadratic term relating to dynamic loads becomes

a2 (@ - Q) ey -zl (67)

n—1 ng—m .V, ]
~S P —a) + Y Qai(2q;2) (x?f’ZZ) dz. (69)
2 i=1

i=1 Lfis %i
The similarities and differences between (68) and (69) are
.. . ) clear.

It is interesting to compare the Lyapunov functions devel- o comparison of the equilibrium point values df; (for
oped _here for dynamlc_ loads _W|th corresponding functionge dynamic load model) and, (for the static load model)
established for the static reactive power load case. We shglly yields an interesting result. Assume all dynamic loads
undertake a comparison of these functions for the MA systeqaye a steady-state load resporige(V;) given by (64). To
model. The dynamic load Lyapunov function is given by (61pnsyre the static and dynamic load models have the same
with the integral term evaluated at (62). The correspond|%ui”bria, the static load model must be of the same form,
static load Lyapunov function can be obtained from [14] ands ¢, (V;) = Q2 In(%). Now it can be seen from (68) and

C. Comparison with Static Load Lyapunov Functions

[20] as (69) that the only differences betweaiy and V, lie in the
s sy Lot terms related to the reactive power loads. Therefore consider
Volwy, @, V0, V) = 2£9P11()‘)% the contribution of each (dynamic) reactive power load to the
1 I cors . total energyV, at an equilibrium point(a®, z¢,V°). From
5 ZZBU(ViVJ cos iy — V7V cos o)) (61), (62), and taking into account (67), this contribution is
=1 j=1 given by
n—1 ng—m LV,
0 .S ' M . e e s s
- 2; PY(a; = af) + 2; s (68) Va, (5, VE 5, V7))
= = ' 1 e s\2 e ie
where the reactive power demand is given (statically) by = 2(QY —QY) (25, — 23.) "‘xqiln(W)
Qu, = de(VZ) i N .
Recall from (6) and (7) that for the dynamic load model n Qr <ln<E>>2 B <ln<E>>2 . (0)
. V; 2 i i
Qdi ($Qi ’ VZ) =g + Qti1n<f> :
Hi Now from (5) we see that at an equilibrium point
Therefore Ve Ve
Y Qulenm) vy = () - ot (1)
Ve i o o Ve
() D ()Y - ()Y = @ -atm() "
T ViS 2 s s ) and
. s 0 ‘/is 0 ‘/is
So from (61), (62), the Lyapunov function for the MA model Tg = Qs n{ =) =@ ln m
can be written ‘ Ve ‘
— 0 0 @
Vilwy, @, 2,,V, 0%, 23, V?) = (@ - Qti)ln(?) (72)
1 1 \t -1 s
= gng’n()\)gg + 3 (LI - LI) (Q?) (iq - LI) Using (71) and (72) to manipulate the first termf, gives
1 n n e
- B (ViV; o= VV? 5 1 e sy2_ 1 Vi e s
2;; J( j COS vy i vy COSO‘U) Q(Q% —QSZ.) (a:qz_ —a:qz_) __§IH<V_f (a:qz_ —a:qz_).
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Fig. 5. Stable trajectory in the potential energy well.

Again, using (71) and (72) in the manipulation of the last VII. EXAMPLES

term of Vy;, gives The aim of the examples is to explore the characteristics of

0 e 2 s\ 2 the proposed Lyapunov functions. It is therefore convenient
Q, Vi Vi . , ) )

TZ In[ =+ — | In| =+ to use simple illustrative power systems. However the ideas

Hi Hi extend naturally to large systems. Also, the examples satisfy

_ 11 Ve . s the modeling assumptions which underlie the (strict) Lyapunov

~Tom 2 (25 +23.) functions. Relaxation of these assumptions for practical anal-

ysis can be handled in the same way as for traditional static

0 Ve 2 Vs 2
4 FE <<1n<_2>> - <1n<_2>> ) load Lyapunov functions [31].
2 J; J;
Adding the three terms o¥,;, gives

lei (3727_ s Ve' z? VZS)

v 1g0

A. Two Machine, Single Dynamic Load System

o y y The two machine, single load system of Fig. 4 involves
—S<<ln<ﬁ>> 3 <ln<E>> ) both generator and load dynamics. For a reasonably heavy

2 oy oy load, the operating point, i.e., stable equilibrium point (SEP),
is accompanied by a nearby unstable equilibrium point (UEP).
But from (68) we see that becaugg, (V;) = QY. ln(f,—z), the For this system there is only one UEP, so it is necessarily
contribution of each (static) reactive power load to the totéhe controlling UEP. (The potential energy of the controlling
energyV; is UEP gives an estimate of the critical energy such that the
region of state-space defined Ky : V(z) < V.} provides

0 e 2 s 2
Vo, (VE,V?) = TS <<ln<v—z)> - <IH<V_Z>> ) a good estimate of the region of attraction [31].) The power

0 0; flow solutions for the SEP and UEP are given in Tables | and
Y I, respectively.
ence, The inertia of the generator at bus 1 was set to a large value,
Vo, (VE, V) =V, (a:; J’fﬂizivvf) so that the bus acted as an infinite bus. The generator at bus

2 had an inertia constant of 0.1 pu. Machine damping was set
so the energy at equilibria is independent of the load dynamits.zero to allow investigation of load damping effects. Load
This result links with ideas developed in [10]. parameters werel, = 1.0 s,Q% = 0.4 pu, QY = 0.1 pu,

The function (68) assumes all reactive power loads are= 0.2 pu.
static, whilst (69) assumes all such loads are dynamic. AThe potential energy of the UEP was evaluatedVas=
Lyapunov function can easily be adapted to allow a mix d@f.0404 pu. As discussed in Section VI-C, this energy is
static and dynamic reactive power loads. independent of load dynamics.
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0.037 T T T T T T T T T 0.9 T T T T T T T

0.036 0.8

°
3

0.0351

o
=)

0.034

20.033 3
£ o4
@ >
0.032F
0.3
0.031
0.2
‘\\ —— critical switching
0.03 0.1k W ~ - - delayed switching i
“\\ — — no switching
0029 1 1 1 1 1 1 1 1 L 0 1 1 1 o~ Il L 1 1
0 05 1 1.5 2 25 3 35 4 45 5 0 10 20 30 40 50 60 70 80
time in seconds time in seconds
Fig. 6. Energy versus time for various valuesTof. Fig. 8. Critical capacitor switching.
N TABLE llI
[ / LoAD PARAMETERS
N’ V. =1.0pu
\A - [ 0,=0 v, Bus
0, ) 0, number | T, | Q% | @7 I
j0.6 j0.5 2 4004 03]005
I—I I 3 10/04]1.0| 02
Y j0.6 l
P, P, WhenT, is very small it dominates the expression farThe
QxpV2) QxpVs) fast recovery time means that the load reactive power never
Fig. 7. Dynamic load system. deviates very far from its steady-state val€. WhenT} is

very large,(4,)* becomes very small and is the dominating

The system was faulted by opening the feeder betwebdgtor inV. In this case the load behaves statically according to
buses 1 and 3. The feeder was returned to service wHBg logarithmic function?;(V'). Systems with static reactive
system energy reached the critical vale= 0.0404 pu. The Power (in addition to the assumptions made in Section Il) are
initial portion of the trajectory corresponding to this criticallyknown to be conservative, i.e., have zero damping. In each
cleared case is shown in Fig. 5. This three-dimensional pfg,ftthe two limiting cases mentioned, conservative systems are
shows potential energy on the vertical axis. The potenti$ing approached.
energy well, a characteristic of energy functions, is clearly
evident in this figure. Notice that the first oscillation pass§$ Two Load System
close to the UEP, but the second swing shows that S|gn|f|cant|_h ‘ h in Fia. 7 will b d 1o illustrat
damping, due to the dynamic load, has occurred. The systemb.lt.at Sys (Tm. S ?\;V” dm Itg. V{' de use to Hiustrate
is clearly stable. Delayed restoration of the feeder resultedﬁFf‘T Itl)ly ?ITagS'S 10' oad s]:ystergs. oa thparame ers are gl\t/en
instability, with the trajectory exiting the potential energy welll! '@b€ 1l Bus L 1S an infinite bus, So there are no generator

near the UEP. The mode of instability corresponded to an namics. . —
separation. In this case the system was disturbed by tripping the

It is interesting to study the effect of load time—constantffe_der between buses 1 and 2. With no corrective swnchmg
tion, the system was unstable. The voltage at bus 2 steadily

upon system damping. In this case, a disturbance was SATO S . . -
uIF;ted )k/Jy assignin% g nonzero value for the initial angul clined. This is shown in Fig. 8. However stability could
velocity of the generator at bus 2. A number of simulatio S maintained by switching in a shunt capacitor at bus_ 2
were conducted with various load time-constants. It can \é{'th a susceptance ‘.Jf. 0.4 pu) be_fore the system agquwed
seen that the damping was smallest for both very sm ergy (_aqual to th_e Cr'.tlcal V.aIUEC given by the controllllng

P. Time domain simulation of this stable case is also

and very largeT,, i.e., rapid and slow reactive power loa in Fig. 8. al ih a delaved switchi A
recovery, respectively. Between these two extreme cases '{,ngn. N g. ©, alohg with a delayed swilching case.
tential energy well view of critical capacitor switching

damping reached a maximum. This kind of behavior was al88 h 1 Fia. 9. This clearlv illustrates the sianifi
observed in [24] for linearized systems. It can be explainé shown In F1g. =. This clearly Hustrates the significance

using (31) which gave the rate of decrease in energy as toim(tahe UEP energy in determining the critical switching

V= _Tq(afq)Q_ An energy-type analysis of critical capacitor switching was
QY undertaken in [35]. This example reinforces the value of such
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0.04

potential energy
o
Q
N

Fig. 9. Energy view of critically switched system.

an approach. However the ideas can now be justified on the APPENDIX
basis of rigorous Lyapunov stability arguments. PROOF OF THEOREM 2
The proof of Theorem 2 is dependent upon the following
VIIl. C ONCLUSION definition and theorem.

. . . Definition I.1: The inertia of a matrixA is the triplet
This paper has developed Lyapunov functions for mult|m%-]c integers (n, , p) where n, z, and p are the number of

chine power systems with multiple dynamic reactive power. : : e

. igenvalues ofd with negative, zero and positive real parts,
loads. Both center of angle (COA) and machine angle (MAI, gspectively w gative, z poSHv P
model formulations have been used. The Lyapunov function heorem I 2 (Sylvester's Law of InertiaJFor any nonsin-
have been developed using a first integral analysis appro Drar matrixC, the symmetric matricesi and C*AC have
and a more formalized approach based on the Popov stabi :

iteri Th funci tensi f similar funci same inertia.
criterion. These functions are extensions of similar functions p, ¢ 110 em 2:Consider the Jacobiahgiven at (43).

developed for static reactive power loads. The paper undﬁris easy to show thagm — k, = [V]~*. So,

takes a comparison of the static and dynamic load Lyapunov

functions, and shows that they give the same value of energy
ilibri I 0 o] [/ 0o f,
at equilibria. 6 ot 2V
In order to obtain strict Lyapunov functions of the Eudr 0 I_l o 0110 (Qt) k,
Postnikov form, the transient response of the dynamic reactive 0 -VIWe¥ Illg, 9, 9,

power loads must have a logarithmic dependence on voltage. 7 0 0
Real power loads must satisfy the usual constant power x [0 I —QYV]™t
constraint. Relaxation of these modeling assumptions can be 0 0 I
handled in the usual way by approximating some of the f 0 I
Lyapunov function terms. N oy —1 v

The incorporation of load dynamics into a Lyapunov func- =10 (Qt) _01 0r -1
tion has opened up a number of possibilities for energy 9y 0 9, ~ VI iVl

function analysis of voltage collapse. From an analytical =J

perspective, the Lyapunov functions provide a very useful ) )

tool for analysis of the interaction between generator angéth all n)atrlces evaluated at = z°. The bottom diagonal

dynamics and load voltage dynamics. Practical direct stabil#§'m of J* can be evaluated as

assessment of voltage collapse also appears promising. An B B

i i - VTRt

example illustrates the use of a direct approach to determhe t

the critical switching time of a capacitor such that voltage 0 - _ _
J P 9 = Z(VITHQUEV) +2,+ Q) - VI QIV]

collapse is avoided. aVv
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VOV (VI e, + vy B
Ui 02
SV Q6.1)) ~ VI VI + [V Q8T
- VI QI - VI Qv -
VT Q6.1)) ~ VI (] + VDIV

[14]

where[z,] and [Q.(V)] are diagonal matrices with elements
of the corresponding vectors down the diagonal. [15]
Because the Jacobian elements are evaluated at z*,

from (5) we haver, + @, (V)

= Q" Let Q? be the diagonal [16]

matrix whose diagonal entries are the elementggmf Then

—1 0 —1 (17
- VT eVl
d 1 —1 0 —1
= S (VI Q8. V) - VI QIV] -
0 1 0 —1 0
= S (VI QE V) + (V1)
9 [19]
= 55 (V7@ 6.1) + Q).
Therefore
[20]
i@ 0 i’u
1 _ 1
J =10 (@) 0* 21]
9y 0 g z=x°
whereg*(8,V) = [V]™1(Q,(6, V) + Q7). By Theorem 1.2,/ [22]
and J’ have the same |nert|a sbis positive definite iff.J’ 23]
is positive definite. Recall thaf)? > 0 by definition. Then
by rearranging rows and columns df it follows that J’ is
positive definite iff J;, given at (44), is positive definite. [24]
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