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Stability theory of differential/algebraic models of power
systems

D J HILL, I A HISKENS and I M Y MAREELS

Department of Electrical and Computer Engineering, University of
Newcastle, Australia

Abstract. Lyapunov stability results are given for differential/algebraic
models of power systems which include the effect of generator damping
and nonlinear loads. The global dynamical structure of such a system is
studied in terms of multivalued energy functions defined on so-called
‘voltage causal regions’ where voltage behaviour is predicted from angle
behaviour. These regions are separated by ‘impasse surfaces’ related to
singularity in the load flow equations.

Keywords. Power systems; stability; Lyapunov methods; nonlinear
systems. :

1. Introduction

Direct methods of transient stability assessment for power systems rely on simplified
nonlinear equation models. Older models assumed impedance loads and used network
reduction to derive a model as a set of coupled (swing) differential equations (Pai
1981). Bergen & Hill (1981) suggested using models where the loads and network
structure were preserved. This approach leads naturally to models which are of
differential/algebraic type. More recently such models have been used as a basis for

" voltage stability analysis (Kwatny et al 1986; Venkatasubramanian et al 1991). Thus

the theoretical basis for direct methods using structure-preserving models is dependent
on stability theory for differential/algebraic equations (Chiang & Fekih-Ahmed 1992).
This paper provides further results in that direction.

Hill & Mareels (1990) have given some basic results on Lyapunov stability of
differential/algebraic systems and used these to justify use of an energy function for
undamped power systems. Hiskens & Hill (1989) have explored more practical aspects
of using this energy function; this work identifies several theoretical extensions which
should be made. Of these, the two considered here are as follows. First, the theory
is easily extended to allow for generator damping. Second, an improved decomposition
of the state-space is presented; so-called voltage causal regions are defined as open
sets which are separated by ‘impasse surfaces’ of algebraic singularity and within
which ordinary differential equation theory can be used. This helps to formulate
practical algorithms for finding the region of transient stability. Further, there are
useful tools for analysis of short-term voltage collapse. ‘
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732 D J Hill, I A Hiskens and I M Y Mareels
2. Differential/algebraic power system model
2.1 Model development

The classical machine model is used in the development of the system model. Therefore
the synchronous machines are represented by a constant voltage |E;| in series with
transient reactance. This assumption corresponds to ignoring flux decay and havmg
an exciter which is too slow to act in the transient period.

Consider now a network consisting of n, buses connected by transmission lmes
At m of these buses there are generators. The buses which have load but no generation
are labelled i=1,...,n, —m. The network is augmented with m fictitious buses
representing the generator internal buses, in accordance with the classical machine
model. They are labelled i + m where i is the bus number of the corresponding
generator bus. The total number of buses in the augmented system is therefore
no+m=n.

The network is assumed lossless, so all lines (including those corresponding to the
machine transient reactances) are modelled as series reactances. The bus admittance
matrix Y is therefore purely imaginary, with elements Y,;=jB,;.

Let the complex voltage at the ith bus be the (time varymg) phasor V,=|V;| L §;
where §; is the bus phase angle with respect to a synchronously rotating reference
frame. Deﬁne IVI=[i Vl lio. s 1Vio!), where t denotes matrix transpose The bus
frequency deviation is given by w; = 4, !

Using machine reference angles, we take the nth bus as the reference. We use the
internodal angles a;: = §; — 9,. Define a = [ay,...,«,_, T and @, = [®, ,,,.--, ©,]"

Let P,; and Q,; denote the total real and reactive power leaving the ith bus via
transmission lines. Then

Py V)= 5 IVIIVIB sinc—w) | (12)
0uile, VD) = — JZ Vil V1B, cos(a; — ). (1b)

In these equations, we assume the substitution |V;| = |E,_, |,i=no + 1,...,n has been
made. Also we take a,:=0.

Now consider the modellmg of loads. Denote the real and reactive power demand
at the ith bus by P, and Q,; respectively. In general these powers are functions of
voltage and frequency: For the stablllty theory to be developed, the loads must be
restricted to satisfy '

P,=Pg, o (2a)
Q4(=Qa,‘(lVil)a i"_‘l’---,no- ) (2b)

There are unresolved difficulties in allowing voltage dependent real loads. However,
this restriction will be relaxed when considering the state space decomposition.

The last component of the model to be considered is the generator dynamics, given
by the swing equations

Mj(do,, ,,/d) + Do, + P,, S @IV =P j=1...m, )
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where M; are the inertia constants, D, the generator damping constants, and Py, ; the
mechanical input powers. We assume that D; # 0 for at least one i=1,...,m. The
usual assumptions of constant mechanical power, and the network being in a sinu-
soidal steady state are made. '

Combining the power balance and swing equations gives the total system
representation

M, 0+ D,y + Py, | V) = PS i=no+l..,n  (42)
P, (o,[V))= — PO, i=1,...,n, (4b)
Qbi(aa 'VI)= —Qdi(IViI)’ i= 1,...,"0. (4C)

Define f’ =[Pyy;---» Py,_,1=[PP,] where P,,P, are n,, (m— 1) vectors referring

to loads, generators respectwely, por —[ PY'PY] where PY, = [PMI, A

Q=0Qp1>---Qpn, J5and Q=[-Q,,,... an ]' Also set P _PMm g
From (la)

Y (P, —P%)= — -; PP:= —Pp. | © )

i=

It is convenient for this excess bus power to be distributed across ‘generator powers
in proportion to damping. Define

PM-J' = ng,j_ (PT/D_T)D-” ] | . ©

where Dy: = Z D; (#0 by assumption).
Define the modlﬁed real power vector P'=[— P°‘P %¢J)- Then from (4b) (5) ()]

Z (Pbi—Pi)'=0-
i=no+1

So .
Py, —P,=—1_,(P;—Py),

where l,_, is the (n — 1) vector with unity entries. Define T,=[I,_,: — l,;_l] where

I,_, is the (n — 1) identity matrix. Then (4) can be rewritten

M, b, + Do, + T;(P, (e [V]) ~ P=0 (Ta)
T PywIV)+P,=0, (Th)
Q& V) + Q,(IV)=0, - (7¢)

where M,, D, are diagonal matrices of inertia, damping constants. Note that use of
P,, requires a reference shift for @, so that (4a) remains valid. Partition & as a' = [eer] ]
so the loads can be identified.

- Also define

f,(,, %, [V]):=Py(a,, o, V) — By, | (8w
fi(og, 0, [V]): =Pyley, 0, V) + P, (8b)
g(,. o, [V]): = [IVI17 1 (Qy(e, o4, [V) + Qu(IV1)), (8c)
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where [a] denotes [diag {a;}] for vector a. Then (7) can be written

@, =—-M;'D,0,—M ‘T’f(a,,a,,lVl), " (9a)
a,=T, ©,, (9b)
0 =1f,(a,, 00, V), (10a)
0 =g(a,, 0, V) (10b)

Equations (9), (10) describe the model on which all further results are based. We note
it consists of a set of differential-algebraic (DA) equations. The system variables are
clearly

0,eR"a,eR™" ", 0,eR™ and |V|eR".

It is easy to check that the bus power transformation (and associated frcquency
reference shift) implies the equilibrium points are given by o, =0 and

fg(aq’ al‘, |Vl) = 0s (1 la) '
(et 0, V) =0, (11b)
8(0,,,[V) = 0. | (11¢)

2.2 Local ODE representation

Here it is shown that the model is locally equivalent to a set of ordinary differential
equations (ODE) for almost all operating states. The load bus variables a,,|V| are
related to the generator angles a, by the algebraic equations (10). In fact, (10) defines
an (m — 1)-manifold on which &, can flow. Define the Jacobian

of,/ou, Of,/0|V|
= ) 12
= oaim oo 42
Then, by the implicit function theorem (Fleming 1977), if det J,, # 0, {ocally the load
bus variables can be written explicitly in terms of the generator angles as

o =0(a,), V| =¥(a,). : | (13)

An equivalent differential equation form can therefore be obtained locally by sub-
stituting (13) into (9a). Setting

PX(a,): =P, (o, ®(x,), ¥(a,)),

gives the model
@, = — M, 'D,0,— M, T (P*(@,) — P,,), (14a)
a,=T,0,. . (14b)

Equations (14) define ordinary differential equations which are locally equivalent to
the DA system.

This idea of local solvability will be extended later to solvability over disjoint
regions.
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3. Stability theory of differential/algebraic systems

This section develops a useful result on the stability of equilibria in general DA systems.

The general topic of Lyapunov stability for such systems has been studied in Hill &

Mareels (1990). The result required here is a LaSalle invariance version of an asymptotic

stability criterion. This is easily developed usmg ideas given in Hill & Mareels (1990).
We consider DA in the general form

x =1(x,y), (15a)
0=g(x,y), (15a)

with some compatible initial conditions, (Xo,¥o), i€ 0=g(xo,yo) where
R xR"->R" g:R" x R">R™
We assume throughout:

Al. f and g are twice continuously differentiable in some open conhectcd set,
QcR" x R™ ie. f,geC2(Q).
A2. The Jacobian of g with respect by y has constant full rank on Q, ie.

rank(D,g(x,y))=m, V(x,y)eQ.
We use the following notations:

* X(t, X, Yo)» Y(t, X0, ¥o) are solutions of (15) as functions of tlme and initial
conditions A

B,={(x,y)eR" x R™ ||(x,y)|l <&},
G = {(x,y)eR" x R™:g(x,y) =0},
Q;=QnG,
= closure of Q in R" x R™,
K={aR,— R+ continuous, strictly increasing, a(0) =0},

V. = derivative of the function ¥ with respect to time along the solution
of the system with equations (n). .

We now consider stability properties of equilibria of the general DA system (15). First,
note that a local ODE description — exemplified by (14) — can be given.

It follows from the implicit function theorem and assumption A2 that given
(%, §)eQg there is some neighbourhood U = R" of X and a unique twice differentiable
function u:R" —» R™,ueC?(U) such that

0 =g(x,u(x))VxeU and (U x u(U))g = Qg,
with J acoblan .

(Du)(x) = — (D,8) " (x,u(x))’ (Dlg)(x,ll(X)) VxeU.

A:=U xu(U) and Ag: = (U x u(U))g = (U x u(U))NG.

Let

Lemma 1. In the neighbourhood Ag(X) = Qg, the system (15) reduces to
i=f(xux). ' ‘ (16)°
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| We assume that the system (15) has a unique (isolated) equilibrium in Q, which we
regard to be the origin, without loss of generality.

A3. InQ, f(x,y)=0 and g(x,y) =0, iff(x, y) = (0, 0).
Remark. 1n order to satisfy assumption A3 it may be necessary to shrink the set Q
of assumptions Al and A2 to a smaller subset. :
When discussing stability in the DA system context we only consider stability.with
respect to perturbations which satisfy the algebraic constraints. (When using the
reduced system representation (16), this feature has been accounted for.) However it
should be noted that often the algebraic equations of the DA system are a model of
some (perhaps unknown) underlying dynamic process. Stability in the DA sense does
not imply stability of the system obtained by including the underlying dynamics.
We now present the formal definitions of stability of the trivial solution (x(t,0,0),
¥(t,0,0)) = (0,0) of the DA system (15). \

DEFINITION 1 _
The trivial solution of (15) is called stable if given & > 0, there exists a 6 > 0 such that
for all (xo,y0)eQsM B, then (x(t, Xo, Yo), ¥ (2, X0, Y0))€QsNB,, VteR, .

DEFINITION 2 ) » _
The trivial solution of (15) is called asymptotically stable if it is stable and there exists
1 >0 such that for all (x,,y,)eQg N B, then

hm " (X(t, X0 yO)a Y(t, Xo> YO)) " = (0’ 0)'

t—*w

It is straightforward to derive versions of the basic Lyapunov stability arguments for
DA systems. Some basic results are given in Hill & Mareels (1990). In the latter power
system analysis we need a LaSalle invariance type result.

¢

definite and has negative semi-definite derivative on Q;, ie

x,y) 2 a(llx, ) ),

Vis <0,

Theorem 1.  Suppose there exists a C'(Q) funttion V:Q—R, such that V is positive

on Qg for some acK. Let

§={(x,y)eQsnA: V, 5, =0} an

and M be the largest invariant set within S. Further defirie

a=sup {y:B ;= QznA},
velR o .

Vol = {(x,Y)eQq: V(x,y) < a(x)}.

Then the trivial solution (0,0) of the DA system is stable, x@).y®)-Mn V- last— o0
and the domain of attraction contains V,”*.
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Proof. Lemma 1 gives that there exists a neighbourhood A(0) of the origin in which
DA system (15) is equivalent to the ODE (16). Let reR, be such that B, ANnQg.

Within B,, the corresponding arguments for ODE systems can be used (LaSalle 1976;
Rouche et al 1977).

Remarks. (a) In general, solution of (15b) yields multiple values of y for each x. For
each branch, system (16) and V(x,u(x)) are well-defined. However, on Q, we must
regard these as multi-valued. For instance, ¥ may be represented by multiple surfaces.
(b) Clearly, the stability result follows easily from one for the reduced system. However,
the reduced system is not usually known. So stability conditions which work directly
on functions f,g in (15) are needed.

4. Stability result

In this and the following sections, we provide some basic methodology for determining
large disturbance stability of the equilibria in the DA power system model. Emphasis
will be given to new insights into the nature of energy surfaces in the presence of

- multiple equilibria and the statement of stability results for the differential-algebraic

equation model.
4.1 Energy function (Lyapunov function candidate)

The development of energy functions for the DA model has been studied elsewhere
(Narasimhamurthi & Musavi 1984; Hill & Chong 1989) using first integral and Lur'e

problem analysis methods. Here we summarise from Hill & Chong (1989). A valid
energy function is

V(0,7 =10!P,(ne,+ f : <h(h),dr) ‘ (18)

where z = (&, &, [V]), h(z) = (T,(z), fi(z),g(z)) and z5 denotes a stable equilibrium point.
P, is given by ' . ’

P,(w)=gM, +uM,} M, v ' 19

where u is a scalar and im' denotes a p x g matrix with all its elements equal to 1.
(To simplify notation, the dimensions will be omitted.) The scalar x is chosen to
ensure P, () > 0. Note that P, (0) = gM,. The energy function (18) can be evaluated as

V(@0 g V) = 3P, 3 3 3. By (VillVlcosa, — V2|Vl cos )

« _ g (Vi
"I.P'd°‘+ 2 | [Qule)edde.

« =tdi
(20)

Define the constraint manifold

G:={z:f(z) = 0,g(z) = 0}.
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Differentiating V on G gives ' _ The
V=i Zowe, 1) pathi
where o ' 1S not
* Zo(w)= —2¢D, - p(M, 1D, + D, 1M, ). (22) f°fI :h(’
A further requirement on u is to make Z,(u) <0. Note that Z,(0)<0. powe;
Clearly u =0 gives the simple kinetic energy function %mﬂr M, ®,. This remains a voltag
valid energy function for any (non-negative) values of damping D,. However, better , often
estimates of stability regions can be obtained with a value of i which is more closely !
related to the damping. This is considered in much more detail by Hill & Chong : 51 ¢
(1989) following the results for impedance load systems by Willems (1970). In the ;
special case of zero or uniform damping, the kinetic energy term becomes the familiar : OQur f
r=1  n It is
(12M7) ) Z . Z (w; _wj)zMiMj' :
i=no+1 j=i+1 A4.
4.2 Stability result
This a
In the development of large disturbance stability results, it is useful to establish the is trav
connection between small disturbance stability and asymptotic stability of equilibria. . asac
Small disturbance stability refers to the stability of the linear system obtained by .real €
linearizing (9), (10). Hiskens (1990) shows that this linearization yields, » e, J,
. | Howe:
[A‘f"] = [—— T R ][ A“"]= A[A"" ] 23) consec
Ao, -M'T,F 1 —M_'D, || Ao, Ao, ‘ Ope
where ' , : o
F=J,-3,3;'3, ' (24)
with J_ , J, and J,, defined in appendix A. , These
It is interesting to compare the linearized system (23) with the reduced system (14). compc

Notice that F is the Jacobian of P*(a,). Nonsingularity of J,, ensured the existence
of functions (13), and is also required for F to exist.-

The operating point is small disturbance stable iff all eigenvalues of A lie in the
open left half of the complex plane. It was shown by Hiskens (1990) that the eigenvalues
of A satisfied that condition if F was positive definite. So we can say that an equilibrium . From ¢

point is small disturbance stable if J,, is nonsingular and F is positive definite. ,tth‘_’ eq
it is co
~ Theorem 2. If an equilibrium point z, is small disturbance stable, then it is asympto-

tically stable in the sense of definition 2.

The proof of this is given in appendix A. v AS. L

Similar results have been derived before (DeMarco & Bergen 1984), but have relied : This a

on singular perturbation results. In so doing they have placed conditions on the sign ‘ extensi

of J,, which are not required here.

. Theore

by uni

5. Global dynamical structure 1 Vi=v

‘ The

In this section, we move beyond the local ODE equivalence given by lemma 1 to
study the DA system as globally decomposed into multiple ODE systems on regions ! Remark
bounded by surfaces of algebraic singularity. ] connec
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The assumption of constant real power load made at (2a) was neoessary to ensure
path independence of the energy function integral in (18). However, such an assumption
is not required when considering structural aspects of DA systems. It shall be relaxed
for this discussion, i.e., we will allow real power loads to take the form P, =Po( V).

It can be seen from (8) and (12) that real power loads mﬂuence J" When real
power loads are constant J,, is symmetric, so its eigenvalues are all real. However

voltage dependence of real power loads causes J,, to be asymmetric. This can (and
often does) cause J,, to have complex eigenvalues. e

5.1 ODE decomposition

Our first result will establish the ODE decomposition.
It is convenient to make the following assumption.

A4. For all zeG, all negative real eigenvalues of J,|, are distinct.

This assumption eliminates the possibility that as a path over the constraint manifold
is traversed, negative real eigenvalues of J;, could merge, then split from the real axis
as a complex pair. Under this assumption, the only way that the number of negative
real eigenvalues of J,, can change is by a real eigenvalue crossing the i imaginary axis,
ie, J, going singular. The assumption is valid for most realistic power systems,
However rare circumstances can be found where it is not true (Hlskens 1990). The
consequences of such behaviour are explored later.
Open sets C, whlch lie w1thm the constraint manifold can now be defined as

C = {zeG det J ,,|, # 0 J,l, has [ negative real eigenvalues}. (25)
These sets may not necessarily be connected. Partition each C, into its connected

components C,,,...C,, ie.

k ’
- G=)Cyand CnC =9, i#j ij=1.. .k
i=1 .

r)

~ From (13), it can be seen that the functions ¢, ¥, which enable the establishment of

the equivalent ODE representations, are functions of generator angles only. Therefore
it is convenient to project the sets C,, onto their generator angle components, as

A= {o,:(a,,a,|V))eC,} (26)
AS. Each C; is simply connected.

This assumption is difficult to check. However, in the context of power systems,
extensive studies have not revealed a counter-example.

Theorem 3.  Assume each C,, is simply connected. On each C,, the set G is represented
by wunique continuous functions ¢,:A4,— R" oW, Ay = R™ such that &, =d,(a,),

[Vl =v,(,). The D4 system 9), (10) is equivalent to the Iocal ODE representation (14)
The proof is given in appendix B.

Remarks. (a) It is easy to generate examples of systems where the sets C, are not
connected (Hiskens 1990).
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(b) The sizes of sets C,, depend greatly on the load model parameters. 'Conditions’
can be given for ensuring C,,I # 0 are empty (Hiskens & Hill 1989; Hiskens 1990).
(c) This result sharpens the one given earlier by Hiskens & Hill (1989).

The boundaries of the sets C,, are referred to as “impasse surfaces” — a term borrowed
from circuit theory (Hasler & Neirynck 1986). '

The regions C,, are referred to as voltage causal regions. Within any C,;» the load
bus voltages and angles are continuously dependent on the generator angles. If

trajectories meet an impasse surface, voltage behaviour can no longer be predicted
from the DA model.

The impasse surface I is given by

I ={zeG:detJ, |, =0}. -_ 27
Note that

‘- f 2m0 ’ !
G =< U c‘>u1. ;
i=0

Define augmented algebraic constraint function

i(z) = (det J,, 1, g).

Fact. Suppose rank Di=2n,+1 at a point p in I. Then in a neighbourhood of D,
I is a differentiable (m — 2)-manifold. : .

From this fact we can build a picture of I as composed of intersecting differentiable
(m — 2)-manifolds. On each of these manifolds, J, has exactly one zero eigenvalue.
They intersect at lower dimensional manifolds where 2 or more eigenvalues are zero

.and rank Di<2n,+ 1. It remains to determine whether Di has full rank at all

non-intersection points, i.c. does some (m — 2)-manifold segment have a boundary?

The following example examines the constraint manifold structure in the context of
power systems. g

Example 1. Consider the network shown in figure 1. For simplicity we will not
augment this network by buses representing fictitious generator internal buses. The
dynamic variables are therefore a,;,a ,,@,,,0,,,@,,. The algebraic variables are

® ®

15 g V=1050u
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Figure 2. Constraint manifold projection, (x “,I V1| space).

%3505, V111V |. The constraint mainfold has dimension 2. Note though that because

the load bus network is connected between generator GEN1 and the reference bus
GEN3, the load bus variables depend only on a,,- They are independent of o g2
Therefore the constraint manifold has a cylmdncal form in the sense that the same
shape is maintained at all values of « 2+ Projections of a slice through this 2-manifold
are shown in figure 2. The impasse surface appears in these projections as four points
14,1,,15,1,, separating causal regions C,, C, ,, C, ,, C,. The impasse surface ségments -
do not intersect. a

The impasse surface, which divides the constraint manifold into causal regions, is
defined at (27) as the set of points where J,, is singular. It is therefore composed of
points at which at least one real eigenvalue of J,, is zero. Note then that complex
.eigenvalues have no influence on the structure of the impasse surface. Hence, the
causal region decomposition is not influenced at all by complex eigenvalue behaviour.
(Because of its non-zero imaginary part, a complex eigenvalue can have zero real
part at a causal point.)

However, it can be observed that along a path traversing the constraint manifold,
the imaginary part of a complex pair may become zero, leaving a pair of repeated real
eigenvalues. These real eigenvalues can then of course influence the decomposition
in the usual way. Whilst not affecting the causal region structure, this behaviour does
cause difficulties with the indexing scheme established for the regions in (25). As.an




742 D J Hill, I A Hiskens and I M Y Mareels

example, if the imaginary part of a complex pair, which was in the left half plane,
became zero, two negative real eigenvalues would be created. Points in the same
causal region would have causal indices differing by two. However, because the
indexing scheme is no more than a convenient way of identifying regions, this effect
is not considered important. Certainly such eigenvalue behaviour in no way affects
the analysis of DA systems.

Thus the global structure of DA is established: the constraint set G consists of
disjoint open sets C,, which are separated by the impasse surface and within which
the dynamics are given by a local ODE description.

5.2 Conditions for global voltage causality

The above presents a complicated general picture for the dynamical structure of DA
systems. For the power systems case, variations of the load indices cause significant
structural changes to the causal region/impasse surface decomposition of the
constraint manifold. It is possible to find load indices which ensure global voltage
‘causality, i.e., detJ,, # 0 at all points on the constraint manifold. Then the DA model
which employed those indices could be globally reduced to a unique set of differential
equations, valid at all points on the constraint manifold. Results for special cases are
available (Hiskens & Hill 1989; Hiskens 1990).

6. . Stability assessment

In this section the implications of the global structure on the energy function picture
are studied.

6.1 Estimate of stability region

In theorem 3, local solvability of (10) was extended to solvability over voltage causal
regions. The same concept can be used to extend the region of validity of the local
representation of V. An estimate for the region of attraction for a stable equilibrium
point, zg, of the DA model can then be determined. Let the number of negative
eigenvalues of J;|,, be I By theorem 3 there exist unique continuous functions
o, = ¢, (a,), [V| = ¥, (a,) such that over a voltage causal region C,;, V at (18) can be
written . :

Vu(mg’ ag) = V(")g’ z)'IC“

Define the sets

R} = {(00, )| V(. 0,) < k},
Sfi = {(upah 'V‘) ((!)', ag)ERna oy = ¢u(ag)’ Ivl = \'lu(d,)}.

Note that the clements of S}, are sxmply points in (a,,;,[V|)-space which

correspond to elements of R, (i. e pomts in (m,,a,)-space)
An estimate of the stablhty region is obtained via the following theorem.

=io AN J < (a,,¢,;(¢,),\Il.,(a.)),da,) (28)
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alf plane, Theorem 4. Let Es=(0,z5) be an asymptotically stable equilibrium point of the DA
the same : model. Then, for all k>0 such that R, is bounded and S;‘, €C,; any trajectory s(t,X,)
cause the ] with initial conditions x,€RY, has the followmg properties: '
this effect (i) s(t,xo)eRy;, for all t 20 (i.e. R is invariant with respect to the DA model).
ay affects I (i) s(t,xo)— X, as t — co. :
onsists of The proof of this theorem is given in appendix A.
hin which -

; Remarks. (a) As k is increased, a value will be attained . where one of the two
: conditions on R}, Sk breaks down. Either
(i) R}, ; becomes unbounded, i.e. ¥ is no longer locally positive definite; or
ure of DA " (i) S & C,;, i.e. there are points in S, for which the local model is no longer valid.
significant These phenomena are consistent with definitions of power system stablhty (Hiskens
n of the & Hill 1989). The limit placed on k by (i) ensures that all points in R are attracted
al voltage "to the stable equilibrium point, z,, i, if k was allowed to increase, then for some
DA model Xo€RY},, s(t,Xo) 4 X,, as t — co. This is angle instability because the dynamic variables,
lifferential i.e. generator frequencies and angles, do not tend towards the stable equilibrium
| cases are point. (Note though that the impasse surface could be encountered as the system
proceeded along this unstable trajectory. In that case voltage causality would be lost
as a consequence of the initial angle instability.) The limit placed by (ii) ensures that
the local model and energy function are valid for all points in St. In this case, if k
was to increase, then for some z,eS}, detJ, =0, ie., lack of voltage causality.
. -(b) Let the largest value of k satisfying theorem 4 be k.- This value could be used
on picture in the traditional way as the critical value of energy able to be attained by the
disturbed system with stability still guaranteed. This of course is likely to be quite
conservative. A practical algorithm will employ information on fault location (Pai
1981). .
age causal (©) A result similar to this, but requiring all eigenvalues of J,, to be positive hz‘ls been
f the local derived by DeMarco & Bergen (1984). Singular perturbation results were used in
quilibrium that case. 3
f negative '
 functions 6.2 Multiple energy function sheets
18) can be ' \
If the energy function (18) is treated in the usual way as the sum of kinetic and
potential energy terms, then it is only the potential energy term which is dependent
on the set C;;. The local potential energy functions are functions of &, only, and so
can be conceptualized as (m— 1)-hypersurfaces (or sheets) in a,-space. (Recall the
(28) potential energy well concept in energy function methods, Pai 1981).
‘ For each region C,; defined by theorem 3, a unique local potential energy function
exists, each one a sheet in a,-space. It is not difficult to imagine therefore how it is
possible to have a number of asymptotically stable equilibria. (Those sheets with a
locally positive definite section must have an asymptotically stable equilibrium point
at the lowest point of that sectlon) Note that not all sheets need contain equilibria
however.
ace which (All the PE sheets join on the impasse surface. The sheets can be thought of as
, approaching each other infinitesimally closely at the impasse surface.
m. ~ While not hard to illustrate by example (Hlskens & Hill 1989), a complete thcoretlcal
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discussion of these issues remains to be studied. Nevertheless it is already clear that
DA models change the traditional view of large disturbance stability substantially.
For instance, the phenomenon of short-term voltage collapse can perhaps be explained
in terms of “jumps” between different energy levels (Hiskens & Hill 1989).

Appendix A. Proofs of stability results: . -
Proof of theorem 2

Define the Jacobian

o, /0w, | o, 0a, K AGIN 53
J =0h/oz = 3f,/aag : , = [ J" J"':I,
og/oa, | Jy e U
where h is defined after (18). Let & = (mg,z) (x,y), where x = (0,,a,) contains the
dynamic states and y = (&, |V|) contains the algebraic states.
If z, is small disturbance stable, then detJ,|,, #0 and Fl,,=J_—J,3;'J
positive definite.
Observe that f 4(z.)=0. Hence (6V/6§)|§,=0, and a Taylor expansion of V(§)
about &, yields,

1,'1

vo-a-sr[Y D Je-worous-s (A1)

where 0(’) represents higher order terms.
Now note that

[df’] 3, do, + ,,[d“‘]—o.
dg d|Vv]

So \

da -
[dl\l’l]f RO

By hypothesis J,,|,, is nonsingular, so

Vi a, e _1
J‘ \{ )d[lvl - — Uy 3l day,
(1e,[V e e ‘

o | % ='_ . N N
\I:IVI] |:|V|e] U k(e —a,,) | (A2)

From (Al), V(€) can be rewritten
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where all partial derivatives are evaluated at z,. Combining (A2) and (A3) gives
v V) =(0,— o, )P (e, —o, )+ —a )T, 33T ), 0-a,)
| +0()
Itvi's given that P, (4) > 0. Also, the assumption of small disturbance stability implies
3= I35 I ) > 0.

Thus V(E, + &) is locally positive defmlte on some neighbourhood of §,.
Define

R, = component of {&: V(§) < k} cohtaining E..

Because detJ,, # 0 by hypothesis, there exists a neighbourhood of &, such that the
algebraic equations (10) are solvable. Thus in the whole state space, there is a neigh-
bourhood A(x,) as defined for lemma 1.

Now consider

S={&: Vy, =0},
where f’D 4 is the derivative of V along trajectories of the DA model (9),(10). From (21),
VDA =30, Zo (1),

with Z,(u) given by (22). Therefore, it 1s easy to see that S consists of all equilibria

" (0,z,) where z, satisfies (11).

Because V is locally positive definite, it is clear that for some k, sufﬁmently small

. Ry, is bounded and SNR,, = {§.}.

The result then follows from theorem 1.

Proof of theorem 4. Because S}, < C,, the local energy function V,(@,,a,) is valid
for all (w,, @,)eR};,. As in the proof of theorem 2, differentiating V,, along\trajectories
of the reduced ODE system (14) gives

v, (@, 0) = @ Zo (1) e,

ie., V (0, a,)<0. ’

Due to the construction of R} and because l/“( f) <0, all trajectories &(t,&,)
of the DA model with initial conditions x,€R};, zoeS must be such that x(t,&,)
remains in R}, (property i). :

Property ii follows from theorem 1 and property i.

Appendix B. Proof of theorem 3.

Because C,; is open, each pointin C, has a neighbourhood contained in C,,. Further,
as C,, is simply connected, it is pathwise connected, i.c., between any two pomts in
C,, there exists a path which is completely contained in C,,.

The definition of C,, implies that the implicit function theorem is valid at all points
(@,,o,|VI')eC,. Therefore, within a neiglibourhood of any point (o, o}, |VI') there
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exist unique continuous functions ;,, y;; which relate a;, |V| to a,. (Continuity follows
from the fact that f,,g are continuous.) . :

Consider two arbitrary points z,,z,eC,, sufficiently close that neighbourhoods of
these points, U, U, = C,,-overlap, i.e. U, U, # ¢. There exist on U y unique con-
tinuous functions ¢;, };, whilst on U, there exist unique continuous functions-¢pZ 2.
Now consider a point z; = (a:, a?,|V|*)eU,; N U,. Because this point belongs to both
neighbourhoods, it must satisfy ¢j;, ¥}, and ¢2,¥2, ie.

o) = dj(e)) and |V|* = yl(a?),
and ,
o = ji(0;) and [V = i (as)),

But ¢;;, ¥}, and ¢7, Y7 are unique at all points within their respective neighbourhoods.
SO‘,

b = b7, and Y} = 2.

Because points z,,z, are arbitrary, the above argument applies for any sufficiently
close points. In particular, along any path completely contained in C,, every. point
has a neighbourhood which intersects neighbourhoods of other points on the path.
A chain of points with overlapping neighbourhoods can be formed along the path.
By applying the above argument at successive points along that chain and since C,
is simply connected, it can be concluded that functions ¢, and ¥, must be unique
along the whole path, including its end points. ’

But any two points in C,, can be joined by some path. Further, because C,, is
simply connected, paths can be continuéusly transformed within C,;- Therefore ¢,
and ¥, are unique over C,,. O
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