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Power System Modeling for Inverse Problems
Ian A. Hiskens, Senior Member, IEEE

Abstract—Large disturbances in power systems often initiate
complex interactions between continuous dynamics and discrete
events. The paper develops a hybrid automaton that describes such
behavior. Hybrid systems can be modeled in a systematic way by a
set of differential-algebraic equations, modified to incorporate im-
pulse (state reset) action and constraint switching. This differen-
tial-algebraic impulsive-switched (DAIS) model is a realization of
the hybrid automaton. The paper presents a practical object-ori-
ented approach to implementing the DAIS model. Each component
of a system is modeled autonomously. Connections between com-
ponents are established by simple algebraic equations. The sys-
tematic nature of the DAIS model enables efficient computation
of trajectory sensitivities, which in turn facilitate algorithms for
solving inverse problems. The paper outlines a number of inverse
problems, including parameter uncertainty, parameter estimation,
grazing bifurcations, boundary value problems, and dynamic em-
bedded optimization.

Index Terms—Boundary value problems, dynamic embedded
optimization, dynamic modeling, hybrid systems, inverse prob-
lems, power system dynamics.

I. INTRODUCTION

I NTERACTIONS between continuous dynamics and dis-
crete events are an intrinsic part of power system dynamic

behavior. Devices that obey physical laws typically exhibit
continuous dynamics. Examples range from generators and
their controllers at the system level, through to capacitors
and inductors within power electronic circuits. On the other
hand, event-driven discrete behavior is normally associated
with rule-based components. Examples in this latter category
include protection devices [1], tap-changing transformers [2],
power electronic switches [3] and supervisory control [4].
Limits within physical devices also fall into this category; an
event occurs when a controller signal saturates or a FACTS
device encounters its maximum/minimum firing angle.

To illustrate continuous/discrete interactions in power sys-
tems, consider a disturbance consisting of an initiating event,
such as a lightning strike on a transmission line, followed by
protection action to remove the fault. The fault would disturb
the steady-state balance between electrical and mechanical
torques on generator shafts, causing angles and frequencies
to respond dynamically. In parallel, protection relays should
detect the fault and decide on the appropriate response. Trip
signals would be sent to circuit breakers, which should discon-
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nect the faulted feeder after a small (mechanical) time delay.
Meanwhile, oscillations induced in intermachine angles may
or may not be stable. Removal of the faulted line could lead to
overloading of other feeders, and their subsequent tripping. The
consequent increased demand for reactive power may activate
generator over-excitation protection, causing a reduction in
terminal voltage, increased system losses, further overloading
of feeders and finally system disintegration. Whilst this sce-
nario seems pessimistic, it has occurred, to the detriment (and
annoyance) of many consumers!

Similar continuous/discrete interactions exist across all layers
of power systems. At the market layer, for example, system
measurements and participant inputs are interpreted in terms of
market rules to generate events that affect the physical system.

In all cases, discrete events influence continuous dynamics,
which in turn trigger new events. Modeling and simulation must
accurately capture these interactions. Power system simulation
has generally evolved to the point where the continuous/discrete
nature of dynamic behavior is fairly accurately replicated. How-
ever, it is common to find event handling treated as an ad hoc
addition to continuous state simulation. The nature of inverse
problems dictates a more systematic hybrid systems approach
to capturing continuous/discrete interactions.

Power system analysis normally addresses forward prob-
lems. Given a system model and a set of parameters, system
dynamic response can be determined. However, the disturbance
scenario outlined above motivates analysis questions that are
classed as inverse problems [5]. Such a disturbance would
generate recordings from wide area measurement systems
[6]. Those measurements could be used to improve estimates
of parameters of system models [7], [8]. This is an inverse
problem; the measured response is given, and a model is used
to estimate parameters. It is easy to postulate other inverse
problems. For example, what are the minimal changes in
controllable parameters, e.g., generator real power and voltage
setpoints, that would avoid cascading tripping of overloaded
feeders or voltage dip problems or instability? How signifi-
cantly do certain parameters, e.g., load voltage dependence,
impact system behavior?

Traditionally, such inverse problems have been addressed by
repeated solution (simulation) of forward problems. However,
systematic modeling provides the foundation for algorithms that
address inverse problems directly. Further discussion is given in
Section IV.

The paper has the following structure. Section II presents var-
ious systematic representations of hybrid systems. Implementa-
tion issues are discussed in Section III. Inverse problems are
considered in Section IV, and conclusions are presented in Sec-
tion V.
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II. HYBRID SYSTEM REPRESENTATION

A. Background

Power systems are an important example of hybrid systems,
which are characterized by:

• continuous and discrete states;
• continuous dynamics;
• discrete events, or triggers;
• mappings that define the evolution of discrete states at

events.
Conceptually, such systems can be thought of as an indexed

collection of continuous dynamical systems

(1)

along with a mechanism for “jumping” between those systems,
i.e., for switching between the various . Each system is in-
dexed by the discrete state , whilst and are the continuous
dynamic and algebraic states, respectively. The jumping reflects
the influence of the discrete event behavior, and is dependent
upon both a trigger condition and a discrete state evolution map-
ping. Overall system behavior can be viewed as a sequential
patching together of dynamical systems, with the final state of
one dynamical system specifying the initial state for the next.

B. Hybrid Automaton

Interest in hybrid systems spans a broad range of scientific
communities, from control to computer science; see, for ex-
ample, [9]. A consequence is that numerous formal definitions
of hybrid systems have been proposed. Whilst each represen-
tation has its own particular flavor, they all capture the fun-
damental aspects of hybrid systems identified above. The fol-
lowing definition of a hybrid system has been adapted from [10],
[11].

A hybrid automaton is described by the triple

(2)

where

• is the finite set of discrete states. They form the vertices
of a graph.

• is the collection of dynamical systems
where each is a topological space

forming the continuous state space of , and gener-
ates the continuous state dynamics according to (1).

• is the finite set of events. The events are
described by the triple , where
- is the set of symbols that label the events;
- , , is the collection of au-

tonomous jump sets for each , i.e., the conditions
which trigger jumps from state ;

- , where
is the autonomous jump transition

map that describes the outcome of event originating
in state . The transitions form edges of a graph.

As indicated above, the hybrid state space of is given by

(3)

Fig. 1. Hybrid automaton.

The state of a hybrid automaton consists of a discrete part
together with a continuous part . Fig. 1 provides
an example of a graph defined by the hybrid automaton. (The
symbols labeling this graph are described in Section II-E, and
relate to the example of Section II-F.)

The dynamic behavior of a hybrid system can be described
as follows. Given an initial state , , the
system trajectory evolves continuously according to until
(possibly) the state enters at . Encountering
will trigger jump , with describing the transition
to the new state , . The process continues
from that new point.

C. Petri Nets

Systematic modeling of power systems requires an unam-
biguous methodology for describing discrete event activity. A
number of formal languages exist, including Petri nets and fi-
nite state machines [12]. It is not clear that any particular lan-
guage is best for power system applications, though Petri nets
certainly capture the asynchronous and distributed nature of
power system events [13]. Therefore, a Petri net representation
has been adopted. As an example, Fig. 2 provides a (partial)
Petri net model of the automatic voltage regulator (AVR) of a
tap-changing transformer [2]. This example is considered fur-
ther in Section II-F.

A Petri net is represented by a directed bipartite graph with
two types of nodes: places (drawn as circles) and transitions
(drawn as rectangles). Weighted directed arcs connect places to
transitions and vice versa. Weights are denoted as for an arc
from place to transition and for an arc from transition

to place . In the example of Fig. 2, weights with unit value
have not been shown.

Tokens are drawn as black dots, and places act as token
holders. The number of tokens in a place cannot be negative.
At any time instant, the marking (state) of a Petri net is given
by the number of tokens at its places. Transitions model events,
and cause the manipulation, creation, or disappearance of
tokens. Transition is enabled only if each of its input places

has at least tokens. When transition fires, it removes
tokens from each of the input places and adds tokens

to each output place . In hybrid systems, transitions fire when
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Fig. 2. Tap-changing transformer AVR logic for increasing tap.

the (evolving) continuous state satisfies the corresponding
trigger condition.

D. Simulation Model

Petri nets and hybrid automata provide a framework for
establishing rigorous mathematical representations of physical
devices and systems. However, those representations are not
immediately applicable to forward problems (via simulation),
much less inverse problems. A model that captures the full
richness of hybrid system behavior, yet has a form suitable for
simulation, is required.

Simulation techniques and properties are well established for
differential-algebraic-equation (DAE) systems [14]. Therefore,
the proposed hybrid system model is adapted from that basic
form by incorporating impulsive action and switching of al-
gebraic equations, giving the DA impulsive switched (DAIS)
model

(4)

(5)

where

• are ;
• is the Dirac delta;
• is the unit-step function;
• : ;
• ; some elements of each will

usually be identically zero, but no elements of the com-
posite should be identically zero; each may it-
self have a switched form, and is defined similarly to (5),
leading to a nested structure for ;

• are selected elements of that trigger state reset
(impulsive) and algebraic switching events respectively;

and may share common elements.
The impulse and unit-step terms of the DAIS model can be

expressed in alternative forms:

• Each impulse term of the summation in (4) can be ex-
pressed in the state reset form

(6)

where the notation denotes the value of just after the
reset event, whilst and refer to the values of and
just prior to the event. This form motivates a generalization
to an implicit mapping .

• The contribution of each in (5) can be expressed as

(7)

with (5) becoming

(8)

This form is often more intuitive than (5).
Equations (4) and (5) are a reformulation (and slight general-

ization) of the model proposed in [15].
It can be convenient to establish the partitions

(9)

where
continuous dynamic states, for example generator an-
gles, velocities and fluxes;
discrete dynamic states, such as transformer tap posi-
tions and protection relay logic states;
parameters such as generator reactances, controller
gains and switching times.

This partitioning of the differential equations ensures that
away from events, evolves according to , whilst

and remain constant. Similarly, the partitioning of the reset
equations ensures that and remain constant at reset
events, but the discrete dynamic states are reset to new values
given by .

Remarks:

1) The DAIS model assumes constant state–space dimen-
sion , across events. This differs from
some other hybrid system implementations, e.g., [16],
where the state dimension is allowed to vary upon com-
ponent switching. The DAIS formulation is not restric-
tive, though it may require carrying some “inactive” states
following an event. Maintaining constant state dimension
has a number of advantages though: 1) the variational
equations describing trajectory sensitivities, presented in
Appendix I, have a simpler form, and 2) switched states
are more easily incorporated into objective functions of
optimization-based inverse problems.

2) The simulation of DAE systems is prone to technical is-
sues that do not arise with ordinary differential equation
(ODE) systems [14]. The switched nature of the DAIS
model introduces some extra complexities that require
careful consideration. Component switching can result in
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coupling of states, with a consequent increase in the DAE
index. The higher index implies the system must operate
on a submanifold of the state space. Therefore, at such a
switching event, the states must be reinitialized to an ap-
propriate point on the submanifold [17]. This difficulty is
usually a legacy of modeling approximations. However,
such modeling is ubiquitous, so the issue cannot be ig-
nored.

Initial conditions for the model (4) and (5) are given by
and , where is a solution of
. Note that in solving for , the constraint

switching described by (5) must be taken into account. This
establishes the initial discrete state .

We define the flows of and as

(10)

where and satisfy (4) and (5), along with initial con-
ditions

(11)

(12)

E. Hybrid Automaton Interpretation of DAIS Model

The DAIS model (4) and (5) captures the fundamental at-
tributes of hybrid system behavior, and is a realization of the
hybrid automaton model (2). Between events, system behavior
is governed by the DAE dynamical system given by

(13)

(14)

where is composed of , together with functions from (5)
chosen depending on the signs of the elements of . Each dif-
ferent composition of is indexed by a unique . One
approach to indexing is to associate with a string of length
, where each character of that string is the sign of the corre-

sponding element of , i.e., either “ ” or “ .” If, however,
has a nested definition, the th symbol is replaced by a string of
the form “ ,” with each “ ” symbol taking the sign
of the corresponding element of . This labeling scheme is il-
lustrated in Fig. 1, where each discrete state forms the vertex
of a graph. (This figure relates to the example presented in Sec-
tion II-F.)

An event is triggered by an element of passing through zero
and/or an element of changing sign. Therefore, each condi-
tion of the form or contributes a jump set ,
with formed from the union of those . The general nature
of ensures unrestricted specification of trigger conditions for
any event . In particular, arbitrarily complicated logical propo-
sitions can be represented [18].

In the case of a switching event , the composition of
is forced to change. Subsequent solution of may induce

further switching. This is acceptable, provided the originating
event does not attempt to reverse, i.e., switching events must
satisfy . The outcome of a switching event always

involves a transition to a new discrete state. The dynamic states
are fixed at a switching event, whilst the jump transition map

for the algebraic states is defined (implicitly) through the
solution of the algebraic equations .

Reset events, on the other hand, map to a new value, but may
leave the discrete state unchanged. However, it is also possible
that through the solution of , the reset value of induces
changes in the signs of some elements of , and hence, a conse-
quent transition in the discrete state . In this case, jump transi-
tion maps are defined (explicitly) in terms of reset equations

and (implicitly) through the solution of .
Note that in power system applications, there is usually no

guarantee of a unique solution for . In such cases, is
nonunique.

Event labels can be derived from the discrete state labeling
scheme. For the switching event , the th symbol in the

index would be changed to “ ” if the transition was from the
“ ” state to the “ ” state, i.e., was changing from positive
to negative, or “ ” for the opposite sign change. This form ex-
tends naturally to nested indexing structures. Labeling for reset
events can be achieved by augmenting the discrete state label
by a sequence of symbols, e.g., the symbol “0.” For a reset
event , the th symbol would be replaced by a dif-
ferent symbol. Fig. 1 illustrates this scheme for labeling events.
The figure also indicates that an event may generate a variety of
transitions, depending on the value of the state when the event
is triggered. The transitions form the edges of the graph.

Remark:

The graph defined by the hybrid automaton describes all
possible discrete state trajectories. As a hybrid system
evolves, it will generate a path that traverses the graph.
(Though generally not all vertices will be visited.) The
structure of the graph therefore provides insights into
system behavior. In the context of power systems, such
a representation could assist in understanding the nature
of cascading disturbances. The graph structure may serve
to highlight unanticipated events, and identify (discrete)
control actions.

The partitioning of , , and given by (9) ensures that el-
ements of are piecewise constant variables that only change
value at reset events. Therefore, the dynamical system repre-
sentation of (1) can be rewritten as

(15)

and the discrete state redefined as , where is now
countable rather than finite. Reset events cause a change in ,
and a possible consequent change in . Switching events only
change .

F. Example

In order to demonstrate the ability of the DAIS structure (4)
and (5) to model logic-based systems, this example considers a
relatively detailed representation of the AVR of a tap-changing
transformer [2]. The model incorporates a voltage deadband and
timer. Deviation of the regulated bus voltage beyond the dead-
band initiates the timer. If the timer times out, i.e., reaches its
maximum, a tap change occurs and the timer is reset. However,
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should the voltage recover (return to within the deadband) be-
fore the timer reaches its maximum, the timer is reset and the
AVR returns to the wait state. The Petri net model of this AVR
logic for low voltages, i.e., for increasing tap ratio, appeared ear-
lier in Fig. 2. The model can be represented in the DAIS form as

(16)

and (17), shown at the bottom of the page, where is the value
of just prior to the switching event. Expressing the model
using the alternative forms (6)–(8) perhaps provides clearer in-
sights into model behavior,1 as

when

(18)

To assist in connecting AVR logic with the model, Fig. 2 indi-
cates variables that are related to particular functions.

The hybrid automaton of Fig. 1 provides a representation
of this model. The labeling scheme of Section II-E has been
adopted in that figure. States are labeled according to the signs
of switching triggers and , and are indicated in (18). Event
labeling is based on zero crossings of , , and .

The behavior of the timer is central to the dynamics of this
device. The timer value ramps up

when the voltage deviates outside the deadband
. While the timer is active, both and remain constant.

Their values change only at events that reset the timer.

1) If the timer reaches the threshold , i.e.,
or equivalently , a tap change occurs via the
reset event. This event forces and hence

. The timer is not directly disabled by this event,

1Actual implementation, however, simply checks whether (y > 0 and y >

0) is true or not, corresponding to u(y )u(y ) = 1 or 0, respectively.

so will continue ramping if the voltage remains outside
the deadband .

2) If the voltage returns to within the deadband ,
is set equal to , ensuring . In this

case, the timer is disabled . Note that remains
constant whenever the voltage deviates outside the dead-
band, i.e., when changes from positive to negative. It
only changes value when the voltage is restored.

Remarks:

1) It is clear from the example that translating a Petri net
model into its equivalent DAIS model is not always an
intuitive process. However, the approach adopted in [19]
provides the basis for an automated procedure.

2) An event is always triggered by a zero-crossing some-
where in the system. The actual trigger is only directly
observable to its local component. However, the conse-
quences of the event are generally more widely observ-
able. The example illustrates this difference between local
and remote events. Consider the events that trigger timer
resetting. A tap change is a local (to the transformer) event
that is triggered by the local variable crossing zero.
Voltage recovery, on the other hand, may occur as a con-
sequence of a remote event, such as feeder restoration.
This consequent event is observed by the tap-changer via
a sign change (but not a zero-crossing) of the local vari-
able . In the former case, the zero-crossing can be used
to trigger a reset event. In the latter case, switching will
occur as a consequence of the remote event. This distinc-
tion necessitates the parallel roles of and in the ex-
ample. It is an important consideration in object-oriented
system modeling, as discussed in Section III-A.

G. Trajectory Sensitivities

Trajectory sensitivities provide a way of quantifying the vari-
ation of a trajectory resulting from (small) changes to param-
eters and/or initial conditions [20]. To obtain the sensitivity of
the flows and to initial conditions , the Taylor series ex-
pansion of (10) is formed. Neglecting higher order terms gives

(19)

(20)

In accordance with the partitioning (9), incorporates parame-
ters , so that sensitivity to initial conditions includes param-
eter sensitivity. Equations (19) and (20) describe the changes

and in a trajectory, at time along the trajec-
tory, for a given (small) change in initial conditions

(17)
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. The time-varying partial derivatives
and are known as trajectory sensitivities. An overview of
the variational equations describing the evolution of these sen-
sitivities is provided in Appendix I.

Along smooth sections of the trajectory, the trajectory sensi-
tivities evolve according to a linear time-varying DAE system
(31) and (32). For large systems, these equations have high di-
mension. However, the computational burden is minimal when
an implicit numerical integration technique such as trapezoidal
integration is used to generate the trajectory. An overview of
this result is provided in Appendix II. Details can be found in
[21]–[23].

More complete details of both appendices can be found in
[15].

III. IMPLEMENTATION

A. Flexible Component Interconnection

Models of large systems are most effectively constructed
using a hierarchical or modular approach. With such an ap-
proach, components are grouped together as subsystems, and
the subsystems are combined to form the complete system. This
allows component and subsystem models to be developed and
tested independently. It also allows flexibility in interchanging
models.

The interactions inherent in hybrid systems are counter to this
decomposition into subsystems and components. The discus-
sion following the tap-changer example reflects this difficulty.
However, the algebraic equations of the DAIS model can be ex-
ploited to achieve the desired modularity. Each component or
subsystem can be modeled autonomously in the DAIS structure,
with “interface” quantities, e.g., inputs and outputs, established
as algebraic variables. The components are then interconnected
by introducing simple algebraic equations that “link” the inter-
face variables. This is similar to the connections concept of [24].
Note that all interconnections are noncausal [25], i.e., no rigid
input–output arrangement of components is assumed.

To illustrate this linking concept, consider a case where the
th algebraic state of component , denoted , is required by

component . In the model of component , the corresponding
quantity would appear as an algebraic variable . The con-
nection is made via the simple algebraic equation

. In general, all linking can be achieved by summations of the
form

(21)

where is . Note that all connections are external to the
component models.

The linking strategy results in an interesting structure for the
complete system Jacobian

(22)

(This Jacobian has the same structure as the matrix , given
by (48), that is required for implicit numerical integration and
for computing trajectory sensitivities.) Components contribute

square blocks down the diagonal of and flattened rectangular
blocks along the diagonal of the upper section of . The lower
section of is an incidence matrix, with ’s given by the
external connections (21). The corresponding lower section of

is zero. Fig. 3 illustrates this structure2 . A Jacobian structure
like that of was identified in [26], where a similar arrangement
of components and connections was used in the development of
an optimal power flow.

Remarks:

• Because the linking process yields the full system Jaco-
bian , trajectory sensitivities are well defined, and may
be efficiently computed, for the full system.

• The Jacobian effectively defines a graph of the system
topology. Vertices (nodes) are established by the physical
network and communication networks. Edges (inter-
connections) are described by the connections within
multi-node (network) components, together with the
incidence matrix defined by the external connections.

• The structure and values of the lower connection subma-
trix of , and hence , are fixed for all time. This can
be exploited in the factorization of to improve the ef-
ficiency of solving (46) and (47). The efficiency improve-
ment can be significant, as these equations are solved at
every time step.

• In general, components and subsystems of any form can
be modeled, provided they are structured with interfacing
algebraic variables that can be linked to other components.
Noise and/or random disturbances can be added to the
model by linking components that generate random sig-
nals.

B. Matlab Implementation

The proposed modular approach to constructing hybrid
systems has been implemented in Matlab [27]. In this imple-
mentation, the system is described by a data file that contains

information and (separate) de-
tails. Each component of the system contributes an entry to

that consists of the component name, initial
values for , and background parameters. Links between
components are fully described in using the
form given by (21).

Every component is described by a file that cal-
culates values for , and , and sparsely stores elements of
the partial derivative matrices , , , , and . These
component files are reusable, i.e., case independent, and reside
in a component library. Relative indexing is used within the
component files, as each component model is autonomous. (All
connection information is externally defined.) Hence, within a
model, the indexing of Jacobian elements uses only local equa-
tion and variable numbering. The simulation kernel uses these
relative indices, along with knowledge of equation and variable
dimensions across all models, to generate the location of each
element in the full matrices, i.e., the absolute indices. The actual
matrices are never built explicitly though, but rather are stored
sparsely. Full details can be found in [27].

2This particular matrix came from a ten generator representation of the Nordel
power system [8].
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Fig. 3. Sparsity structure of the complete system Jacobian J .

C. Symbolic Differentiation

As indicated above, partial derivative matrices are calculated
and stored sparsely within component files. Hand derivation of
these partial derivatives can be tedious for large complicated
models. Therefore, the process has been automated through the
use of symbolic differentiation [27]. Symbolic manipulation
has been utilized in power system simulation previously [28],
though the implementation was quite different.

The generation of a component file begins with an analytical
model in the DAIS form. The analytical model must be unam-
biguously mapped into a character representation that can be
manipulated symbolically. It is also important that this mapping
does not restrict the implementation of the DAIS form. Fortu-
nately, the DAIS model structure is well suited to such trans-
lation. All elements of the model can be clearly and uniquely
identified.

A Matlab function has been developed for translating the
input model representation into a component file that can in-
teract with the simulation kernel. Building the , , and equa-
tions involves relatively straightforward character string manip-
ulation. Generating the partial derivatives is more challenging.
Firstly, equations and variable strings are converted to symbols.
Symbolic differentiation produces partial derivatives that must
be simplified and converted back to strings. If the final expres-
sion is zero, the derivative is discarded, as the matrices are stored
sparsely.

Component files are generated off-line and stored in the com-
ponent library. Therefore, symbolic manipulation does not slow
simulation speed.

D. Computation of Junction Points

Switching and reset events generically do not coincide with
the time instants of the numerical integration process. However,
simulation accuracy depends upon correct location, between in-
tegration time steps, of events [18].

A simple check of sign changes in trigger variables and
at each integration step will reveal most events [15]. However,
this check fails to detect events where the associated trigger vari-
ables change sign an even number of times over a time step. A
more thorough search for events is required, though a tradeoff
must be made between search accuracy and computational cost.
An efficient approach proposed in [18] uses interpolation poly-
nomials generated by a backward differentiation formula (BDF)
integration method [14].

IV. INVERSE PROBLEMS

System analysis is often tantamount to understanding the in-
fluence of parameters on system behavior, and applying that
knowledge to achieve a desired outcome. The “known” infor-
mation is the desired outcome. The parameters that achieve that
outcome must be deduced. Because of the inverse nature of the
problem, the process has traditionally involved repeated simu-
lation of the model. This can be time consuming and frustrating,
as the relationship between parameters and behavior is often not
intuitively obvious.

Systematic modeling, as presented in Sections II and III, al-
lows the development of new tools that can solve inverse prob-
lems directly, albeit via iterative techniques. The DAIS model
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Fig. 4. Tap-changer dynamic load system.

is conducive to the efficient generation of trajectory sensitivi-
ties. Those sensitivities quantify, to the first order, the effects
of parameters on dynamic behavior. They therefore underlie the
development of gradient-based algorithms.

Sections IV-A–F present a range of inverse problems. Algo-
rithms that address those problems are outlined. This list is not
exhaustive, but seeks to provide an overview of the possibilities
that follow from systematic modeling.

A. Parameter Uncertainty

System parameters can never be known exactly. In fact,
uncertainty in some parameters, e.g., load models, can be quite
high. Quantifying the effects of parameter uncertainty is not
strictly an inverse problem, but illustrates the value of the extra
trajectory sensitivity information available from systematic
models such as the DAIS representation.

Because of the uncertainty in parameters, investigation of
system behavior should (ideally) include multiple studies over
a range of parameter values. However, simulation of large sys-
tems is computationally intensive. Such an investigation would
be extremely time-consuming. A common practical approach
is to assume that a nominal set of parameters provides an ade-
quate representation of behavior over the full range of values.
This may not always be a good assumption though.

A computationally feasible (though approximate) approach
to repeated simulation is to generate a first-order approximation
of the trajectory for each set of perturbed parameters. The first-
order approximation is obtained by truncating the Taylor series
expansion of the flow . Using (19) and (20) gives

(23)

where , are computed along the nominal trajectory
. Therefore, if the trajectory sensitivities ,

are available for a nominal trajectory, then (23) can be used to
provide a good estimate of trajectories corresponding
to other (nearby) parameter sets . (Recall the parameters are
embedded in .)

The computational burden involved in generating the approx-
imate trajectories is negligible. Given the nominal trajectory
and associated trajectory sensitivities, new (approximate) tra-
jectories can be obtained for many parameter sets. Therefore, a
Monte Carlo technique can be employed to quantify the uncer-
tainty in a trajectory:

• parameter sets are randomly generated;
• first-order approximations are obtained using (23).

The simple system of Fig. 4 can be used to illustrate the
Monte Carlo process. This system includes the tap changing
transformer AVR of Section II-F, and a dynamic load. The dark

line of Fig. 5 shows the nominal trajectory corresponding to
the tripping of a supply feeder (simulated by an increase in
impedance ). In response to that event, voltage drops instan-
taneously, causing an initial reduction in load. Load tries to re-
cover, further stressing the system and driving the voltage lower.
Eventually, after a time delay , the transformer taps. This
process continues until the transformer reaches its maximum tap
position.

Fig. 5 also shows the bound obtained from the Monte Carlo
process. The parameters and the load time constant were
uniformly distributed over a range of around their nom-
inal values. The bound was obtained using 200 randomly chosen
sets of parameters. Further details can be found in [29].

Statistics quantifying the uncertainty in system behavior due
to parameter uncertainty can be obtained from the Monte Carlo
simulation. For example, it is possible to estimate the probability
that a disturbance would initiate protection operation or that the
voltage would fall below some predetermined threshold.

Another approach to assessing the significance of parameter
uncertainty is via worst case analysis [30]. This involves finding
the values of parameters (within specified bounds) that induce
the greatest deviation in system variables, for example voltages.
The algorithm can be formulated as a constrained optimization,
and is truly an inverse problem. Such optimization problems are
discussed as part of later inverse problems.

B. Parameter Estimation

System-wide measurements of power system disturbances
are frequently used in post-mortem analysis to gain a better
understanding of system behavior [6]–[8], [31]. In undertaking
such studies, measurements are compared with the behavior
predicted by a model. Differences are used to tune the model,
i.e., adjust parameters, to obtain the best match between the
model and the measurements. This process requires a system-
atic approach to

1) identifying well-conditioned parameters that can be esti-
mated reliably from the available measurements;

2) obtaining the best estimate for those parameters.
It is shown in [8] that trajectory sensitivities can be used to

guide the search for well-conditioned parameters, i.e., parame-
ters that are good candidates for reliable estimation. Large tra-
jectory sensitivities imply the corresponding parameters have
leverage in altering the model trajectory to better match the mea-
sured response. Small trajectory sensitivities, on the other hand,
imply that large changes in parameter values would be required
to significantly alter the trajectory. Parameters in the former cat-
egory are well-conditioned, whereas the latter parameters are
ill-conditioned. Only parameters that influence measured states
can be identified. A parameter may have a significant influence
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Fig. 5. Trajectory bounds.

on system behavior, but if that influence is not observable in the
measured states, then the parameter is not identifiable. The con-
cept of identifiability is explained more formally in [32].

A parameter estimation algorithm that is based on a
Gauss–Newton iterative procedure is presented in [8]. The
algorithm minimizes a nonlinear least-squares cost

(24)

where are the sampled measurements of the disturbance,
are the flows provided by the model that correspond to the

measured quantities, and are the unknown parameters. This
minimization can be achieved (locally at least) by the iterative
scheme

(25)

where is a scalar that determines the parameter update step
size.3 The matrix is built from the trajectory sensitivities ,
i.e., sensitivity of model flows to parameters . The invert-
ibility of relates directly to identifiability [32].

Remarks:

1) Parameter estimation via (25) is not restricted to smooth
systems. In fact, it is possible to estimate parameters that
underlie event descriptions (provided measurements cap-
ture an occurrence of the event.)

2) For large systems, feasibility of the Gauss–Newton algo-
rithm is dependent upon efficient computation of trajec-
tory sensitivities. This underlines the importance of sys-
tematic modeling, as provided by the DAIS model.

3Equation (25) could be solved by inverting S S, however faster and more
numerically robust algorithms are available [33].

C. Boundary Value Problems

It is interesting to consider boundary value problems of the
form

(26)

where is the final time, and is the trajectory that starts
from and is generated by (4) and (5). The initial values
are variables that must be adjusted to satisfy . (Though may
directly constrain some elements of .) To establish the solu-
tion process, (26) may be rewritten

(27)

which has the form . Boundary value problems are
solved by shooting methods [34], [35], which are a combina-
tion of Newton’s method for solving (27) along with numerical
integration for obtaining the flow . Newton’s method requires
the Jacobian

(28)

which is dependent upon the trajectory sensitivities evaluated at
.
Boundary value problems per se are uncommon in power sys-

tems. However an application of increasing importance is the
calculation of limit cycles (sustained oscillations). Oscillations
have been observed in a variety of power systems, from genera-
tion [36] to distribution [37]. In this latter case, oscillations were
driven by interactions between transformer tapping and capac-
itor switching. Systematic modeling, as provided by the DAIS
representation, is vital for capturing such hybrid system phe-
nomena.
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To solve for limit cycles, (27) can be written as

where lies on the limit cycle and is its period. 4 The solution
of this boundary value problem via a shooting method requires

, which is exactly the Monodromy matrix [34], [38]. The
eigenvalues of this matrix determine the stability of the limit
cycle.

D. Grazing Bifurcations

When a system trajectory encounters the operating charac-
teristic of a protection device, a trip signal is sent to circuit
breakers. If the trajectory almost touches the operating charac-
teristic but just misses, no trip signal is issued. The bounding
(separating) case corresponds to the trajectory grazing, i.e., just
touching, the operating characteristic, but not crossing it. This
is a form of global bifurcation; it separates two cases that have
significantly different outcomes. Numerous names exist for this
phenomenon, including switching-time bifurcation and grazing
bifurcation. There is a close relationship to border-collision bi-
furcations.

Examples of such bifurcations can be found in many applica-
tion areas. They are particularly important in power electronic
circuits, where zero-crossings are fundamental to control strate-
gies, and to the switching of self-commutating devices [3], [39].
In fact it has been shown that grazing bifurcations can provide
a path to chaos in simple dc–dc converters [40].

Identifying the critical values of parameters that correspond
to a grazing bifurcation is an inverse problem. Let the switching
characteristic (border) be described by . A trajectory
will be tangential to that characteristic at the point

given by

The critical values of parameters are given by . This is a spe-
cial form of boundary value problem. Shooting methods provide
the basis for gradient-based algorithms. Further details can be
found in [41].

E. Dynamic Embedded Optimization

Optimization problems arise frequently in the analysis of
power system dynamics. Examples range from tuning generator
AVR/PSSs to determining the optimal location, amount and
switching times for load shedding [42]. Most problems can be
formulated using a Bolza form of objective function

(29)

where

(30)

4The period T is specified for nonautonomous systems. For autonomous sys-
tems, it is found as a by-product of the Poincaré map [34].

Fig. 6. AVR/PSS block representation.

are the design parameters, i.e., the parameters adjusted to
achieve the objective, and is the final time.

The solution of (29) for hybrid systems is complicated by
discontinuous behavior at events. However, those complications
largely disappear under the assumption that the order of events
does not change as and vary, i.e., no grazing bifurcations
occur. This assumption is common throughout the literature,
though it is expressed in various ways: transversal crossings
of triggering hypersurfaces are assumed in [10], existence of
trajectory sensitivities is assumed in [43], and [44] assumes all
flows have the same history. All statements are equivalent.

Under that assumption, and other mild assumptions, it is con-
cluded in [44] that if is continuous in its arguments then a
solution to (29) exists. Further, [43] shows that if is a smooth
function of its arguments, then it is continuously differentiable
with respect to and . The minimization can therefore be
solved using gradient-based methods. Trajectory sensitivities,
as provided by the DAIS model, underlie the gradient informa-
tion.

If the event ordering assumption is not satisfied, may
be discontinuous. The optimization problem then takes on a
combinatorial nature, as each continuous section of must be
searched for a local minimum.

Nontraditional design capabilities arise from embedding the
DAIS model within the optimization framework (29) and (30).
To illustrate, consider the generator AVR/PSS shown in Fig. 6.
The clipping limits on the PSS output and the anti-windup
limits on the field voltage introduce events that can be cap-
tured by the DAIS model. Typically, PSS output limits are as-
signed on an ad hoc basis. However, [45] determines optimal
limit values by establishing a cost function (30) that maximize
damping whilst minimizing deviations in the generator terminal
voltage. Fig. 7 compares optimal performance with that ob-
tained using standard limit values. (Note that only the limit
values differ between these two cases. All other parameters are
fixed.)

Other optimization problems do not naturally fit the Bolza
form of objective function (30). Cascaded tap-changing trans-
formers provide an interesting example [46]. Minimizing the
number of tap change operations is equivalent to minimizing
the number of crossings of triggering hypersurfaces. Such a
problem, by definition, does not satisfy the earlier assumption
requiring constant ordering of events. This minimization is
best addressed using switching control design techniques [47],
though the solution process is not yet well established.
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Fig. 7. Generator angle response.

F. Technical Issues

Changes in event ordering, as discussed in the Section IV-E,
influence all gradient-based algorithms for solving inverse prob-
lems. The effect is similar to power flow solution when reac-
tive power limits change status. Algorithms usually converge,
though with a slower convergence rate and a reduced region of
convergence.

Another interesting aspect of hybrid systems is that trajec-
tories may not be unique in reverse time even though they are
unique in forward time. In other words, the same final value

can be reached from different initial values . In such
cases, the trajectory sensitivity matrix is singular. This
matrix underlies solution algorithms for numerous inverse prob-
lems, for example (28). An approach to addressing this issue is
to decompose into components that influence and
those that do not. Attention is then restricted to the former group.
This is an area of on-going research.

V. CONCLUSION

The response of power systems to large disturbances
often involves interactions between continuous dynamics and
discrete events. Such behavior can be captured by a hybrid
automaton. The automaton has a graph representation, with
vertices corresponding to modes (discrete states) of system
operation, and edges describing transitions induced by events.
The system responds smoothly within each mode. Cascading
failure of a power system results in a path traversing the graph.

Hybrid systems can be modeled by a set of DAE equations,
modified to incorporate impulse (state reset) action and con-
straint switching. This DAIS model is a realization of the hybrid
automaton.

Models of large systems are most effectively constructed
using a modular or object-oriented approach. However the
interactions inherent in hybrid systems make that difficult to
achieve. The desired modularity can be achieved in a prac-
tical way with the DAIS model though. Components and/or
subsystems are modeled autonomously, with connections
established via simple algebraic equations. The Jacobian of the
DAIS model effectively defines a graph of system topology.
Furthermore, the object-oriented model structure is amenable
to symbolic manipulation.

Systematic modeling allows the development of tools for
solving inverse problems, including parameter uncertainty
and estimation, boundary value problems, grazing bifurcation
analysis and dynamic embedded optimization. The DAIS
model is conducive to the efficient computation of trajectory
sensitivities. Those sensitivities underlie gradient-based algo-
rithms for addressing inverse problems.

Many power system simulators now use implicit numerical
integration techniques, such as trapezoidal integration. Mod-
ification of such simulators to compute trajectory sensitivities
along smooth sections of a trajectory is therefore quite straight-
forward. However, mapping trajectory sensitivities through
events requires cleanly defined event triggering conditions, as
provided by the DAIS model. Incorporating that feature into
existing simulators may be a challenging, though certainly
surmountable, problem.
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APPENDIX I
TRAJECTORY SENSITIVITY EQUATIONS

Away from events, where system dynamics evolve smoothly,
the sensitivities and are obtained by differentiating (13)
and (14) with respect to . This gives

(31)

(32)

where , and likewise for the other Jacobian ma-
trices. Note that , , , are evaluated along the trajec-
tory, and hence are time varying matrices. It is shown in Ap-
pendix II that the solution of this (potentially high order) linear
time-varying DAE system can be obtained as a by-product of
solving the original DAE system (13) and (14).

Initial conditions for are obtained from (11) as

(33)

where is the identity matrix. Initial conditions for follow
directly from (32)

(34)

Equations (31) and (32) describe the evolution of the sensitiv-
ities and between events. However, at an event, the sensi-
tivities are often discontinuous. It is necessary to calculate jump
conditions describing the step change in and . For clarity,
consider a single switching/reset event, so the model (4)–(8) re-
duces to the form 5

(35)

(36)

(37)

Let be the point where the trajectory encounters the
hypersurface , i.e., the point where an event is trig-
gered. This point is called the junction point and is the junc-
tion time. Assume that the trajectory encounters the triggering
hypersurface transversally.

Just prior to event triggering, at time , we have

(38)

(39)

where . Similarly, are defined for time
, just after the event has occurred. It is shown in [15] that the

jump conditions for the sensitivities are given by

(40)

where

(41)

(42)

(43)

(44)

The sensitivities immediately after the event are given by

(45)

5The trigger function s(x; y) has been explicitly identified in order to clarify
its role in the jump conditions.

Following the event, i.e., for , calculation of the sensi-
tivities proceeds according to (31) and (32), until the next event
is encountered. The jump conditions provide the initial condi-
tions for the post-event calculations.

Actual power systems involve many discrete events. The
more general case follows naturally, and is presented in [15].

APPENDIX II
EFFICIENT TRAJECTORY SENSITIVITY COMPUTATION

Consider the DAE system (13) and (14) which describes
the behavior over the periods between events. The trapezoidal
approach to numerical integration approximates the differential
equation (13) by a set of algebraic difference equations. These
algebraic equations are coupled with the original algebraic
equations (14) giving

(46)

(47)

where the superscripts and index the time instants
and , respectively, and is the integration
time step. (The subscript has been dropped from for clarity.)
Equations (46) and (47) describe the evolution of the states ,
from time instant to the next time instant .

Notice that (46) and (47) form a set of implicit nonlinear alge-
braic equations. To solve for , given , requires
the use of a nonlinear equation solver. Newton-based iterative
techniques are commonly used. The solution process involves
forming and factorizing the Jacobian

(48)

Now consider the sensitivity equations (31) and (32). Using
trapezoidal integration, they are approximated by

(49)

(50)

Rearranging gives

(51)

Therefore, and are obtained as the solution of a
linear matrix equation. But notice that the matrix to be inverted
in solving (51) is exactly the Jacobian (48) used in solving for

, . Because that matrix has already been built and fac-
torized to calculate , , the solution of (51) involves
little extra computation.

To improve simulation speed, (46) and (47) are often solved
using a quasi-Newton method. As a result, the factors of may
not be available for solving (51) directly. However, a number
of computationally efficient techniques have been proposed in
[21]–[23].
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