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Abstract—The development of trajectory sensitivity analysis for
hybrid systems, such as power systems, is presented in the paper.
A hybrid system model which has a differential-algebraic-discrete
(DAD) structure is proposed. This model forms the basis for the
subsequent sensitivity analysis. Crucial to the analysis is the devel-
opment of jump conditions describing the behavior of sensitivities
at discrete events, such as switching and state resetting. The effi-
cient computation of sensitivities is discussed. A number of exam-
ples are presented to illustrate various aspects of the theory. It is
shown that trajectory sensitivities provide insights into system be-
havior which cannot be obtained from traditional simulation.

Index Terms—Dynamic response, hybrid dynamical systems,
power systems, switched systems, trajectory sensitivity.

I. INTRODUCTION

M ANY PHYSICAL systems exhibit dynamic behavior
which is governed by a mix of continuous-time (pos-

sibly constrained) dynamics, discrete-time and discrete-event
dynamics, switching action, and jump phenomena. Such sys-
tems range from batch processes [1] through to power systems
[2] and have become known generically as hybrid systems.
Some simple examples which illustrate various aspects of
hybrid systems are given in Sections II and VI.

Consider power systems, for example. The behavior of such
systems is governed by the nonlinear dynamics of many com-
ponents, including machines, loads, flexible AC transmission
system (FACTS) devices, and their associated control equip-
ment. Dynamic behavior is constrained by physical laws; for
example, current balance must be maintained at all nodes. Fur-
thermore, protection relays, controller limits, and discrete de-
vices, such as on-load tap changing transformers and switched
shunts, introduce discrete events, switching action, and state re-
setting into the system. Power system behavior can therefore be
quite complicated, yet system integrity is reliant on a thorough
understanding of that behavior. This requires effective and in-
sightful analysis.

The nonlinear nonsmooth dynamics of hybrid systems make
analysis difficult. While Lyapunov-type theory offers analyt-
ical insights for specific applications (see, for example, [1], [3],
and [4]), in general, the analysis of hybrid systems is reliant on
time-domain simulation. The advantage of simulation is that it
is applicable for arbitrarily complicated models. A disadvantage
is that it provides information about a single scenario. Gener-
ally it is not possible to confidently extrapolate results, even for
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small changes in system conditions. Each change to the system
requires another simulation. For large systems, such as power
systems, this often involves large computational costs.

Trajectory sensitivity analysis offers some relief from the
rigors of repetitive simulation. The approach is based upon
linearizing the system around a nominaltrajectory rather
than around an equilibrium point. It is therefore possible to
determine directly the change in a trajectory due to (small)
changes in initial conditions and/or parameters. These concepts
are well established for continuous dynamics [5]–[8], while
closely related perturbation analysis theory has been developed
for discrete event dynamic systems (DEDS’s) [10], [11]. An
interesting comparison of these fields is presented in [12]. This
paper makes an important extension to a general hybrid system
model.

Trajectory sensitivities provide valuable insights into the
influence of parameters on the dynamic behavior of systems.
Properties which are not obvious from the actual system
response are often evident in the sensitivities. For example, the
extra information available from trajectory sensitivities was
used in [13] to investigate the relative importance of various
events in a major power system disturbance. The example of
Section VI-C further illustrates this use of trajectory sensitivi-
ties.

Trajectory sensitivities were originally associated with a
number of areas in control and parameter estimation [5], [14].
More recent applications have included stability assessment
of power systems [15], [16]. The ideas presented in this paper
form a basis for the extension of these applications to hybrid
systems.

The paper is organized as follows: Section II presents a gen-
eral hybrid system model, along with a number of diverse ex-
amples. Trajectory sensitivities are introduced in Section III and
their calculation away from discrete events is discussed in Sec-
tion IV. The extension to discrete events, and hence general
hybrid systems, is presented in Section V. Some examples are
given in Section VI. Section VII discusses numerical integration
issues related to the computation of sensitivities. Conclusions
are drawn in Section VIII.

II. M ODEL

A. Background

As indicated in Section I, hybrid systems are characterized by
the following:

• continuous and discrete states;
• continuous dynamics;
• discrete events, or triggers;
• mappings that define the evolution of discrete states at

events.
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Conceptually, such systems can be thought of as an indexed
collection of continuous dynamical systems , along
with a mechanism for jumping between those systems, i.e., for
switching between the various. The continuous and dynamic
states are and , respectively. The jumping reflects the influ-
ence of the discrete event behavior and is dependent upon both
the trigger condition and the discrete state evolution mapping.
Overall system behavior can be viewed as a sequential patching
together of dynamical systems, with the final state of one dy-
namical system specifying the initial state for the next.

A formal presentation of these concepts is given in [17],
where a general hybrid dynamical system is defined as

(1)

and

• is the set of discrete states;
• is the collection of dynamical systems

where each is an arbitrary topolog-
ical space forming the continuous state space of, is
a semigroup over which the states evolve, andgener-
ates the continuous state dynamics;

• , for each , is the collection
of autonomous jump sets, i.e., the conditions which trigger
jumps;

• , where
is the autonomous jump transition map.

The hybrid state–space of is given by . In this paper we
restrict attention to hybrid systems whereis countable, each

, and each .
Other representations of hybrid systems have appeared (see,

for example, [18]). While each representation has its own par-
ticular flavor, they all capture the fundamental aspects of hybrid
systems identified at the beginning of this section.

The level of abstraction of (1) does not suit the development
of trajectory sensitivity analysis. A model which is more con-
ducive to such analysis is presented in the following subsection.
It is then shown that the proposed model is a realization of (1).

B. System Description

Many different types of systems, from manufacturing systems
to power systems, can be generically described by a parameter-
dependent differential-algebraic-discrete (DAD) model of the
form

(2)

(3)

(4)

(5)

(6)

where

...

and are matrices of zeros, except that
each row of each matrix has a single 1 in an appropriate loca-
tion. There is no restriction on and sharing some common
elements. In (5), , , refer to the values of , , and
just prior to the reset condition, while denotes the value of
just after the reset event.

In this model, which is similar to a model proposed in [19],
are continuous dynamic state variables,are algebraic state

variables, are discrete state variables, andare parameters.
As an example, in the power system contextwould include
machine dynamic states such as angles, velocities, and fluxes,
would include network variables such as load bus voltage mag-
nitudes and angles,could represent transformer tap positions
and/or relay internal states, andcould be chosen from a di-
verse range of parameters, from loads through to fault clearing
time.

Note that the model does not allow discontinuities in the dy-
namic states, i.e., impulse effects. This is not a restriction forced
by the analysis. In fact, later analysis is directly applicable to
cases where undergoes jumps. However the model adopts the
philosophy that the dynamic states of real systems cannot un-
dergo step changes.

The proposed model (2)–(6) captures all the important as-
pects of hybrid system behavior, namely, the interaction be-
tween continuous and discrete states as they evolve over time.
Between events, system behavior is governed by the differen-
tial-algebraic (DA) dynamical system

(7)

(8)

where is composed of , together with functions from (4)
chosen depending on the signs of the elements of. Each dif-
ferent composition of is indexed by a unique. An event is
triggered by an element of changing sign and/or an element
of passing through zero. At an event, the composition of
changes and/or elements ofare reset. Therefore, in this hybrid
system model, each DA dynamical system is effectively indexed
by and . At an event, this index changes and a jump is made
to the new dynamical system.

The implicit function theorem [20] allows (8) to be solved
(locally) giving

Substitution into (7) yields

(More complete details are given in Section II-C.) This repre-
sentation allows the DAD model to be related directly to the gen-
eral hybrid dynamical system model (1). The discrete states are
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. The dynamical systems are defined by (7)
and (8), with generating the continuous state dynamics.
Each jump set is composed of conditions and

, where , are given by . The general nature
of and, hence, , allows arbitrarily complicated sets of
event triggering conditions to be described for each . The
jump transition map is defined by the change in that
corresponds to each , along with the reset map (5) cor-
responding to each .

Initial conditions for the model (2)–(6) are given by

(9)

(10)

(11)

where is a solution of

(12)

Note that in solving for , the constraint switching described by
(4) must be taken into account. Often will have multiple
solutions. For a given , , and , there may be a number of
possible .

The following examples illustrate the DAD model structure
(2)–(6). Even though they are quite simple, they exhibit many
of the complexities associated with hybrid systems.

Example 1: This example is taken from [1]. The system is

where

The index changes from 1 to 2 when and from
2 to 1 when . Initially and .
The phase portrait and time response are shown in Figs. 1 and
2, respectively.

This model can be rewritten in the DAD form as

when

where , , , and hence,
.

The change between and is achieved by resetting the
matrix elements , whenever a switching surface is encoun-
tered. The switching surfaces are given by the algebraic con-
straints. Alternating between active switching surfaces corre-
sponds to flipping the sign of .

The sensitivity of trajectories to variation of, i.e., the slope
of the steeper switching surface, is presented in Section VI-A.

Fig. 1. Phase portrait for Example 1.

Fig. 2. Time-domain response for Example 1.

Example 2: This example is based on a case given in [21].
The system description is

sgn

when

with . This is a crude model of the bounce of a
ball when the coefficient of restitution is 0.8. The phase portrait
and time response of this system are shown in Figs. 3 and 4,
respectively.

The model can be rewritten in the DAD form of (2)–(6) as

when
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where , , and, hence,
.

In establishing the DAD model structure (2)–(6), we made
a deliberate decision not to allow resetting of the continuous
states. Therefore, to implement the reset condition of this ex-
ample, a discrete state and an algebraic state were intro-
duced and was redefined to be continuous. The discrete state

accumulates the step changes that occur at each reset event.
The algebraic relationship between, , and the redefined
ensures that replicates the behavior of the original (discon-
tinuous) .

The sensitivity of trajectories of this model to variation of,
the coefficient of restitution, is explored in Section VI-B.

Trajectories of the DAD system (2)–(6) describe the behavior
of the dynamic states, the algebraic states, and the discrete
states over time. To formalize these concepts we define the
flows of , , and , respectively, as

where

and is piecewise constant with step transitions
between the constant sections described by the reset equations
(5).

From the definitions of the flows, it is clear that

Notice that has been defined in terms of and rather
than . This reflects the dependence ofon , , and , as
described by (12). Therefore the definitions of, , and
establish the dependence of the flows on, , and .

It is clear that the notation can quickly become unwieldy.
Therefore in the sequel we will generally write the model more
compactly as

(13)

(14)

(15)

(16)

Fig. 3. Phase portrait for Example 2.

Fig. 4. Time-domain response for Example 2.

where

The system flow is defined accordingly as

(17)

Let the times at which events occur be given by
.

Notice that the definition of ensures that and remain
constant away from reset events (16). Further,ensures that
and remain unchanged at a reset event. As with (7) and (8),
over each of the open time intervals the system is
described by a smooth DA model

(18)
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(19)

where is composed of (14) together with functions from (15)
chosen depending on the signs of the elements of. [Recall
that the definition of the ensures that no elements of can
change sign during the period .]

Trajectory sensitivity analysis considers the influence of
(small) variations in the initial conditions , and parameters

, (or equivalently ) on the flow . Sensitivity relationships
are developed in Sections III–V.

C. Properties of DA Systems

Before focusing on sensitivities, it is important to establish
some basic properties of DA systems. This section provides a
brief summary. A much more extensive investigation is pre-
sented in [22].

Consider the DA model (18) and (19) which describes be-
havior between events, say during the open interval .
The algebraic equations define theconstraint surfaceor con-
straint set

(20)

The system is constrained to lie on this surface (in the set) over
the period . Equation (19) ensures that flows satisfy
the constraints. The differential equations (DE’s) drive the flows
over the constraint surface.

As indicated earlier, the implicit function theorem can be used
to establish a connection between the DA model and a locally
equivalent DE model. If is nonsingular at a point

, then it follows from the implicit function theorem
that there exist neighborhoods of and of

and a vector function such that

and

The function is unique in the sense that if , ,
and then

(21)

Upon substitution of (21) into (18), the DA system reduces to

(22)

i.e., a local DE description of the system. This local result is
valid wherever is nonsingular.

The algebraic equations may have more than one
solution. For a given , there may be a number of such
that . At each point where is nonsin-
gular, the implicit function theorem guarantees the existence of
a unique (in the sense defined above) vector function . A
local DE description

corresponds to each .

At points where is singular, the model may break down.
The conditions of the implicit function theorem are no longer
satisfied, so there is no guarantee of the existence of a well-
defined relationship (21) betweenand . In general, a system
trajectory cannot continue through a point whereis singular.
Such singular points are therefore known asimpasse pointsand
the set of points

(23)

is called theimpasse surface[22], [23].
The set contains all points on the constraint surface

which are not impasse points. Therefore, the DA model is well
defined in . This set defines an -dimensional
manifold [22], and has been called thecausal region. It is gen-
erally not a connected set though, with different components of
the set corresponding to different.

In the development and use of trajectory sensitivities, we will
be focusing upon cases where model breakdown is not a con-
cern. We therefore make the following assumption.

Assumption 1:All trajectories remain within the causal re-
gion , i.e., is nonsingular along trajectories.

Because Assumption 1 ensures that algebraic singularity is
avoided, the type of jump behavior discussed in [24] cannot
occur. The jumps which are a feature of the DAD model occur
only in response to discrete events.

III. T RAJECTORYSENSITIVITY ANALYSIS

The flow of a system will generally vary with changes in pa-
rameters and/or initial conditions. Trajectory sensitivity analysis
provides a way of quantifying the changes in the flow that result
from (small) changes in parameters and initial conditions. The
development of these sensitivity concepts will be based upon
the compact form of the DAD model (13)–(16). Recall that in
this model, incorporates the initial conditions and , as
well as the parameters. Therefore, the sensitivity of the flow
to fully describes its sensitivity to , , and .

In Section II-B, we defined the system flow in terms of
. The dependence ofon is not explicit, but follows from

(12). Therefore, in determining trajectory sensitivities, we will
not directly establish the sensitivity of flows to changes in.
Rather, such sensitivity is given implicitly by sensitivity to.

Trajectory sensitivities follow from a Taylor series expansion
of the flows and . Referring to (17), the expansion for
can be expressed as

higher order terms.

Neglecting the higher order terms and using (17), we obtain

(24)

where . From (24), the sensitivity of the flow
to (small) changes is given by the trajectory sensitivities

.
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A similar Taylor series expansion of yields

higher order terms.

Again neglecting the higher order terms and using (17) results
in

(25)

where . In this case, the sensitivity of the flow
to (small) changes is given by the trajectory sensitivities

.
Once the trajectory sensitivities and are known,

the sensitivity of the system flow to small changes in initial
conditions and parameters, which are described by, can be
determined from

(26)

We have yet to consider the calculation of the trajectory sensi-
tivities. Details are provided in the following sections.

IV. SENSITIVITY EVOLUTION AWAY FROM EVENTS

In this section we discuss the calculation of the trajectory
sensitivities and over the open time intervals

, i.e., away from events. The behavior of sensitivities
at switching and reset events is presented in Section V.

Away from events, the system model is given by (18) and
(19). Differentiating this DA system with respect to the initial
conditions results in

(27)

(28)

Note that , , , are evaluated along the flow
and, hence, are time-varying matrices.

Initial conditions for on the first time interval are
obtained by differentiating (9) and (11) with respect to

(29)

where is the identity matrix. Initial conditions for follow
from (28)

In accordance with Assumption 1, is nonsingular so (29)
can be used to obtain

(30)

On other time intervals, say , the initial sensitivities
, are given by the jump conditions described

in Section V.

An equivalent DE model for calculating can be ob-
tained by rearranging (28), taking account of Assumption 1, to
give

(31)

Substituting into (27) results in

(32)

This equation describes the sensitivity of trajectories of the re-
duced DE model given by (22). Given , we can obtain
from (31), keeping in mind that and are time-varying ma-
trices. [Note though that (31) and (32) are not normally used in
the computation of sensitivities. It is more efficient to solve (27)
and (28) simultaneously. Details are given in Section VII.]

Equation (31) highlights the importance of Assumption 1. If
is nearly singular, corresponding to the trajectory being close

to the impasse surface, can become large, even for small
. Under such conditions, a variation in initial conditions or

parameters which causes only a small change in the dynamic
states and may induce a large change in the algebraic states
.
The compact form of the model (13)–(16) is convenient for

developing the trajectory sensitivity equations. However it can
be helpful to revert to the full model description to examine the
sensitivity of the states and to their initial conditions and to
the parameters. Expanding (27) results in

(33)

Initial conditions follow from (29)

It can be seen from (33) that the sensitivities and remain
constant over the intervals between events. However the evolu-
tion of is influenced by all the and sensitivities.

V. SENSITIVITY BEHAVIOR AT EVENTS

A. Preliminary Concepts

In Section IV, we established (27) and (28) describing the
evolution of the sensitivities and over the intervals be-
tween switching and reset events. To fully describe the sensitiv-
ities though, we must quantify their behavior at these discrete
events that are characteristic of hybrid systems. To determine
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this behavior, we will consider the system at a single event. Ac-
cordingly, attention is focused on the model

(34)

(35)

(36)

which is directly related to the compact DAD model (13)–(16).
A number of comments should be made about this model.

• In this model, the switching and reset events are triggered
by the condition rather than by an element of

passing through zero. This modification helps to identify
the role of the triggering condition. We will later revert to
the situation where the event is described by a condition

.
• Notice that both switching and state resetting occur when

. This is the most general case. Sensitivity be-
havior at independent switching and reset events follows
from this general case and will be discussed later.

• We are investigating a single event. However the extension
to the usual case where there are multiple events, each
separated by a finite time interval, is straightforward.

• Coincident events, where two triggering conditions
and are simultaneously satisfied, are nongeneric.
However the analysis can be extended to such a case. This
is considered at the end of Section V-B.

Define the triggering hypersurface as

We are interested in the sensitivity of trajectories which pass
through . It is convenient to assume that the trajectory starts
from a point where passes through, and proceeds
to a point where . There is no loss of generality
in this assumption. Let be such a
trajectory, which starts from , intersects

at the point , and proceeds to the
point . The intersection point
is called thejunction pointand is called thejunction time. We
define time to be the limit as approaches from below
and as the limit as is approached from above.

The concept of trajectories passing throughis important.
Sensitivities cannot be defined for trajectories which are tan-
gential to . Consider such a trajectory. Then there exists an
incremental change in the initial conditions such that the in-
tersection point disappears. But for a different small change in

the intersection point persists. Therefore, at the tangent point
the trajectory is infinitely sensitive to initial conditions. To over-
come this difficulty we make the following assumption.

Assumption 2:Trajectories are transversal to the triggering
hypersurface .

It is also necessary to make the next assumption.
Assumption 3:The triggering function has a unique

normal at points in .
These assumptions are commonly made in the analysis of hy-

brid systems (for example, see [17, Assumption 5.3]). They are

also closely related to the DEDS concept ofdeterministic simi-
larity which underlies infinitesimal perturbation analysis [11].

The transversality condition ensures that trajectories must
cross , i.e., they cannot be tangential to. The condition is
satisfied at a junction point if

(37)

For the trajectory approaching, we have that at time

where is given by . Also, by
differentiating we obtain

At the limit , the transversality condition (37) becomes

(38)

The transversality condition of Assumption 2 ensures that the
junction point depends continuously on initial conditions[8].

We also need to ensure that the switching and reset events
are consistent with changing sign as is crossed. The
following assumption is therefore made.

Assumption 4:At a junction point ,
, .

This assumption is commonly made to ensure triggering
events do not accumulate [17]. It is generically satisfied for
realistic systems. If it was not satisfied, then the trajectory
could reach an impasse at the triggering hypersurface. Upon
encountering , the algebraic equations would switch from
to . However if , the model would be
forced to switch back to , which may result in switching to

again, and so on.

B. Jump Conditions

We now proceed to develop the conditions which govern the
behavior of trajectory sensitivities at discrete events. First, the
dependence of the junction timeon will be established.
That is then used to obtain the desired sensitivity jump condi-
tions.

Based on the model presented in Section V-A, at time

(39)

(40)

where

(41)

Also, in the limit

(42)
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From (42) it follows that

(43)

and from (41)

(44)

where all partial derivatives are evaluated at. Rearranging
(44), taking account of Assumption 1, and substituting into (43)
results in

(45)

Now from (39)

(46)

Also, (34) gives

(47)

Therefore, substituting (46) and (47) into (45) yields

Rearranging gives

(48)

Recall that is the time at which the event is triggered and so is
not influenced by the actual event that is subsequently triggered.
Therefore is also independent of the triggered event.

Notice that if the transversality condition (38) is satisfied,
then the denominator in (48) will be nonzero. Conversely, if the
transversality condition is not satisfied, then (48) breaks down
and the junction time becomes infinitely sensitive to initial
conditions . This behavior reflects the discussion which pre-
ceded Assumption 2.

We now proceed to determine the jump conditions describing
the behavior of the trajectory sensitivities at the discrete event.
Referring to (46), we know that

(49)

Substituting in (47) and rearranging gives

(50)

Similarly, we obtain at

(51)

In this case

where now and satisfy

(52)

Hence

(53)

The jump condition in is given by (50) and (53). But first
we must use (36), which gives

i.e.,

(54)

Using (44) yields

(55)

Subtracting (50) from (53) and using (55) results in the jump
condition

where for clarity we have adopted the notation

(56)

Reusing (50) to eliminate gives

Some further manipulation yields

(57)

where and are given by (55) and (48), respectively, as

(58)

(59)
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and , are given by (56). Differentiating and rearranging
(52) gives

(60)

Equations (57)–(60) together describe the trajectory sensitivity
jump conditions.

In developing the jump conditions, we chose to use an arbi-
trary trigger function . It can be seen that this function
influences the jump conditions through . Reverting back to
the original system description (13)–(16), the trigger function
becomes

for some . Therefore and .
Substituting into (59) gives

(61)

The compact form of the model enabled a neat development
and representation of the jump conditions. However, as was the
case at the end of Section IV, it is helpful to consider the jump
conditions in terms of the full model description.

Consider first (58). It follows from the definition of that

(62)

where

and , follow the same pattern.
Now consider the expansion of (57). Recall that

and likewise for . Therefore

(63)

It can be seen from (63) that
, i.e., that . However, we established

in Section IV that remained constant over the intervals be-
tween events. Therefore, because , it follows
that for all time .

The full model description leads to a useful simplification in
the denominator of (61) [and likewise (59)]

The model (34)–(36) used to develop the jump conditions
described a coincident switching and reset event. Consider the
case where the event involves only the resetting of, i.e., the
algebraic equations do not switch from to , but are defined
by a smooth function. Then would be used for the (implicit)
calculation of in both and in (56). Also, all occurrences
of in (58) and (59) [or alternatively (61)] would be replaced
by .

Now consider a switching event whereis not reset, i.e.,
. The reset function reverts to .

It follows from (62) that and the jump condition (57)
becomes

(64)

which is consistent with [25]. Also, with no reset event,
and (64) follows directly

from (49) and (51). Because of the structure ofand , only
is updated at such an event, with remaining constant

through the event.
This latter case, with no state resetting, enables an intuitive

interpretation of the jump conditions. Let be a small per-
turbation in initial conditions. The corresponding change in the

component of the junction point will be
and in the junction time . It follows from (49)
and (51) that

where for convenience, the notation and
has been adopted. This relationship is shown graphi-

cally in Fig. 5.
The jump conditions occur as a consequence of the differ-

ence between the times when the nominal and perturbed tra-
jectories reach the triggering hypersurface. Referring to Fig. 5
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Fig. 5. Graphical view of jump conditions.

it can be seen that at time, when the nominal trajectory en-
counters the hypersurface, the perturbed trajectory is at the point

. A further time is required for the perturbed
trajectory to evolve from that point to (a point on the
hypersurface). However, during that time interval, the nom-
inal trajectory moves to the point .
The perturbation must therefore ensure that the per-
turbed trajectory is at the point at time ,
while taking into account the progression of the nominal trajec-
tory. This is illustrated in the example of Section VI-A.

A few comments are in order.

• For clarity, Fig. 5 shows the perturbation at time
. However the actual jump in sensitivity from

to occurs at the junction time. There is no incon-
sistency, however, because is small so linearity can be
assumed.

• The discussion has been based on positive. However
the sign of is unimportant.

• If the junction time is independent of changes in, i.e.,
, or if is unchanged at switching, i.e.,

, then there will be no jump in the sensitivities, i.e.,
.

• Underlying the above discussion of jump conditions is the
fact that the algebraic constraintsare always satisfied.
(There may be a switching of constraints at the triggering
hypersurface, however.) The algebraic variablesfollow
directly from solution of at all times.

• The more general jump conditions (57) do not allow such
a clear interpretation of jump behavior. Similar statements
can be made, though the influence ofmust be taken into
account.

• It is unlikely that a trajectory would encounter two trig-
gering hypersurfaces simultaneously. However the jump
conditions extend naturally to such a nongeneric situation
by introducing a small delay between the junction times
and then taking the limit as that delay approaches zero.

Note that in setting up the fictitious delay, the ordering of
the hypersurfaces must correspond to the order in which
they would be encountered by the perturbed trajectory.
This implies a knowledge of the perturbation .

VI. EXAMPLES

A. Example 1—Continued

The phase portrait and time-domain response for this example
were presented in Figs. 1 and 2. The sensitivity of that nominal
trajectory to perturbation of, the slope of the steeper switching
surface, is shown in Fig. 6. The two curves of that figure corre-
spond to and . It can be seen that there is zero
sensitivity up to the point where the perturbed switching surface
is first encountered. This is intuitively sensible, as the trajectory
cannot be affected by the switching surface slope before it ac-
tually encounters the surface. At that first switching point and
then at each subsequent switching, both sensitivities
and undergo step changes. The influence of the pertur-
bation diminishes as the equilibrium point is approached.

The analysis of Section III showed that trajectory sensitivities
provide a first-order approximation of the change in a trajectory
that results from parameter changes. The sensitivity of
Fig. 6 is used in Fig. 7 as an illustration. Fig. 7 shows the trajec-
tory corresponding to the nominal parameter value

= 2.75. (This is an enlargement of a portion of Fig. 2.) It also
shows the trajectory which corresponds to the per-
turbed parameter = 3.0. The third curve

uses the sensitivity , evaluated with respect
to the nominal trajectory, to approximate . The ap-
proximation closely matches the perturbed trajectory

over each of the smooth segments of the trajectory,
but diverges when the nominal trajectory switches.
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The approximation and the perturbed trajectory again coincide
when the perturbed trajectory switches.

The mismatch around the switching events is clarified by the
discussion of jump conditions at the end of Section V-B. The
perturbation of the slope parameterfrom 2.75 to 3.0 results in
a delay in the junction time for each event. The delays are
apparent in Fig. 7, where the switching of lags that of

at each event. The jump conditions atensure that
the sensitivities accurately reflect trajectory perturbations at and
beyond the delayed junction time . Over the intervening
time interval the sensitivities cannot directly represent per-
turbations.

However, over the switching delay interval , the perturbed
trajectory can be accurately predicted through indirect use of
the sensitivities. A procedure is given in Appendix A. Fig. 8
provides a comparison of the actual trajectory , the
(direct) approximation from Fig. 7, and the approximation ob-
tained using this refinement. The improvement in the approxi-
mation is clearly evident.

B. Example 2—Continued

Figs. 3 and 4 gave the phase portrait and time response of
the nominal trajectory for this example. Fig. 9 illustrates the
sensitivity of that trajectory to perturbation of the coefficient of
restitution . The sensitivities of the algebraic stateand the
continuous state are shown. Due to the simple structure of
this example, the sensitivity remains constant between
events. The continuous state is the integral of , so the sen-
sitivity is the integral of the sensitivity . This
can be seen in Fig. 9.

In Fig. 10, the trajectory sensitivity is used to provide
a first-order approximation of the trajectory ofobtained when

is perturbed from 0.8 to 0.81. The nominal and perturbed tra-
jectories are shown as and , respectively.
The first order approximation is given by

where the sensitivity is evaluated for the nom-
inal trajectory. The refinement of Appendix A has been used to
improve the estimate over the switching delay intervals.

In this example, the oscillation period, i.e., the interval be-
tween corresponding reset events, decreases over time. In fact,
it approaches zero. As a consequence, a small change in the
coefficient of restitution leads to the nominal and perturbed
trajectories quickly moving out of phase. This can be seen in
Fig. 10. Initially there is an excellent match between and

. However around 5.5 s, the nominal and perturbed
trajectories lose synchronism. The jump conditions still produce
sensitivities which ensure is close to at time

. However, before that time is reached, the nominal tra-
jectory encounters another event, and the sensitivities take an-
other jump. Therefore, beyond 5.5 s, never catches up
to so the approximation is no longer valid.

This is an interesting case in that an equilibrium point is ap-
proached but can never be reached. Instead, the event triggering
times accumulate at a finite time. Beyond that accumulation

Fig. 6. Trajectory sensitivities for Example 1.

Fig. 7. Trajectory approximation for Example 1.

Fig. 8. Refined trajectory approximation for Example 1.

time, the solution is not defined in the usual sense. An alterna-
tive definition is required [26]. A consequence of this behavior
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is that a small increase in results in the accumulation point
being delayed to a time where the nominal trajectory did not
even exist. The perturbed trajectory clearly cannot be approxi-
mated near the delayed accumulation point.

This example was repeated with the sgn function of the
original model replaced by a saturation function

for

for

for .

This modified model approaches the original model as .
However, for any finite an equilibrium point exists and the
solution and trajectory sensitivities are well defined for all time.
In this case, the approximation showed the same initial form
as in Fig. 10. However, once , the error in the
approximation diminished significantly.

C. Example 3—Power System

The small power system of Fig. 11 provides a more practical
example of a system where continuous and discrete dynamics
interact. The active power load has recovery dynamics [27], and
is modeled by

(65)

(66)

where is the load state driving the actual load demand. In
response to a voltage step, the load undergoes an initial transient
step change given by the term , followed by exponential
recovery to the steady-state demand. The rate of recovery
is dictated by the load time constant. In this example, the
reactive power load is zero. Parameter values for the base case
are given in Table I.

An important aim of this example is to illustrate the ability
of the DAD structure (2)–(6) to model logic-based systems.
Therefore, a relatively detailed representation of the automatic
voltage regulator (AVR) of the tap changing transformer has
been adopted. The logic flow of the AVR for low voltages, i.e.,
for increasing tap ratio, is outlined in Fig. 12. The full DAD
model for this system is given in Appendix B. To assist in con-
necting AVR logic with the model, Fig. 12 shows the variables
that are related to particular functions. It is clear that the model
of Appendix B fits the DAD structure (2)–(6). Other power
system control and protection devices have been modeled in a
similar way in [28].

The system was disturbed at s by increasing the
impedance from to . This simulated the loss of
a feeder from the supply point to the transformer. The behavior
of the voltage at bus 3 is shown in Fig. 13, along with the load
demand . The system was clearly stable, although the voltage
underwent a large excursion. The voltage stabilized to a value
that was below the predisturbance level because the transformer
encountered its maximum tap.

Fig. 9. Trajectory sensitivities for Example 2.

Fig. 10. Trajectory approximation for Example 2.

TABLE I
BASE CASE PARAMETER

VALUES

Fig. 11. Power system of Example 3.

Fig. 14 shows the sensitivity of the voltagetrajectory to the
parameters and . These sensitivities are used in Fig. 15
to approximate voltage behavior for perturbation of bothand

. Fig. 15 shows the trajectory corresponding to
the nominal parameter values = 5, . It also shows
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Fig. 12. Transformer AVR logic for increasing tap.

Fig. 13. Voltage and load behavior for Example 3.

the trajectory which corresponds to perturbed pa-
rameters = 5.5 and . The third curve

uses the sensitivities and , evaluated for
the nominal case, to approximate . The procedure
given in Appendix A has been used to estimate behavior over
the periods, i.e., the periods between tapping of the nominal
and perturbed systems. The approximation is clearly very good
along the whole trajectory.

Trajectory sensitivities provide helpful insights in the anal-
ysis of system behavior. Consider first the sensitivity with re-
spect to . It can be seen from Fig. 14 that an increase in

Fig. 14. Trajectory sensitivities for Example 3.

Fig. 15. Trajectory approximation for Example 3.

will lead to an increase in the voltage over the first 80 s of the
trajectory, but after that it will result in a decrease in voltage.
This is consistent with physical intuition. An increase in
corresponds to slower load recovery. During the initial voltage
drop, the load is less than its steady-state value(see Fig. 13).
Therefore, slower load recovery means the load is smaller for
longer, so the voltage is higher. However, over the latter sec-
tion of the transient, whenever the voltage steps up due to a tap
change the load overshoots . So the slower recovery corre-
sponds to the load staying higher for longer and, hence, to re-
duced voltage.

Now consider . From Fig. 14 it can be seen that an in-
crease in leads to a decrease in voltage. Again, this is con-
sistent with intuition. It is clear that the voltage recovery is due
to the increase in the tap ratio. Increasing delays the tap
changes, so the voltage stays lower for longer. The tap delay due
to an increased accumulates with each tap change. There-
fore, the effect on the voltage becomes more pronounced with
each subsequent tap change. This is evident in Fig. 14.
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For this simple example, the sensitivities do not provide quali-
tative information beyond that which is intuitively obvious. (Al-
though they do provide quantitative information which is not
otherwise available. For example, it can be seen from Fig. 14
that a 1 s change in would have a larger effect on the voltage
trajectory than a 1 s change in .) However, for more compli-
cated systems where the interpretation of parameter influences
is not so straightforward sensitivities can be extremely useful.
Such a situation is explored in [13].

It is shown in [15] and [25] that sensitivities can be used
as an indicator of the proximity of a trajectory to the stability
boundary. This is based on the fact that trajectories which are
closer to the stability boundary will be more sensitive to param-
eters and initial conditions. This power system example nicely
illustrates the result. Fig. 16 shows the trajectory for three
values of the postdisturbance line impedance , the base
case value of 0.65, along with slightly higher impedances 0.67
and 0.68. It is clear that higher values of line impedance result
in a more stressed less secure system. However, the full signif-
icance of the increase in becomes much more apparent
when the sensitivity of each trajectory to, shown in Fig. 17,
is viewed. When = 0.68 the system is extremely sensi-
tive, indicating close proximity to instability. In fact, the system
is unstable for = 0.69.

VII. N UMERICAL INTEGRATION

A. Introduction

In Section IV, it was shown that the trajectory sensitivities
evolve according to the linear time-varying DA system (27),
(28). This system involves DE’s, along
with algebraic equations. [Recall, however,
that is not interesting, so the number of DE’s is effectively
reduced to .] Therefore, for large systems such
as power systems, the number of equations quickly becomes
prohibitive. Of course, for many applications only a few of the
sensitivities are required. For example, if the sensitivity of the
trajectory to initial conditions and parameters was desired,
then the number of extra DE’s would be ,
along with extra algebraic equations. Even so, the
computational cost may be high.

Fortunately, by using an implicit numerical integration tech-
nique such as trapezoidal integration, the computational burden
of obtaining the trajectory sensitivities can be reduced consider-
ably. The details follow. Section VII-C then discusses the com-
putation of junction points.

B. Trapezoidal Numerical Integration

The trapezoidal approach to numerical integration is quite
standard and can be found in many references. In the power
system context, [29] provides a clear presentation. The appli-
cation to general DA systems is treated rigorously in [30]. A re-
view of the basic ideas highlights a close link between the com-
putation of the trajectory and of the associated sensitivities.

Fig. 16. Variation in voltage response with increasingX .

Fig. 17. Variation in trajectory sensitivity with increasingX .

Consider the DA system (18), (19) which describes behavior
over the periods between events. We repeat the equations here
for convenience

(67)

(68)

The trapezoidal approach approximates the DE’s (67) by a set of
algebraic difference equations coupled to the original algebraic
equations (68), i.e.,

(69)

(70)

where
superscript indexes the time instant ;
superscript indexes the time instant ;

integration time step.
Equations (69) and (70) describe the evolution of the states,
from time instant to the next time instant . Initial condi-
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tions for the time interval are given by
and .

Notice that (69) and (70) form a set of implicit nonlinear al-
gebraic equations. Therefore, to solve for , given ,

requires the use of a nonlinear equation solver. The Newton
iterative technique is commonly used. Rearranging (69) allows
the algebraic equations to be written

(71)

Equation (71) has the form

which is solved iteratively according to

(72)

where is the Jacobian of with respect to , and has the
structure

(73)

Note that indexes the iterations of the equation solver, and is
not related to the time index. When (72) has converged, the
solution provides and .

Now consider the sensitivity equations (27) and (28). Using
trapezoidal integration, they are approximated by

Rearranging gives

(74)

Therefore, and are obtained as the solution of a linear
matrix equation. However, notice that the matrix to be factor-
ized in solving (74) is exactly the Jacobian (73) used in solving
for and at (72). Furthermore, the solution of (72)
requires the factorization of that Jacobian. Therefore, the fac-
tors of the left-hand matrix in (74) are available as a byproduct
of calculating and . With those factors already avail-
able, the solution of (74) involves little extra computation.

C. Computation of Junction Points

Switching and reset events generically do not coincide with
the time instants of the numerical integration process. However,

for many applications is it important to find the exact time be-
tween integration time steps at which the event occurs. This is
possible through a simple modification to the trapezoidal tech-
nique.

Referring to the compact DAD model (13)–(16), let
trigger an event. Say at time instant , but at
instant . Let be the (unknown) time from instantto
the event. The variable can be found by solving (69) and (70)
with free to vary, but with the extra constraint . Because
the extra variable is matched by an extra constraint, the Newton
iterative technique can again be used to find the solution.

Having found the junction point, the appropriate switches in
and/or update to should be made, then (70) resolved to obtain
the postevent values of the algebraic variables. The postevent
values of and provide the initial conditions for the next sec-
tion of the trajectory. It can be convenient to use the time step

for the first step after the event. This aligns subsequent
points with the specified time step.

VIII. C ONCLUSIONS

Hybrid systems are characterized by the interaction between
continuous and discrete-event dynamics. Power systems are an
important example. The paper presents a DAD model which
captures the rich variety of behavior that can be exhibited by
such systems. Generally, because of the nonlinear nonsmooth
behavior of hybrid systems, analysis is reliant on time-domain
simulation. However, simulation can be cumbersome for any-
thing beyond single scenarios. This paper develops trajectory
sensitivities for hybrid systems, as a way of augmenting time-
domain analysis.

Trajectory sensitivity analysis involves linearizing the system
around a nominal trajectory, rather than an equilibrium point. It
quantifies the changes in the system flow that result from pertur-
bations in parameters and/or initial conditions. Calculating tra-
jectory sensitivities over smooth sections of the flow is straight-
forward. An efficient numerical algorithm has been presented.
However, discrete events generically induce jumps in the sen-
sitivities. The paper establishes and explores those jump condi-
tions.

In hybrid systems which exhibit accumulation points, the sen-
sitivity information near an accumulation point may not be very
useful. This is due to loss of event synchronism between the
nominal and perturbed trajectories. However trajectory sensi-
tivities still provide a good first-order approximation over the
finite interval before synchronism is lost.

Trajectory sensitivities provide valuable insights into the
influence of parameters on the dynamic behavior of systems.
Properties which are not obvious from the actual system
response are often evident in the sensitivities. This has been
illustrated in the paper through a number of examples. Further,
the gradient-type information given by trajectory sensitivities
can be used in nonlinear least squares algorithms for appli-
cations such as parameter estimation [14], [31] and stability
assessment [16]. This paper forms a basis for the extension of
these and other applications to hybrid systems.
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APPENDIX A
TRAJECTORYAPPROXIMATION REFINEMENT

This appendix suggests a procedure for refining the estimate
of the perturbed trajectory over the periodto . For
a given perturbation , the switching delay can be es-
timated from (59). Assume initially that . Referring
to Fig. 5, at time the perturbed trajectory is at the point

. It follows that over the period
to , the perturbed trajectory is given by

At time , the perturbed trajectory switches. In the general
case where the event includes state resetting, we obtain

where refers to the reset value. Using (57), we obtain

(75)

Alternatively, because , (75) can
be written

For the perturbed trajectory switches at , i.e.,
before the nominal trajectory. At , just after switching,

is again given by (75). Over the period to , the
perturbed trajectory in this case is given by

At time we obtain

APPENDIX B
MODEL FOREXAMPLE 3

The model for the system described by Figs. 11 and 12 is

when

plus real and reactive power balance equations for buses 1 and
3.
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