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Trajectory Sensitivity Analysis of Hybrid Systems

lan A. Hiskens Senior Member, IEEEand M. A. Paj Fellow, IEEE

Abstract—The development of trajectory sensitivity analysis for small changes in system conditions. Each change to the system
hybrid systems, such as power systems, is presented in the paperrequires another simulation. For large systems, such as power
A hybrid system model which has a differential-algebraic-discrete systems, this often involves large computational costs.

(DAD) structure is proposed. This model forms the basis for the Traiect itivit vsis off lief th
subsequent sensitivity analysis. Crucial to the analysis is the devel- rajectory’ SEnsitivity” analysis ONers some refiet irom e

opment of jump conditions describing the behavior of sensitivities figors of repetitive simulation. The approach is based upon
at discrete events, such as switching and state resetting. The effi-linearizing the system around a nominthjectory rather
cient computation of sensitivities is discussed. A number of exam- than around an equilibrium point. It is therefore possible to
ples are presented to illustrate various aspects of the theory. Itis gatermine directly the change in a trajectory due to (small)
shown that trajectory sensitivities provide insights into system be- S .
havior which cannot be obtained from traditional simulation. changes in 'n't"’?‘l conditions and/or paramete_rs. These Conc_epts
are well established for continuous dynamics [5]—-[8], while
closely related perturbation analysis theory has been developed
for discrete event dynamic systems (DEDS’s) [10], [11]. An
interesting comparison of these fields is presented in [12]. This
. INTRODUCTION paper makes an important extension to a general hybrid system

ANY PHYSICAL systems exhibit dynamic behaviormodel. o _ o _

which is governed by a mix of continuous-time (pos- Trajectory sensitivities provide valuable insights into the
sibly constrained) dynamics, discrete-time and discrete-evéfﬂﬁuen‘?e of parameters on the_dynam|c behavior of systems.
dynamics, switching action, and jump phenomena. Such sy¥operties which are not obvious from the actual system
tems range from batch processes [1] through to power systeigPonse are often evident in the sensitivities. For example, the
[2] and have become known generically as hybrid systenftra information available from trajectory sensitivities was
Some simple examples which illustrate various aspects \gged in [13] to investigate the relative importance of various
hybrid systems are given in Sections Il and VI. events in a major power system disturbance. The example of

Consider power systems, for example. The behavior of Sugﬁction VI-C further illustrates this use of trajectory sensitivi-
systems is governed by the nonlinear dynamics of many coHS:
ponents, including machines, loads, flexible AC transmission Trajectory sensitivities were originally associated with a
system (FACTS) devices, and their associated control equitmber of areas in control and parameter estimation [5], [14].
ment. Dynamic behavior is constrained by physical laws; féfore recent applications have included stability assessment
example, current balance must be maintained at all nodes. FRfrPower systems [15], [16]. The ideas presented in this paper
thermore, protection relays, controller limits, and discrete df2rm a basis for the extension of these applications to hybrid
vices, such as on-load tap changing transformers and switc/f¥gtems.
shunts, introduce discrete events, switching action, and state rel "€ paper is organized as follows: Section Il presents a gen-
setting into the system. Power system behavior can therefore8@! hybrid system model, along with a number of diverse ex-
quite complicated, yet system integrity is reliant on a thoroug’an'eS- Trajectory sensitivities are introduced in Section Il and
understanding of that behavior. This requires effective and jtheir calculation away from discrete events is discussed in Sec-
sightful analysis. tion IV. The extension to discrete events, and hence general

The nonlinear nonsmooth dynamics of hybrid systems makybrid systems, is presented in Section V. Some examples are
analysis difficult. While Lyapunov-type theory offers analyt@iven in Section V1. Section VIl discusses numerical integration
ical insights for specific applications (see, for example, [1], [3]SSu€s relgted to Fhe computation of sensitivities. Conclusions
and [4]), in general, the analysis of hybrid systems is reliant € drawn in Section VIII.
time-domain simulation. The advantage of simulation is that it
is applicable for arbitrarily complicated models. A disadvantage Il. MODEL
is that it provides information about a single scenario. Gener-
ally it is not possible to confidently extrapolate results, even féx. Background

Index Terms—Dynamic response, hybrid dynamical systems,
power systems, switched systems, trajectory sensitivity.

As indicated in Section |, hybrid systems are characterized by
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Conceptually, such systems can be thought of as an indexgdR"*™++» _ R»
collection of continuous dynamical systetiis= f,(x), along g
with a mechanism for jumping between those systems, i.e., for g
switching between the varioy$. The continuous and dynamic 9 = .
states are: andq, respectively. The jumping reflects the influ- (@)
ence of the discrete event behavior and is dependent upon both nim+z+p .
the trigger condition and the discrete state evolution mappin@ji R - R,
Overall system behavior can be viewed as a sequential patchir}% dxm
. . ) amdD € R
together of dynamical systems, with the final state of one dg-
. P ach row of e

namical system specifying the initial state for the next.

A formal presentation of these concepts is given in [17
where a general hybrid dynamical system is defined as

. Rn-l-m-l-l-l-p — R™

j:lv"'ve

, B € R**™ are matrices of zeros, except that
ach matrix has a single 1 in an appropriate loca-
ion. There is no restriction ogy; andy, sharing some common
lements. In (5)z—, ¥, =z~ refer to the values aof, y, and=
just prior to the reset condition, while" denotes the value af
H=1[Q, % 4 G (1) lustafter the resetevent. |
In this model, which is similar to a model proposed in [19],

and x are continuous dynamic state variablggre algebraic state
variables,> are discrete state variables, ahdre parameters.
S‘As an example, in the power system contexwvould include
machine dynamic states such as angles, velocities, and flyxes,
would include network variables such as load bus voltage mag-

a semigroup over which the states evolve, gpdjener- nitudes and angles, could represent transformer tap positions
ates the continuous state dynamics: ' and/or relay internal states, andcould be chosen from a di-

« A={A,},eq. A, C X, foreachy € Q, isthe collection verse range of parameters, from loads through to fault clearing
- qfqcidr g q ’ .

of autonomous jump sets, i.e., the conditions which triggHFne' . Lo
jumps; Note that the model does not allow discontinuities in the dy-

e Q=10 whereG,: A, — § = X x namic states, i.e., impulse effects. This is not a restriction forced
{Gafacq EN Uyeq(Xa x {a)) by the analysis. In fact, later analysis is directly applicable to

cases where undergoes jumps. However the model adopts the

philosophy that the dynamic states of real systems cannot un-

» (}is the set of discrete states;

* X = {¥;}4cq is the collection of dynamical system
Y, =[Xg, Iy, fy]where eacli, is an arbitrary topolog-
ical space forming the continuous state spaceofl’; is

is the autonomous jump transition map.
The hybrid state—space @f is given by S. In this paper we

restrict attention to hybrid systems whéepeis countable, each dergo step changes.

X, CR™, n, € Z4,and each’; = Ry. 5 . i
Other representations of hybrid systems have appeared (seér he proposed model (2)—(6) captures all the important as

for example, [18]). While each representation has its own pfgc‘ts of hybrid system behavior, namely, the interaction be-

) een continuous and discrete states as they evolve over time.
ticular flavor, they all capture the fundamental aspects of hybr, S )

. " o . . etween events, system behavior is governed by the differen-
systems identified at the beginning of this section.

The level of abstraction of (1) does not suit the developmetr'f%l_algt:‘\braIC (DA) dynamical system

of trajectory sensitivity analysis. A model which is more con- i = f(x, y, % A) )
ducive to such analysis is presented in the following subsection.

It is then shown that the proposed model is a realization of (1). 0=gq(2, v, 2 A) (8)
o whereg, is composed of(?, together with functions from (4)
B. System Description chosen depending on the signs of the elemenig oEach dif-

Many different types of systems, from manufacturing systerferent composition ofy, is indexed by a unique. An event is
to power systems, can be generically described by a parametaggered by an element @f; changing sign and/or an element
dependent differential-algebraic-discrete (DAD) model of thef 3. passing through zero. At an event, the compositiop,of

form changes and/or elements:oére reset. Therefore, in this hybrid
system model, each DA dynamical system is effectively indexed
&= f(z,y, z; A) (2) Dby qandz. At an event, this index changes and a jump is made
0=g" (z,y, 2, \) (3) to the new dynamical system.
(i—) . 4 The implicit function theorem [20] allows (8) to be solved
0= {g(H_)(-/Ea Y, Z5 )\) Yd, i < 07 i = 17 ceey d (4) (|Oca||y) g'V'ng
g (.’L’, Y, 25 )‘) Yd, i > Oa
Z+:hj($_7y_7z_;)‘) ye,j:07 jE{l, "'76} (5) yI(p(,LZ)(l'; )\)
z=0 ye,J#Ovvj€{177C} (6)

Substitution into (7) yields

T = fZ((I,Z)(:L.; )\)

n m l P
TEXCRY, yeVCERY, zcZCR, ACLCR (More complete details are given in Section 1I-C.) This repre-
Yya = Dy sentation allows the DAD model to be related directly to the gen-
ye = By eral hybrid dynamical system model (1). The discrete states are

where
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2 T T T T T

(g, ) € Q. The dynamical systems,, . are defined by (7)

and (8), withf(*qyz) generating the continuous state dynamics.
Each jump seti, ., is composed of conditiong; ; = 0 and

Ye,; = 0, whereyy, y. are given byy, .. The general nature A
of g, and, hencey, ., allows arbitrarily complicated sets of
event triggering conditions to be described for egghz). The oSt
jump transition magZ,, ., is defined by the change ipthat
corresponds to eacfy, , = 0, along with the reset map (5) cor- = of
responding to eacl. ; = 0.

Initial conditions for the model (2)—(6) are given by o8¢ 7
x(to) = xo 9) - L - i
y(to) =Y (10) asf 1
Z(to) = 2y (11) :
2 3 -é —1I 6 1 2

whereyy is a solution of '

Fig. 1. Phase portrait for Example 1.
g(zo, Yo, 70; A) = 0. 12) 9 P P

1 T T T T T T T P

Note that in solving foy,, the constraint switching described by AN
(4) must be taken into account. Often= 0 will have multiple 05- AN
solutions. For a giver, 2o, and A, there may be a number of
possibleyy.
The following examples illustrate the DAD model structure _;
(2)-(6). Even though they are quite simple, they exhibit man
of the complexities associated with hybrid systems. 3
Example 1: This example is taken from [1]. The system is

X,
i

1

~1.5F

States x

T = Azx 2
where -25p
1 —100 1 10 -t

Al_Lo 1}’ AQ_[—lOO 1}' i - L

o 0.02 0.04 0.06 0.08 ) Of1 O.‘12 0.14 0.16 0.’18 0.2
The index: changes from 1 to 2 whem, = 2.75z; and from Time (ee)

2t0 1 whenzs = 0.36z;. Initially zo = [0 1]* andi = 1. Fig 2. Time-domain response for Example 1.
The phase portrait and time response are shown in Figs. 1 and

2, respectively.

Example 2: This example is based on a case given in [21].
This model can be rewritten in the DAD form as b b g [21]

The system description is

P 1 2z z .
o z9 1 L1 =2
0= J AT — 22—y, y<0 xj N Sg_r(xl)
T | z2 — 0.36z1 — 237, y>0 xy =0.8zy, whenz, =0
+ o j—
1T A with 2o = [0.25 0]*. This is a crude model of the bounce of a
Z;r =27 , wheny =0 ball when the coefficient of restitution is 0.8. The phase portrait
+ B and time response of this system are shown in Figs. 3 and 4,
73 = T3 respectively.

wherezo = [0 1], 7 = [=100 10 1], A = 2.75, and hence, The model can be rewritten in the DAD form of (2)—(6) as

Yo = —1. . . . T1 =10
The change betweedA; and A, is achieved by resetting the

matrix elements;, > whenever a switching surface is encoun- T2 =%
tered. The switching surfaces are given by the algebraic con- O=z1—w0
straints. Alternating between active switching surfaces corre- O=x0— 21— Yo

sponds to flipping the sign of;.
The sensitivity of trajectories to variation af i.e., the slope
of the steeper switching surface, is presented in Section 1-A. 7 ==z

A =2+ (1= Ny,
, wheny; =0
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wherexzg = [0.25 0]', »p = [0 —1]*, A = 0.8 and, hence,
yo = [0.25 O]t o}

In establishing the DAD model structure (2)—(6), we made
a deliberate decision not to allow resetting of the continuou
states. Therefore, to implement the reset condition of this > o4 8
ample, a discrete statg and an algebraic stae were intro-
duced and:», was redefined to be continuous. The discrete stat
z1 accumulates the step changes that occur at each reset eve< or ]
The algebraic relationship between -2, and the redefined,
ensures thag. replicates the behavior of the original (discon-
tinuous)zs. 04

The sensitivity of trajectories of this model to variation)of o8l _
the coefficient of restitution, is explored in Section VI-B. [

Trajectories of the DAD system (2)—(6) describe the behavio %] 1
of the dynamic states, the algebraic statag and the discrete 4 s : s s s ‘ : ‘ s ‘
statesz over time. To formalize these concepts we define the TS0 eI men s 0 ol elsee 0
flows of z, 4, andz, respectively, as

-0.2F

Fig. 3. Phase portrait for Example 2.

.’L'(t) :d)a}(an 20, ta )‘) ! j ' i
y(t) = ¢y (x0, 20, t, A) o8
z2(t) = ¢.(x0, 20, t, A) sl i
where
2 (Bulwo, 70, . V) :
. 2\ T 72 EERS! -
df 0 0 g
= f(¢$(x07 20, tv )‘)7 (/)y(xov 20, tv )‘)7
d)z(x()v 20, tv )‘)7 )‘) o4
0 :g(d)w(xov 20, tv )‘)7 (/)y(xov 20, tv )‘)7 -06-
¢Z($07 20, tv )‘)7 )‘) -08r
ande.(zo, 20, t, A) IS piecewise constant with step transitions o 4 2 Timj(sec) : s 6
between the constant sections described by the reset equations
5). Fig. 4. Time-domain response for Example 2.
From the definitions of the flows, it is clear that
where
¢2(o, 20, to, A) =20 [ ]
by(x0, 20, to, A) =40 z=|z|€X=XxZxLCR"tH?
A
¢=(x0, 20, to, A) =20. L
f T
Notice that¢, has been defined in terms of, and z, rather f=10 hj=|hy
thanyy. This reflects the dependencewgfon zg, 7, and, as 1 0] A

described by (12). Therefore the definitionsdaf, ¢,, and¢.  The system flow is defined accordingly as
establish the dependence of the flowsagn 2o, and A.

It is clear that the notation can quickly become unwieldy. #(zo. t) = [%(&o, t)} _ [&(t)} ) (17)

Therefore in the sequel we will generally write the model more ¢y(z0, ) y(t)
compactly as Let the times at which events occur be given{by: to < 71 <
. Ty < +o )
z=[f(z,vy) (13)  Notice that the definition off ensures that and A remain
0=g" (z, y) (14) constant away from reset events (16). Furthgensures that
90z, ) ya i <0 and A remain unchanged at a reset event. As with (7) and (8),
0=19"G), B i=1,--,d over each of the open time intervals,, 7,1) the system is
gy (&7 y) Yd, i > 07 TRl

(15) described by a smooth DA model

£+ = ﬁj (£_7 y_) Ye,j = 0, JE {17 T 6}(16) z= i(lv y) (18)
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0=g(z, v) (29) At points wherey, is singular, the model may break down.

) ] ) The conditions of the implicit function theorem are no longer
whereg is composed of (14) together with functions from (15)4tisfied, so there is no guarantee of the existence of a well-
chosen depending on the signs of the elementg;ofRecall  yefined relationship (21) betweerandy. In general, a system
that the definition of the;, ensures that no elementsgpf can trajectory cannot continue through a point wheges singular.

change sign during the periddy, 7i.+1).] _ Such singular points are therefore knowrirapasse pointand
Trajectory sensitivity analysis considers the influence @fiq set of points

(small) variations in the initial conditions, 2o and parameters
A, (or equivalentlyzo) on the flow¢. Sensitivity relationships T ={(z, y) €C: det g,(z, y) =0} (23)
are developed in Sections IlI-V.

is called theimpasse surfacf?], [23].

C. Properties of DA Systems The setC\Z contains all points on the constraint surface
Before focusing on sensitivities, it is important to establisihich are not impasse points. Therefore, the DA model is well

some basic properties of DA systems. This section provide§i@fined inC\Z. This set defines af. + I + p)-dimensional

brief summary. A much more extensive investigation is prédanifold [22], and has been called tbausal region|t is gen-

sented in [22]. erally not a connected set though, with different components of
Consider the DA model (18) and (19) which describes b&1€ set corresponding to differepf. o _
havior between events, say during the open inteal 711 ). In the development and use of trajectory sensitivities, we will
The algebraic equations define tbenstraint surfaceor con- be focusing upon cases where model breakdown is not a con-
straint set cern. We therefore make the following assumption.
Assumption 1:All trajectories remain within the causal re-
C={(z,y) € X xY:g(z,y) =0}. (20) gionC\Z, i.e., g, is nonsingular along trajectories.

Th . inedtoli hi ; inthe Because Assumption 1 ensures that algebraic singularity is
e system s constrained tolie on this surface (in thepeter avoided, the type of jump behavior discussed in [24] cannot

the period(7, 711 ). Equation (19) ensures that flows satisfy, ..., e jumps which are a feature of the DAD model occur
the constraints. The differential equations (DE’s) drive the flombshly in response to discrete events

over the constraint surface.

As indicated earlier, the implicit function theorem can be used
to establish a connection between the DA model and a locally
equivalent DE model. I, = (9g/dy) is nonsingular ata point ~ The flow¢ of a system will generally vary with changes in pa-
(z*, y*) € C, then it follows from the implicit function theorem rameters and/or initial conditions. Trajectory sensitivity analysis
that there exist neighborhoo®% C R2 of z* andl/, C R™ of provides a way of quantifying the changes in the flow that result

IIl. TRAJECTORYSENSITIVITY ANALYSIS

y* and a vector functio: U, — U, such that from (small) changes in parameters and initial conditions. The
. B . development of these sensitivity concepts will be based upon
Yt =) the compact form of the DAD model (13)—(16). Recall that in

this model,zo incorporates the initial conditions, and zo, as
well as the parameters Therefore, the sensitivity of the flow
0= g(z, p(z)), VzelU,. to z¢ fully describes its sensitivity t@g, 2o, andA.
B In Section 1I-B, we defined the system flogv in terms of
The functiony is unique in the sense thatif€ U,, y € U,, g,. The dependence gfonzyy is not explicit, but follows from
andg(z, y) = 0 then (12). Therefore, in determining trajectory sensitivities, we will
not directly establish the sensitivity of flows to changegdn
v =@ (21) Rather, such sensitivity is given implicitly by sensitivity tg.
Upon substitution of (21) into (18), the DA system reduces to Trajectory sensitivities follow from a Taylor series expansion
of the flows¢, and¢,. Referring to (17), the expansion fey,
(z, p(2)) can be expressed as

f

@ (22) Az(t) = Ady (2o, 1)

i.e., a local DE description of the system. This local result is O (z0,t)

valid wherevery, is nonsingular. =
The algebraic equationg = 0 may have more than one

solution. For a giverz*, there may be a number gf such Neglecting the higher order terms and using (17), we obtain

and

=

Azxg + higher order terms.
dzo

that(z*, yf) € C. At each pointz*, y) whereg, is nonsin- du(t)

gular, the implicit function theorem guarantees the existence of Az(t) = —= Az

a unique (in the sense defined above) vector functigiz). A _ Zo A 24

local DE description =, (1) Ao (24)
i = fi(z) wherez,, € R2*2. From (24), the sensitivity of the flow,,

= to (small) changeg\z, is given by the trajectory sensitivities
corresponds to each,. Zzo ().
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A similar Taylor series expansion g, yields An equivalent DE model for calculating,, (t) can be ob-
tained by rearranging (28), taking account of Assumption 1, to
Ay(t) = Agy(zo, 1) give
_ a¢y(£07 t)

Azxo + higher order terms.

dxg Yzog = _ggjlggizo . (31)

Again neglecting the higher order terms and using (17) resuf§sibstituting into (27) results in

in
. -1
Ay(t Lgg = (iﬂ — [y, 9&) Ly - (32)
Ay(t) ~ %O) Azo
= This equation describes the sensitivity of trajectories of the re-
=z, () Ao (25) a yornel

duced DE model given by (22). Given,,, we can obtairy,,
from (31), keeping in mind that, andg, are time-varying ma-
trices. [Note though that (31) and (32) are not normally used in
the computation of sensitivities. It is more efficient to solve (27)
and (28) simultaneously. Details are given in Section VII.]
Equation (31) highlights the importance of Assumption 1. If
gy is nearly singular, corresponding to the trajectory being close
to the impasse surfacg,, can become large, even for small
z,. Under such conditions, a variation in initial conditions or

wherey,, € R™*2. In this case, the sensitivity of the floy,
to (small) change&\x, is given by the trajectory sensitivities
Yzo (t)

Once the trajectory sensitivities, (¢) andy,, (¢) are known,
the sensitivity of the system flow to small changes in initial
conditions and parameters, which are describedy, can be
determined from

A o= Az(t)] T, (t) A 26 parameters which causes only a small change in the dynamic
Plzo, 1) = Ay(t) | 7 | Yo () Zo- (26) statest and~ may induce a large change in the algebraic states
We have yet to consider the calculation of the trajectory sengi-The compact form of the model (13)—(16) is convenient for
tivities. Details are provided in the following sections. developing the trajectory sensitivity equations. However it can
be helpful to revert to the full model description to examine the
IV. SENSITIVITY EVOLUTION AWAY FROM EVENTS sensitivity of the states and~ to their initial conditions and to

In this section we discuss the calculation of the trajecto?{)e parameters. Expanding (27) results in
sensitivitiesz,, (t) and y,, (t) over the open time intervals

(7%, Tk+1), 1.€., away from events. The behavior of sensitivities d | P _d Too Lzo TA
at switching and reset events is presented in Section V. dt )Z\EO dt )Z\WO ;“:ZO ;“:A
Away from events, the system model is given by (18) and Zo To Azo A
(19). Differentiating this DA system with respect to the initial Jo fo Ia| | %2y %z 2
conditionsz results in =10 0 0 Zry Rz AX
0 0 0 Az Azg AN
Epy = fo(B)Zay + fu(D)Ya (27) Sy
0 = gx(t)Zzy + gy(t)Ya,- (28) + 8 [Yzo Yz W] (33)
Note thatf,, /4, 9z, g, are evaluated along the flow(zo, ¢)
and, henae_, a_re tiﬁe_varying matrices. Initial conditions follow from (29)
Initial conditions forz,,, on the first time intervalt,, 1) are
obtained by differentiating (9) and (11) with respect:tp Ty (to) =1 Tz (to) =0 za(to) =0
. (to) 7 (29) Zx0 (to) 0 2z (to) 1 Z)\(to) 0
Azo(to) =0 Az (t0) =0 An(to) =1.
wherel is the identity matrix. Initial conditions fog,,, follow o )
from (28) - It can be seen from (33) that the sensitivitigs and ), remain
constant over the intervals between events. However the evolu-
0 = gu(to)za, (to) + gy (to )y (to)- tion of z,, is influenced by all the,, andy,,, sensitivities.
In accordance with Assumption &,(to) is nonsingular so (29) V. SENSITIVITY BEHAVIOR AT EVENTS

can be used to obtain A. Preliminary Concepts

Yo (t0) = — (gy(to)) ™ gz (o). (30) In Section IV, we established (27) and (28) describing the
evolution of the sensitivities,, andy,, over the intervals be-
On other time intervals, s&y, 7r+1), the initial sensitivities tween switching and reset events. To fully describe the sensitiv-
L (T,j), Yo (T,j—) are given by the jump conditions describedties though, we must quantify their behavior at these discrete
in Section V. events that are characteristic of hybrid systems. To determine
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this behavior, we will consider the system at a single event. Aalso closely related to the DEDS conceptleterministic simi-
cordingly, attention is focused on the model larity which underlies infinitesimal perturbation analysis [11].
The transversality condition ensures that trajectories must

= f(z, v) (34) crossS, i.e., they cannot be tangential & The condition is
{g_(x Y) s(z,y) < 0 a5 satisfied at a junction poirlte(7), y(7)) if
0 = + = ? i)
97 (z, v) s(z, y) >0 ¢ | ()
£ =h(@y).  s@w=0 (@6 vstz) o) |57 %o 7
which is directly related to the compact DAD model (13)_(16f0r the trajectory approachiig we have that at time™ < 7
A number of comments should be made about this model. i) =f @(T—)’ y—(T—))

« In this model, the switching and reset events are triggered
by the conditions(z, %) = 0 rather than by an element ofwherey ™ (77) is given byg™(z(7 ), (7)) = 0. Also, by
y passing through zero. This modification helps to identifglifferentiatingg™ we obtain
the role of the triggering condition. We will later revert to L ol L
the situation where the event is described by a condition ~ ¥\" )= - ((gy ) gﬂ)L_ (1)

i = 0. ol (s | (G G}

 Notice that both switching and state resetting occur when
—, the transversality condition (37) becomes

s(z, y) = 0. This is the most general case. Sensitivity bex; e limit +
havior at independent switching and reset events follows

from this general case and will be discussed later. 9s i)+ @@(T)

» We are investigating a single event. However the extension dz — gy~
to the usual case Wh.ere 'there are multllple events, each _ (SE_ Sy(g;)flg;) i F ),y (7))
separated by a finite time interval, is straightforward. 2/ s

« Coincident events, where two triggering conditisps= 0 # 0. (38)

Zrc])?/vsév; t?\:r:nzllmstig?:giot?:gxf:rt]ﬁzz%asrlfcﬂ(;nc?:;:r'lr r|1§ transversality condition of Assumption 2 ensures that the
is considered at tI¥1e end of Section V-B " junction point depends continuously on initial conditiaRg8].

) i i We also need to ensure that the switching and reset events
Define the triggering hypersurface as are consistent with(z, %) changing sign as is crossed. The
following assumption is therefore made.

S={(z,y) € C\Z: s(z, y) = 0}. Assumption 4:At a junction point (z(7), y(7)) € &,

_ _ . _ _ _ s(a(r7), y(r7)) x s(z(rT), y(r1)) < 0.

We are interested in the sensitivity of trajectories which passThis assumption is commonly made to ensure triggering
throughs. It is convenient to assume that the trajectory staréyents do not accumulate [17]. It is generically satisfied for
from a point wheres(z, i) < 0 passes through, and proceeds realistic systems. If it was not satisfied, then the trajectory
to a point wheres(z, y) > 0. There is no loss of generality could reach an impasse at the triggering hypersurface. Upon
in this assumption. Lep(zo, t) = [z(t)" w(t)"]° be such a encounterings, the algebraic equations would switch frgm
trajectory, which starts from(zo, to) = [zo* ygl*, intersects to g*. However ifs(z(1), y(v+)) ¥ 0, the model would be
S at the pointp(zo, 7) = [z(7)" »(7)"]', and proceeds to the forced to switch back tg—, which may result in switching to
pointé(zo, t1) = [z} ¥i]‘. Theintersection poiritz(7), ¥(7)) ¢+ again, and so on.
is called thgunction pointandr is called thgunction time We
define timer~ < 7 to be the limit ag approaches from below B. Jump Conditions

andr™ > 7 as the limit ag- is approached from above. We now proceed to develop the conditions which govern the

The concept of trajectories passing througlits important. pehavior of trajectory sensitivities at discrete events. First, the
Sensitivities cannot be defined for trajectories which are tagapendence of the junction timeon z, will be established.
gential toS. Consider such a trajectory. Then there exists afhat is then used to obtain the desired sensitivity jump condi-
incremental change in the initial conditiomas such that the in- jons.

tersection point disappears. But for a different small change ingased on the model presented in Section V-A, at time< +
zg the intersection point persists. Therefore, at the tangent point

the trajectory is infinitely sensitive to initial conditions. To over- 2 =x(7 ) =¢s (go, T*) (39)
come this djfficulty we mal§e the following assumption_. _ Yy~ =y (17) = ¢, (zo, 77) (40)
Assumption 2:Trajectories are transversal to the triggering
hypersurfaces. where
It is also necessary to make the next assumption. .
Assumption 3:The triggering functiors(z, ) has a unique 0=g" (27, y7). (41)

normalVs(z, ) at points inS. Also, in the limit
These assumptions are commonly made in the analysis of hy-
brid systems (for example, see [17, Assumption 5.3]). They are s(z”,y")=0. (42)
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From (42) it follows that In this case
spdxr +s,dy =0 (43) ‘;_Q =i(rH) = (i(,r-i-)7 y"'(T"'))
T —+ -

and from (41)
where nowz (1) andy™ (7 1) satisfy

g, dz” +g,dy” =0 (44)
+ Y ot ) = 0. 52
where all partial derivatives are evaluatedrat Rearranging g (Q(T oy )) (52)
(44), taking account of Assumption 1, and substituting into (4%)ence
results in g
+y My +y (ot
(Sg_sy(g;)—lgg—ﬂ‘h dz= = 0. (45) on(T )— dgo(T ) i(i(T )7 Yy (T )) Tzo- (53)
Now from (39) The jump condition inz,, is given by (50) and (53). But first
we must use (36), which gives
de _ (0x  Or dr (46)
dro  \dzo O dxo — dzt _0dh d&__ %dy_‘

i dzy 9z d dy d
Also, (34) gives 20 L dZo Y aZo

i.e.
az L N ’
T —(r = ﬁg—_ _l’_ﬁy _>‘ . (54)

Therefore, substituting (46) and (47) into (45) yields dzo dzo dzo /|-

o Using (44) yields
(SE - Sy(gy ) lgz)‘ _
T dz dx
B B . d B T (Y ]ac — ho (g -1 - =
(2wt + £alr () ) =0 2, 0= (b ile) e )| g
L | . dg _

Rearranging gives %2 Uz (7). (55)
ﬂ(T—) =1y, Subtre_lcting (50) from (53) and using (55) results in the jump
dzo = condition

_ O 23, (1) = 2, (77)
(Sg - Sy(gg)_lgﬁ_) |‘r* i(g(’r_),y_(’r_)) ' B — R g_( —) - d_£ ( —) _ (f+ _ f*)
(48) Tz d£0 4 d£0 4 — - T£0

Recall thatr is the time at which the event is triggered and so is = (ﬁ; — I) (;l_g(T_) — (fr = J7) T

not influenced by the actual event that is subsequently triggered. - Lo

Thereforer,, is also independent of the triggered event. where for clarity we have adopted the notation

Notice that if the transversality condition (38) is satisfied,
then the denominator in (48) will be nonzero. Conversely, if the ST=f(z(7), vy (7))
transversality condition is not satisfied, then (48) breaks down fr=f (x(T+) y+(T+)) ) (56)

and the junction time- becomes infinitely sensitive to initial
conditionsz,. This behavior reflects the discussion which prereusing (50) to eliminatédz /dzo)(7~) gives
ceded Assumption 2.

We now proceed to determine the jump conditions describing z,., (77) — 2., (77)

the behavior of the trajectory sensitivities at the discrete event. /., _ _ + _
Referring to (46), we know that - (ﬁg_ I) (220 (T + 7 7m0) = (7 = £7) Ty
Some further manipulation yields
Y o -1 R (49) P Y
dxo or|__

T

2, () = BE 2y (77) = (T = BE ) Ty (57)
Substituting in (47) and rearranging gives 220 (7") = g 2o (— T ) -

dr whereh}, andr;, are given by (55) and (48), respectively, as
Ty (77) = d—x_o(T_) = &™),y (77))71e-  (50) -
R R = (h. —hy,(9;) gy 58
Similarly, we obtain at-+ = ( (— by(gy) g”))f (58)
—N—1 — —

d£ + 4 8£ . Sz — Sy (gy ) gg — Lz (T )
- — Lz + T 51 Tzg = — — — = (59)
dzo (™M) Lz (™M) or |, T (51) = (s£ — Sy(gy )71!@) |T— i
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(52) gives hyZz, hpz., hiza %
)\1‘0 )\Zo )\)\ 0
v (79 = = (6 70F)| |, 279 (60) (63)

Equations (57)—(60) together describe the trajectory sensitivi%yCan be seen from (63) thk., Ao, AJ(7) = [has Ay M
g Nzg NA - g Nzg N

jump condlthns. . " 77), i.e, thath,,(77) = A, (77). However, we established
In developing the jump conditions, we chose to use an arbi- ; Z 2 :
. . . . in Section IV that\,, remained constant over the intervals be-
trary trigger functions(z, v). It can be seen that this function

influences the jump conditions through, . Reverting back to t\éveen events. Therefc;re, b”e(_:au%g(to) =[0°0 1}, itfollows
the original system description (13)—(16), the trigger functiotn atAg, () = [0 0 1] ora time? > fo. e
' The full model description leads to a useful simplification in

andf*, f~ are given by (56). Differentiating and rearranging [ Tzg Tz T ] fr=r
= (T_) - Tz

becomes the denominator of (61) [and likewise (59)]
for somek. Therefores, = 0 ands, = [0---’f---0]t = 1. 1 1 F-
Substituting into (59) gives L(9,) " 0z S~ =19, )™ 92 9= 93] 8
Lk ((95)_195)‘ iy (77) =1i(g, ) loz [
Toy = — T . (61)

1k ((gy )7Yez )| - f~
L ((92) g_)|T ! The model (34)—(36) used to develop the jump conditions
The compact form of the model enabled a neat developmelaiscribed a coincident switching and reset event. Consider the
and representation of the jump conditions. However, as was tese where the event involves only the resetting,dfe., the
case at the end of Section 1V, it is helpful to consider the junilgebraic equations do not switch frgm to g, but are defined
conditions in terms of the full model description. by a smooth functiog. Theng would be used for the (implicit)
Consider first (58). It follows from the definition gf that calculation ofy in both f~ andf™ in (56). Also, all occurrences
of g~ in (58) and (59) [or alternatively (61)] would be replaced

I 0 0 b
W= |n h ok ve - _— - -
Sz z Nz IA Now consider a switching event wheteis not reset, i.e.,
0 0 zT = z~. The reset function reverts ®(z, y, z; \) = 2.
0 . It follows from (62) thath} = I and the jump condition (57)
— | hy| (95) oz 97 93] becomes
0 -
I 0 0
= |k Rk (62) 24, (71) = 22, (77) = (T = )7 (64)
o o0 I =" - - -
where which is consistent with [25]. Also, with no reset event,
. I (dz/dzo)(77) = (dz/dzo)(rt) and (64) follows directly
hy = (ha = hy(g;) " 0z )|T— from (49) and (51). Because of the structurg/fandf ~, only

x5, IS updated at such an event, with, remaining constant
through the event.
This latter case, with no state resetting, enables an intuitive

andh?, 13 follow the same pattern.
Now consider the expansion of (57). Recall that

ft interpretation of the jump conditions. Létz, be a small per-
ff=1o0 turbation in initial conditions. The corresponding change in the
- 0 2 component of the junction point will bAz ~ (dz /dz)Azg
and in the junction timeAr ~ 7., Az. It follows from (49)
and likewise forf™. Therefore and (51) that
Tzo Tzo T
Zoo 2y x| (TT) B 7
Mo e A Az =gzg Ago+ [ A1 =af Azo+ fTAT
0 O Tag Tzy T - where for convenience, the notation = z,,(7 ) andz} =
= R: RX| | %oy 22 2a | (T7) ., (1) has been adopted. This relationship is shown graphi-
U Azg Az Ar cally in Fig. 5.

enceAr between the times when the nominal and perturbed tra-

I 0 0 f- The jump conditions occur as a consequence of the differ-
Tzo
jectories reach the triggering hypersurface. Referring to Fig. 5
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Nominal Perturbed
trajectory trajectory

AT
b z(r) + Az Triggering

hypersurface
Fig. 5. Graphical view of jump conditions.
it can be seen that at timg when the nominal trajectory en- Note that in setting up the fictitious delay, the ordering of
counters the hypersurface, the perturbed trajectory is at the point the hypersurfaces must correspond to the order in which
z(7) +x5, Azo. Afurther timeAr is required for the perturbed they would be encountered by the perturbed trajectory.
trajectory to evolve from that point te{7) + Az (a point on the This implies a knowledge of the perturbatidx.
hypersurface). However, during that time intergat, the nom-
inal trajectory moves to the poip{7 + A7) = z(7) + fT A7, VI. EXAMPLES

The perturbatiormjg0 Azo must therefore ensure that the per- .
turbed trajectory is at the point(7) + Az at timer + Ar, A. Example 1—Continued
while taking into account the progression of the nominal trajec- The phase portrait and time-domain response for this example
tory. This is illustrated in the example of Section VI-A. were presented in Figs. 1 and 2. The sensitivity of that nominal
A few comments are in order. trajectory to perturbation of, the slope of the steeper switching
surface, is shown in Fig. 6. The two curves of that figure corre-
spond todz; /O anddz2 /. It can be seen that there is zero
sensitivity up to the point where the perturbed switching surface
is first encountered. This is intuitively sensible, as the trajectory
cannot be affected by the switching surface slope before it ac-
tually encounters the surface. At that first switching point and
then at each subsequent switching, both sensitivities/9A
anddz, /A undergo step changes. The influence of the pertur-
bation diminishes as the equilibrium point is approached.
The analysis of Section Il showed that trajectory sensitivities
- n provide a first-order approximation of the change in a trajectory
Za, (T ). = L (77). . . . . .. that results from parameter changes. The sensitikity/ 0 of
* Underlying the above discussion of jump conditions is thI‘—sig 6 is used in Fig. 7 as an illustration. Fig. 7 shows the trajec-
fact that the algebraic constrainjsare always satisfied. ) A e ) . R
tory x1(¢; 2.75) corresponding to the nominal parameter value

E\Thirri Tf:l)é:eh%sv:tg?')n_?hf ;:)nesgizl.gtsa?;;iﬁglllgge“n/g: 2.75. (This is an enlargement of a portion of Fig. 2.) It also
ypersu » NOWEVeT. 9 Ic vari W' shows the trajectory:1 (¢; 3.0) which corresponds to the per-

directly from solution ofy(z, ) = 0 at all times. B .
» The more general jump conditions (57) do not allow suctﬁerGd parametex = 3.0. The third curve

a clear interpretation of jump behavior. Similar statements o
can be made, though the influenceifmust be taken into PPN 3.0) = @y (8 2.75) +0.25 N (t; 2.75)
account. -

« It is unlikely that a trajectory would encounter two trig-uses the sensitivitydz, /0A)(¢; 2.75), evaluated with respect
gering hypersurfaces simultaneously. However the juntp the nominal trajectory, to approximatg(¢; 3.0). The ap-
conditions extend naturally to such a nongeneric situatigmoximationz***“* closely matches the perturbed trajectory
by introducing a small delay between the junction times, (¢; 3.0) over each of the smooth segments of the trajectory,

and then taking the limit as that delay approaches zetmt diverges when the nominal trajectary(¢; 2.75) switches.

* For clarity, Fig. 5 shows the perturbati@[;jO Agg at time
T + Ar. However the actual jump in sensitivity fromy,
to gj;o occurs at the junction time. There is no incon-
sistency, however, becauée- is small so linearity can be
assumed.

» The discussion has been based on posifive However
the sign of A7 is unimportant.

« If the junction time is independent of changes:i i.e.,
7z, = 0, orif fis unchanged at switching, i.ef,;” =
fr, then there will be no jump in the sensitivities, i.e.
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The approximation and the perturbed trajectory again coincic
when the perturbed trajectory switches.

The mismatch around the switching events is clarified by th
discussion of jump conditions at the end of Section V-B. Th
perturbation of the slope paramefefrom 2.75to 3.0 resultsin
a delayAr in the junction timer for each event. The delays are g

02F

X, sensitivity

=)

apparentin Fig. 7, where the switchingaf(¢; 3.0) lags that of
z1(t; 2.75) at each event. The jump conditionsraénsure that
the sensitivities accurately reflect trajectory perturbations at ar?.g -0t
beyond the delayed junction time+ Ar. Over the intervening ¢
time interval A7 the sensitivities cannot directly represent per- -2
turbations.

However, over the switching delay intenal-, the perturbed
trajectory can be accurately predicted through indirect use 1
the sensitivities. A procedure is given in Appendix A. Fig. 8 04!

vntyofx‘,xzt

0.3+

L x, sensitivity

1 1 L 1 L

provides a comparison of the actual trajecteryt; 3.0), the
(direct) approximation from Fig. 7, and the approximation obF-,
tained using this refinement. The improvement in the approxi'—g' 6.

mation is clearly evident. o

L L L
0.04 0.06 0.08 0.1 0.12 0.14

Time (sec)

L
0.02 0.16 0.18

Trajectory sensitivities for Example 1.

0.2

B. Example 2—Continued

-0.1f

Figs. 3 and 4 gave the phase portrait and time response
the nominal trajectory for this example. Fig. 9 illustrates the
sensitivity of that trajectory to perturbation of the coefficient of
restitutionA. The sensitivities of the algebraic statgand the
continuous state; are shown. Due to the simple structure of ~os-
this example, the sensitivigyy» /0 remains constant between
events. The continuous state is the integral ofy2, so the sen-
sitivity dz; /9 is the integral of the sensitivitgy,/dX. This
can be seen in Fig. 9.

In Fig. 10, the trajectory sensitivifyy2 /3 is used to provide
afirst-order approximation of the trajectoryfobtained when
A is perturbed from 0.8 to 0.81. The nominal and perturbed tre

—0.2}+

~04F

-0.51

- - x1(l;2.75) Nominal trajectory

x1(t;3.0) Perturbed trajectory

XEPP(;3.0) - Approximation to

perturbed trajectory

jectories are shown ag(¢; 0.8) andy.(¢; 0.81), respectively.

The first order approximation is given by
Fig. 7.

0.14 0.16 0.18
Time (sec)

Trajectory approximation for Example 1.

0.2

VN 081) = (1 08) +0.01 22 (1 0.8) :
where the sensitivitydy. /0X)(¢; 0.8) is evaluated forthe nom- |
inal trajectory. The refinement of Appendix A has been used t
improve the estimate over the switching delay intervals.

In this example, the oscillation period, i.e., the interval be
tween corresponding reset events, decreases over time. In fe
it approaches zero. As a consequence, a small change in ".osf
coefficient of restitution\ leads to the nominal and perturbed
trajectories quickly moving out of phase. This can be seen i
Fig. 10. Initially there is an excellent match betweéh* and
y2(t; 0.81). However around 5.5 s, the nominal and perturbe:
trajectories lose synchronism. The jump conditions still produc
sensitivities which ensurg”" ™ is close toy(#; 0.81) at time
7+ A7. However, before that time is reached, the nominal tra

-0.2F

-0.4

T T T T T T T

x,(5:3.0) Perturbed trajectory

x?"p“’"(t;&o) Direct approximation

seoooo XP(3.0) Refined approximation

1 L : r L 1 1

jectory encounters another event, and the sensitivities take ¢ *"

other jump. Therefore, beyond 5.5;5™"* never catches up
to y2(¢; 0.81) so the approximation is no longer valid. Fig. 8.
This is an interesting case in that an equilibrium point is ap-

proached but can never be reached. Instead, the event triggetimg, the solution is not defined in the usual sense. An alterna-
times accumulate at a finite time. Beyond that accumulatigive definition is required [26]. A consequence of this behavior

1
0.15 0.16 017 0.18 0.19
Time (sec)

.12 0.13 0.14

Refined trajectory approximation for Example 1.

0.2
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is that a small increase ik results in the accumulation point
being delayed to a time where the nominal trajectory did no
even exist. The perturbed trajectory clearly cannot be approx =
mated near the delayed accumulation point.

This example was repeated with the &gy) function of the
original model replaced by a saturation function

-
o
T

Yy sensitivity
X, sensitivity \[/

-1, forzs < K

=)

Sensitivity of X, ¥, to A

1
-
S

T

1
sat(wz) = ¢ Kz, for|zs| < ITe

1
1, for zo > e sob L

This modified model approaches the original modekass co. - , . , . ‘
However, for any finitek an equilibrium point exists and the ° 1 2 4
solution and trajectory sensitivities are well defined for all time.

In this case, the approximation showed the same initial forfig. 9. Trajectory sensitivities for Example 2.

as in Fig. 10. However, onces| < (1/K), the error in the

approximation diminished significantly. : * ' "

3
Time (sec)

C. Example 3—Power System

The small power system of Fig. 11 provides a more practice
example of a system where continuous and discrete dynami
interact. The active power load has recovery dynamics [27], an
is modeled by

1

s 0

iy =7 (PY = Pd) (65)
p

Py=a,+ PV (66)

—06f — — — - ¥,(t0.8) Nominal trajectory
wherez,, is the load state driving the actual load demahdin ——— %,{t081) Pertubedtrajectory
response to a voltage step, the load undergoes an initial transic -o2 e P08 popmene
step change given by the terf V.2, followed by exponential 0 ] 2 3 4 5 3

Time (sec)

recovery to the steady-state demai¢l The rate of recovery
reactive power load is zero. Parameter values for the base case

are given in Table I. TABLE |
An important aim of this example is to illustrate the ability BASE CASE PARAMETER
of the DAD structure (2)—(6) to model logic-based systems. VALUES

Therefore, a relatively detailed representation of the automatic

0 pre post_
voltage regulator (AVR) of the tap changing transformer has 2;," 5‘2 (f f; 1V 05 §125 )3_165
been adopted. The logic flow of the AVR for low voltages, i.e., X2 | Toap | Viow | Tistep | Ponox | Mamit
for increasing tap ratio, is outlined in Fig. 12. The full DAD 0.8] 20 [1.04 [0.0125] 1.1 [1.0375
model for this system is given in Appendix B. To assist in con-
necting AVR logic with the model, Fig. 12 shows the variablesy., ;o Vi 6, Volls =0 Va8,
that are related to particular functions. It is clear that the mode i H Lin i
of Appendix B fits the DAD structure (2)—(6). Other power — ey, S -
system control and protection devices have been modeled ir “ H Qa=0
similar way in [28]. Supply Pust Bos 2 Bus3

The system was disturbed at= 10 s by increasing the
impedanceX; from X to X", This simulated the loss of Fi9- 11. Power system of Example 3.
a feeder from the supply point to the transformer. The behavior
of the voltage at bus 3 is shown in Fig. 13, along with the load Fig. 14 shows the sensitivity of the voltaggtrajectory to the
demand?;. The system was clearly stable, although the voltagerameterd), andZi.,. These sensitivities are used in Fig. 15
underwent a large excursion. The voltage stabilized to a valiseapproximate voltage behavior for perturbation of lfjftand
that was below the predisturbance level because the transforiigy,. Fig. 15 shows the trajectois (¢; 5, 20) corresponding to
encountered its maximum tap. the nominal parameter valuéd$ = 5, 7;,, = 20. It also shows
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x 10~
< Monitor voltage V3 ) 12 T T . . . . . i
10 E
st _
Taps on upper limit? |yes Reset timer (yg = z1) -
(yﬁ > 07) Block timer ("1."1 =0) 6 « T, sensitivity
no
zm 4
Voltage in deadband, Vo > Vg7 |yes % 2
&

(y2 >07)

no

=)

-2

Timer enabled? no Enable timer
(#1=17) (. =1)
yes -6+

-4

«— T"_ip sensitivity

8 L s L L L L L L L

i ? 0 20 40 80 80 100 120 140 180 180 200
Timer reached Tiap?  |no Trme oes)
(ys = 07)

yes Fig. 14. Trajectory sensitivities for Example 3.

Change tap (n =1~ =+ ngtep)
Reset timer (2, = z1)

1.02 T T T T T T

Fig. 12. Transformer AVR logic for increasing tap.
0.98

T T
1 }: —40.44
0.98[ H0.43 0.94
é 0.92
0.96 —0.42 @

0.94

o
o
N

o
©

1039 § 0.86 — — = = V,(t5,20) Nominal trajectory
V3(1;5.5,22) Perturbed trajectory

approx
Vs

Voltage V3 (pu)

0.88

0.38 0.84} (t:5.5,22) Approximationto

perturbed trajectory

40.37 0.82 L \ L L
0

) L L I 1
20 40 80 80 100 120 140 160 180 200
Time (sec)

0.36

036 Fig. 15. Trajectory approximation for Example 3.

L ) ! L L L L L .
C 20 40 80 80 100 120 140 160 180 200
Time (sec}

will lead to an increase in the voltage over the first 80 s of the
trajectory, but after that it will result in a decrease in voltage.
This is consistent with physical intuition. An increase’fi

the trajectorys(¢; 5.5, 22) which corresponds to perturbed pacorresponds to slower load recovery. During the initial voltage

Fig. 13. \oltage and load behavior for Example 3.

rametersl;, = 5.5 andlt,, = 22. The third curve drop, the load is less than its steady-state véifiésee Fig. 13).
Therefore, slower load recovery means the load is smaller for
V3PP (t; 5.5, 22) longer, so the voltage is higher. However, over the latter sec-
. SOV dVa . tion of the transient, whenever the voltage steps up due to a tap
= Vs(t; 5, 20) + 05 aT, (£ 5, 20) +2 Tt (:5,20) " change the load overshoak¥. So the slower recovery corre-

sponds to the load staying higher for longer and, hence, to re-

uses the sensitivitie8V3 /9T, and dV3 /9T, evaluated for duced voltage.
the nominal case, to approximatg(¢; 5.5, 22). The procedure  Now considerI,,. From Fig. 14 it can be seen that an in-
given in Appendix A has been used to estimate behavior ov@ease irf;.,;, leads to a decrease in voltage. Again, this is con-
the Ar periods, i.e., the periods between tapping of the nominsiktent with intuition. It is clear that the voltage recovery is due
and perturbed systems. The approximation is clearly very gotmdthe increase in the tap ratio. Increasifig,, delays the tap
along the whole trajectory. changes, so the voltage stays lower for longer. The tap delay due

Trajectory sensitivities provide helpful insights in the anako an increasef:.,, accumulates with each tap change. There-
ysis of system behavior. Consider first the sensitivity with rdere, the effect on the voltage becomes more pronounced with
spect to7},. It can be seen from Fig. 14 that an increasé’jn each subsequent tap change. This is evident in Fig. 14.
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For this simple example, the sensitivities do not provide qual
tative information beyond that which is intuitively obvious. (Al-
though they do provide quantitative information which is noi
otherwise available. For example, it can be seen from Fig. 1 oss
thata 1 s change ifi, would have a larger effect on the voltage
trajectory than a 1 s changeli.;,.) However, for more compli-
cated systems where the interpretation of parameter influenc
is not so straightforward sensitivities can be extremely usefL>
Such a situation is explored in [13]. 085

It is shown in [15] and [25] that sensitivities can be usec
as an indicator of the proximity of a trajectory to the stability
boundary. This is based on the fact that trajectories which a
closer to the stability boundary will be more sensitive to param
eters and initial conditions. This power system example nicel °™[
illustrates the result. Fig. 16 shows thg trajectory for three \ ' ' ) ; ; s : s
values of the postdisturbance line impedaﬂé}é"“, the base A e o A
case value of 0.65, along with slightly higher impedances 0.67
and 0.68. It is clear that higher values of line impedance resuft’
in a more stressed less secure system. However, the full signif-
icance of the increase i"*** becomes much more apparent
when the sensitivity of each trajectory1g, shown in Fig. 17,
is viewed. WhenX?>*" = 0.68 the system is extremely sensi-
tive, indicating close proximity to instability. In fact, the system
is unstable forx " = 0.69. o

XEost = 0,67

0.or X0ost=0.65 -

u)

Xt 0.68 E

0.8

Variation in voltage response with increasiige**.

p

VytoT

< X = 0.68

0.02

Sensitivity of

VIl. NUMERICAL INTEGRATION

A. Introduction

X2 = 0,65

In Section IV, it was shown that the trajectory sensitivities ©
evolve according to the linear time-varying DA system (27)
(28). This system involve@: 41 +p) x (n+1+p) DE’s, along TTTE  h e e e e i e e
with m x (n 4+ 1 + p) algebraic equations. [Recall, however, Time (sec)
that .., is not interesting, so the number of DE’s is effectively. o e bost
reduc_eod tdn-+1)x (n+1+p).] Therefore, for large systems Sucl‘%lg' 17. \Variation in trajectory sensitivity with increasing™**".
as power systems, the number of equations quickly becomes
prohibitive. Of course, for many applications only a few of the Consider the DA system (18), (19) which describes behavior
sensitivities are required. For example, if the sensitivity of tHever the periods between events. We repeat the equations here
trajectory to: initial conditions andj parameters was desiredfor convenience
then the number of extra DE’s would Ke + 1) x (i + j), .
along withm x (¢ + j) extra algebraic equations. Even so, the &= flz, y) (67)
computational cost may be high. 0=g(z, y)- (68)

Fortunately, by using an implicit numerical integration tech-
nique such as trapezoidal integration, the computational burde¢ trapezoidal approach approximates the DE'’s (67) by a set of
of obtaining the trajectory sensitivities can be reduced considatgebraic difference equations coupled to the original algebraic
ably. The details follow. Section VII-C then discusses the corgduations (68), i.e.,
putation of junction points.

Il
Q

‘ o o ‘ ‘
=2t o (£ o) + L @M ) (69)
B. Trapezoidal Numerical Integration 0=g(z", ") (70)

The trapezoidal approach to numerical integration is quitghere
standard and can be found in many references. In the powesuperscript: indexes the time instany;
system context, [29] provides a clear presentation. The appli-superscripk + 1 indexes the time instarf,41;
cation to general DA systems is treated rigorously in [30]. Are- n = tx41 — & integration time step.
view of the basic ideas highlights a close link between the coriguations (69) and (70) describe the evolution of the statgs
putation of the trajectory and of the associated sensitivities. from time instant,, to the next time instart, ;. Initial condi-
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tions for the time interva{r;, 7;41) are given byz® = g(fjr) for many applications is it important to find the exact time be-

andy® = y(r;r). tween integration time steps at which the event occurs. This is
Notice that (69) and (70) form a set of implicit nonlinear alpossible through a simple modification to the trapezoidal tech-

gebraic equations. Therefore, to solvef6r?, 4/**1 giveng®, nique.

y* requires the use of a nonlinear equation solver. The NewtonReferring to the compact DAD model (13)—(16), {gt= 0

iterative technique is commonly used. Rearranging (69) allowigger an event. Say; < 0 at time instant:, buty; > 0 at

the algebraic equations to be written instantk + 1. Let n* be the (unknown) time from instaitto
the event. The variablg® can be found by solving (69) and (70)
F (M, o) with 7 free to vary, but with the extra constraipt= 0. Because
Ui B+l k4l k1, 7 E ok k the extra variable is matched by an extra constraint, the Newton
§i (g oyt ) AT (g Y ) tz iterative technique can again be used to find the solution.
g (&Hl, Z/k+l) Having found the junction point, the appropriate switchesg in
=0. (71) and/or update te should be made, then (70) resolved to obtain
the postevent values of the algebraic varialleBhe postevent
Equation (71) has the form values ofz andy provide the initial conditions for the next sec-
tion of the trajectory. It can be convenient to use the time step
F(x)=0 n — n* for the first step after the event. This aligns subsequent

points with the specified time step
which is solved iteratively according to

stip1 = 2 — Foo(3) " F () (72)
. . . VIII. CONCLUSIONS
where I}, is the Jacobian of" with respect tox, and has the

structure Hybrid systems are characterized by the interaction between

n fom1 n 7, continuous and discrete-event dynamics. Power systems are an
b= [2 —91 29—‘“} . (73) important example. The paper presents a DAD model which
£ Y captures the rich variety of behavior that can be exhibited by
Note thati indexes the iterations of the equation solver, and #ich systems. Generally, because of the nonlinear nonsmooth
not related to the time indek. When (72) has converged, thebehavior of hybrid systems, analysis is reliant on time-domain

solutions providesz*** andy*+1. simulation. However, simulation can be cumbersome for any-
Now consider the sensitivity equations (27) and (28). Usiri§jing beyond single scenarios. This paper develops trajectory
trapezoidal integration, they are approximated by sensitivities for hybrid systems, as a way of augmenting time-

domain analysis.
gL — gk ( koK +f; ?J§0 +i§+1£§:1 +i§+1yl£:1) Trajectory sensitivity analysis involves linearizing the system

TR TR 2 e around a nominal trajectory, rather than an equilibrium point. It
0= 9§+1£§:’1 + 9§+1y§:’1- guantifies the changes in the system flow that result from pertur-

_ _ bations in parameters and/or initial conditions. Calculating tra-

Rearranging gives jectory sensitivities over smooth sections of the flow is straight-
n n forward. An efficient numerical algorithm has been presented.
St -1 o ff“’l] [a:’“*l} However, discrete events generically induce jumps in the sen-

22z 22V Lo :
g+ gt yhtt sitivities. The paper establishes and explores those jump condi-
z tions.

_ [—Q (_gzgo + [k ygo) — ] . (74) 'nhybrid systemswhich exhibitaccumulation points, the sen-
0

sitivity information near an accumulation point may not be very
useful. This is due to loss of event synchronism between the

ka1 k1 . . .__nominal and perturbed trajectories. However trajectory sensi-
Thereforeg; ™ andy,,™ are obtained as the solution of alineag iies still provide a good first-order approximation over the
matrix equation. However, notice that the matrix to be faCtoﬁ'nite interval before synchronism is lost

ized in solving (74) is exactly the Jacobian (73) used in solving Trajectory sensitivities provide valuable insights into the

k+1 k+1 i
for z andy at (72). Furthermore, the solution of (72)influence of parameters on the dynamic behavior of systems.

requires the factorization of that Jacobian. Therefore, the fqgr'operties which are not obvious from the actual system
tors of theileﬂ-’t\and mairix in (74) are available as a byprodugts,nse are often evident in the sensitivities. This has been
of calculatlng; *andy J.rl' With those factors a"eadY avail-jy s trated in the paper through a number of examples. Further,
able, the solution of (74) involves little extra computation. the gradient-type information given by trajectory sensitivities
can be used in nonlinear least squares algorithms for appli-
cations such as parameter estimation [14], [31] and stability

Switching and reset events generically do not coincide witdssessment [16]. This paper forms a basis for the extension of
the time instants of the numerical integration process. Howevttese and other applications to hybrid systems.

C. Computation of Junction Points
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APPENDIX A 0=y —1 y2 <0
TRAJECTORYAPPROXIMATION REFINEMENT 8 = } ys > 0

This appendix suggests a procedure for refining the estimate 0= Zi _ a{/; T+ View Y < 0
of the perturbed trajectory over the periodo 7 + Ar. For 0= ‘yQ 1 ‘yG >0
a given perturbatioml\zq, the switching delay\r can be es- 0=1ys — 21+ 2 + Tiap ys < 0
timated from (59). Assume initially thah+ > 0. Referring 0=1ys — 21 + s + Tiap ys > 0

to Fig. 5, at timer~ the perturbed trajectory is at the point
ZAPPrOR (7 = g(r—)+g£—0 Azyg. It follows that over the period
T to T + A7, the perturbed trajectory is given by

+ =
Z1 =&y

- wheny; =0
nt=n + Nstep &

plus real and reactive power balance equations for buses 1 and

gabbrox(t) :&(7‘_) —+ &;0 Azo + i_ X (t — 7') 3.
YR = y(r7) 4 yg, Ao — (95 g2l fT X (E—T)
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