
Chapter 9

DYNAMIC EMBEDDED OPTIMIZATION
AND SHOOTING METHODS FOR POWER
SYSTEM PERFORMANCE ASSESSMENT

Ian A. Hiskens
University of Wisconsin - Madison
hiskens@engr.wisc.edu

Jung-Wook Park
University of Wisconsin - Madison
jungwookpark@ieee.org

Vaibhav Donde
University of Illinois at Urbana-Champaign
donde@ieee.org

Abstract Power system dynamic performance enhancement can often be formu-
lated as a dynamic embedded optimization problem. The associated
cost function quantifies performance and involves dynamically evolving
state variables. The dynamic model is embedded within the constraints.
Power systems form an important example of hybrid systems, with in-
teractions between continuous dynamics and discrete events playing a
fundamental role in behavior. However, it is shown that for a large class
of problems, the cost function is smooth even though the underlying
dynamic response is non-smooth. Complementing this design-oriented
optimization framework, techniques for assessing power system perfor-
mance and vulnerability can often be expressed as boundary value prob-
lems, and solved using shooting methods. It is shown that performance
limitations are closely related to grazing phenomena. Techniques are
presented for determining parameter values that induce limit cycles and
grazing.
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1. Introduction
Design processes are inherently optimization problems, involving trade-

offs between competing objectives, whilst ensuring constraints are sat-
isfied. Such problems are not always established formally, nevertheless
underlying optimization principles apply. Design questions arising from
system dynamic behavior can also be thought of in an optimization
framework. However, the optimization formulation in this case must
capture the processes driving dynamics. This class of problems has come
to be known as dynamic embedded optimization.

Examples of such problems abound in power systems. System oper-
ators are often faced with maximizing transmission utilization subject
to stability constraints. Voltage collapse can be prevented by shedding
load, but determining the correct amount and location involves trade-
offs. Shedding too much load incurs the wrath of consumers, but in-
sufficient shedding may not alleviate the problem. The August 2003
blackout in North America illustrated the potential consequences in the
latter case [1].

Even the tuning of traditional controllers such as power system sta-
bilizers (PSSs) involves trade-offs. The role of PSSs is to provide damp-
ing, so controller tuning focuses on small-signal conditions. As a conse-
quence, performance during the transient period immediately following
a large disturbance may be degraded. PSS output limiters attempt to
balance these competing effects. It will be shown later that the tun-
ing of these limiter values can be formulated as a dynamic embedded
optimization problem.

In contrast to design, analysis of system dynamics is more aligned
with understanding extremes of system behavior. Many analysis ques-
tions take the form of boundary value problems, which are solved using
shooting methods. Two cases will be considered in the sequel, limit
cycles and grazing phenomena.

Limit cycle behavior has been observed in power system operation [2].
Such behavior is usually undesirable, and tends to be induced by inter-
actions between generator controllers. In many cases, linear techniques
can be used to identify contributing factors, and to retune controls ac-
cordingly [3]. Other cases though are truly nonlinear, and may even
involve controller limits, making them non-smooth. An example will
be considered in Section 4.1. Often nonlinear limit cycles are unsta-
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ble, and partially bound the region of attraction of the stable operating
point. Linear analysis techniques are inappropriate in such cases. Also
reverse-time simulation is unreliable, because it is common for such limit
cycles to have saddle characteristics, i.e., attracting in some directions
and repelling in others. However, it will be shown in Section 4.1 that
limit cycles (even those that are non-smooth) can be formulated as a
boundary value problem, and solved using a shooting method.

Power system dynamic behavior is generally subject to performance
constraints that seek to ensure appropriate post-fault response. Other-
wise excessive transients may trigger protection devices, outaging items
of equipment, and possibly leading to cascading system failure [1]. Bound-
ing cases, where the system trajectory just (tangentially) encounters a
performance constraint, separate regions of desirable and undesirable
behavior. Such tangential encounters are referred to as grazing.

Vulnerability to event triggering can be assessed by comparing given
(nominal) parameter values with values that induce grazing. If a suf-
ficient margin exists between actual and grazing values, then dynamic
performance is guaranteed. Crucial to this assessment is the ability to
determine grazing values. This problem can again be formulated as a
boundary value problem. An appropriate shooting method is developed
in Section 4.2.

2. Model

2.1 Hybrid systems
Interactions between continuous dynamics and discrete events are an

intrinsic part of power system dynamic behavior. Devices that obey
physical laws typically exhibit continuous dynamics; examples include
generators and their controllers. On the other hand, event-driven dis-
crete behavior is normally associated with rule-based components. Ex-
amples in this latter category include protection devices [4], tap-changing
transformers [5] and supervisory control [6]. Limits within physical de-
vices also fall into this category; an event occurs when a controller signal
saturates, or a FACTS device encounters its maximum/minimum firing
angle.

Power systems therefore provide an important application area for
hybrid systems, i.e., systems that are characterized by:

continuous and discrete states

continuous dynamics

discrete events, or triggers
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mappings that define the evolution of discrete states at events.

A simplified hybrid system representation has the form

ẋ = fρ(x), ρ ∈ P (9.1)

with x(0) = x0, fρ : R
n → R

n, and P is some finite index set. An event
occurs at time τ , with the system in discrete state ρ(τ) = i, if

sij(x(τ)) = 0 (9.2)

where sij : R
n → R is the event triggering function. For well defined be-

havior, it must be assumed that event triggers are encountered transver-
sally1,

∇sT
ijẋ = ∇sT

ijfi �= 0 (9.3)

that event triggering cannot initiate an infinitely fast switching sequence
(chattering)2, and that accumulation (Zeno) effects do not occur [8].
Under those conditions, event triggering results in

ρ(τ+) = j (9.4)

x(τ+) = hij(x(τ)) (9.5)

where τ+ refers to the time incrementally beyond switching time τ .
Equations (9.4)-(9.5) imply that at time τ a transition fi → fj occurs
in the governing dynamics, and hij forces an impulsive step in the state.
(No impulse occurs if hij(x) = x though.) The model induces the system
flow

x(t) = φ(t, x0) (9.6)

This simple model provides clarity in the development and discussion
of subsequent algorithms. However it is generally inadequate for repre-
senting power systems. A more elaborate differential-algebraic model,
which incorporates switching and impulse effects, is described in [9].

A compact development of optimization and shooting method algo-
rithms results from incorporating parameters λ ∈ R

� into the dynamic
states x. (Numerical implementation is also simplified.) This is achieved
by introducing trivial differential equations λ̇ = 0 into (9.1), and results
in the natural partitioning

x =
[

x
λ

]
, f =

[
f
0

]
, hj =

[
hj

λ

]
(9.7)

where x are the true dynamic states, and λ are parameters.

1Tangential encounters are associated with grazing bifurcations, discussed later.
2Chattering is indicative of sliding mode behavior, with Filippov [7] concepts required to
define solutions.
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2.2 Trajectory sensitivities
Optimization and shooting method algorithms require the sensitivity

of a trajectory to perturbations in parameters and/or initial conditions
[10]. To obtain the sensitivity of the flow φ to initial conditions x0, the
Taylor series expansion of (9.6) is formed. Neglecting higher order terms
gives

δx(t) =
∂x(t)
∂x0

δx0 ≡ Φ(t, x0)δx0 (9.8)

where Φ is the sensitivity transition matrix, or trajectory sensitivities,
associated with the flow of x [11]. Equation (9.8) describes the change
δx(t) in a trajectory, at time t along the trajectory, for a given (small)
change in initial conditions δx0 = [δxT

0 δλT ]T .
Along smooth sections of the trajectory (between events), the varia-

tional equations describing the evolution of the trajectory sensitivities
are given by the linear time-varying system

Φ̇ = Dfρ(t)Φ, Φ(0) = I (9.9)

where Df ≡ ∂f
∂x and I is the identity matrix. For large systems, these

equations have high dimension. However the computational burden is
minimal when an implicit numerical integration technique such as trape-
zoidal integration is used to generate the trajectory. Further details can
be found in [12, 13, 14].

It is shown in [12] that at an event i → j, occurring at time τ , the
trajectory sensitivities Φ generically jump according to

Φ(τ+, x0) = DhijΦ(τ−, x0) + (fj − Dhijfi)
∇sT

ijΦ(τ−, x0)

∇sT
ijfi

(9.10)

=

(
Dhij + (fj − Dhijfi)

∇sT
ij

∇sT
ijfi

)
Φ(τ−, x0). (9.11)

Notice that the transversality condition (9.3) ensures that the denomi-
nator of (9.10) is non-zero.

Equation (9.10) can be rewritten

Φ+ = DhijΦ− − (fj − Dhijfi)
∂τ

∂x0
(9.12)

where
∂τ

∂x0
= −∇sT

ijΦ
−

∇sT
ijfi
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Figure 9.1. Jump conditions.

gives the sensitivity of the event triggering time to initial conditions.
Visualizing this result is easiest when hij(x) = x, which gives Dhij = I.
Then for a perturbation δx0, (9.12) gives

δx = Φ−δx0 + fiδτ = Φ+δx0 + fjδτ

which is illustrated in Figure 9.1.

3. Dynamic Embedded Optimization
Optimization problems arise frequently in the analysis of power sys-

tem dynamics. Examples range from tuning generator AVR/PSSs [15]
to determining the optimal location, amount and switching times for
load shedding [16]. Many problems can be formulated using a Bolza
form of objective function

min
θ,tf

J (x, θ, tf ) (9.13)

subject to x(t) = φ(t, x0) (9.14)
x ∈ S (constraint set) (9.15)

where

J (x, θ, tf ) = ϕ
(
x(tf ), θ, tf

)
+
∫ tf

0
ψ
(
x(t), θ, t

)
dt (9.16)

and θ are the design parameters, i.e., the parameters adjusted to achieve
the objective. Adjustability of the final time tf is problem specific. This
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problem is closely related to optimal control [17], but solves for finite
dimensional θ, rather than an infinite dimensional control input u(t).

The solution of (9.13) for hybrid systems is complicated by discontin-
uous behavior at events. However those complications largely disappear
under the assumption that the order of events does not change as θ
and tf vary, i.e., no grazing situations occur. This assumption is com-
mon throughout the literature, though it is expressed in various ways:
transversal crossings of triggering hypersurfaces are assumed in [18], ex-
istence of trajectory sensitivities is assumed in [19], and [20] assumes all
flows have the same history. All statements are equivalent.

Under that assumption, and other mild assumptions, it is concluded
in [20] that if J is continuous in its arguments then a solution to (9.13)
exists. Furthermore, [19] shows that if J is a smooth function of its
arguments, then it is continuously differentiable with respect to θ and tf .
The minimization can therefore be solved using gradient-based methods.
Trajectory sensitivities underlie the gradient information.

It is still an open question as to which gradient-based methods are
most appropriate for solving (9.13)-(9.16). Steepest descent is simple
to implement, but may require many iterations. This situation is to
be avoided, as each evaluation of J requires simulation of the embed-
ded dynamical system. Encouraging results have been obtained with
conjugate-gradient and quasi-Newton methods [21]. A further advantage
of these latter methods is that they provide an estimate of the Hessian
∂2J /∂θ2. (Building the true Hessian is infeasible, as it involves second
order trajectory sensitivities which are computationally expensive.) The
(approximate) Hessian may provide an indication of coupling between
design parameters θ, and hence allow physical insights that assist in the
design process.

If the event ordering assumption given above is not satisfied, J may be
discontinuous. The optimization problem then takes on a combinatorial
nature, as each continuous section of J must be searched for a local
minimum [19].

Example Non-traditional design capabilities arise from embedding a
hybrid system model within the optimization framework (9.13)-(9.16).
To illustrate, consider the generator AVR/PSS shown in Figure 9.2. The
clipping limits on the PSS output VPSS and the anti-windup limits on the
field voltage Efd introduce events that result in non-smooth behavior.
Typically PSS output limits are assigned on an ad hoc basis. However
[15] determines optimal limit values by establishing a cost function (9.16)
that maximize damping whilst penalizing deviations in the generator
terminal voltage. Figure 9.3 compares optimal performance with that
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Figure 9.2. AVR/PSS block representation.

obtained using standard limit values. (Note that only the limit values
differ between these two cases. All other parameters are fixed.) The
underlying non-smoothness of this example is apparent from the field
voltage behavior.

�

Other optimization problems do not naturally fit the Bolza form of
objective function (9.16). Cascaded tap-changing transformers provide
an interesting example [22]. Minimizing the number of tap change oper-
ations is equivalent to minimizing the number of crossings of triggering
hypersurfaces. Such a problem, by definition, does not satisfy the earlier
assumption requiring constant ordering of events.

4. Shooting Methods
Boundary value problems have the form

r
(
x0, x(tf )

)
= 0 (9.17)

where tf is the final time, and x(t) is the trajectory that starts from x0

and is generated by the hybrid system model (9.1). The initial values x0

are variables that must be adjusted to satisfy r. (Though r may directly
constrain some elements of x0.) To establish the solution process, (9.17)
may be rewritten

r
(
x0, φ(tf , x0)

)
= 0 (9.18)

which has the form r̃(x0) = 0. Boundary value problems are solved by
shooting methods [10, 23], which are a combination of Newton’s method
for solving (9.18) along with numerical integration for obtaining the flow
φ. Newton’s method requires the Jacobian

J =
∂r

∂x0
+

∂r

∂x
Φ(tf ) (9.19)
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Figure 9.3. Damping improvement from optimally tuning PSS limits.

which is dependent upon the trajectory sensitivities evaluated at tf .
Boundary value problems per se are uncommon in power systems.

However, two applications are of increasing importance: limit cycles
(sustained oscillations) and grazing phenomena. They are discussed in
the following subsections.



188 APPLIED MATHEMATICS FOR POWER SYSTEMS

Γ

Σ

P(x0)

x*

φ(t,x0)

x0

σx~

Figure 9.4. Poincaré map.

4.1 Limit cycles
Oscillations have been observed in a variety of power systems, from

generation [2] to distribution [24]. In this latter case, oscillations were
driven by interactions between transformer tapping and capacitor switch-
ing. A hybrid system representation is necessary for capturing such
phenomena.

Periodic behavior of limit cycles implies that the system state returns
to its initial value every cycle. This can be expressed in terms of the
flow as

x∗ = φ(T, x∗) (9.20)

where T is the limit cycle period. For non-autonomous systems, the
period T is a known quantity. However, it is not known a priori for
autonomous systems. The unknown period, or return time, can be found
using Poincaré map concepts [25, 23]. These concepts are well known;
the following summary is provided for completeness.

Referring to Figure 9.4, let Σ be a hyperplane that is transversal to
the flow φ(t, x0), and defined by

Σ = {x : σT (x − x̃) = 0} (9.21)

where x̃ is a point anchoring Σ and σ is a vector normal to Σ. The
return time τr for a trajectory emanating from x0 ∈ Σ is therefore given
by

σT (φ(τr, x0) − x̃) = 0 (9.22)
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The flow φ and hyperplane Σ together describe a Poincaré map P :
Σ → Σ, defined by

P (x0) = φ(τr(x0), x0) (9.23)

where τr(.) is given (implicitly) by (9.22). Therefore from (9.20), a limit
cycle of an autonomous system must satisfy

x∗ = P (x∗) = φ(τr(x∗), x∗) (9.24)

The corresponding limit cycle is labelled Γ in Figure 9.4.
Limit cycles can be located by solving (9.20) for non-autonomous

systems or (9.24) for autonomous systems. For autonomous systems,
rewriting (9.24) gives

Fl(x∗) = φ(τr(x∗), x∗) − x∗ = 0 (9.25)

The solution x∗ can be obtained using a shooting method3, which solves
the iterative scheme

xk+1 = xk −
(
DFl(xk)

)−1
Fl(xk) (9.26)

where

DFl(xk) = Φ(τr(xk), xk) − f |τr(xk)
σT Φ(τr(xk), xk)

σT f |τr(xk)

− I (9.27)

=

(
I − f |τr(xk)σ

T

σT f |τr(xk)

)
Φ(τr(xk), xk) − I (9.28)

Derivation of DFl is given in [25, 26].
As shown in Section 2.2, the sensitivity transition matrix Φ in (9.28)

is well defined for hybrid systems. Therefore the proposed shooting
method is suitable for non-smooth limit cycles. This will be illustrated
in the later example.

Stability of limit cycles can be determined using Poincaré maps. The
Poincaré map (9.23) effectively samples the flow of a periodic system
once every period. If the limit cycle is stable, oscillations approach
the limit cycle over time. The samples provided by the corresponding
Poincaré map approach a fixed point. A non-stable limit cycle results in
divergent oscillations. For such a case the samples of the Poincaré map
diverge.

3Reformulation as a multiple shooting method [10] is straightforward.
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Stability of the Poincaré map is determined by linearizing P at the
fixed point x∗,

∆xk+1 = DP (x∗)∆xk (9.29)

For autonomous systems, it follows from (9.28) that

DP (x∗) =
(

I − f(x∗)σT

σT f(x∗)

)
Φ(τr(x∗), x∗) (9.30)

The eigenvalues of DP (x∗) are known as the characteristic multipliers
mi of the periodic solution. The matrix Φ(τr(x∗), x∗) in (9.30) is ex-
actly the sensitivity transition matrix after one period of the limit cycle,
i.e., starting from x∗ and returning to x∗. This matrix is called the
Monodromy matrix.

It is shown in [25] that for an autonomous system, one eigenvalue
of Φ(τr(x∗), x∗) is always unity, and the corresponding eigenvector lies
along f(x∗). The remaining eigenvalues of Φ(τr(x∗), x∗) coincide with
the eigenvalues of DP (x∗), i.e., the characteristic multipliers. These
characteristic multipliers are independent of the choice of hyperplane Σ.
Therefore, for hybrid systems, it is often convenient to choose Σ as a
triggering hypersurface corresponding to an event that occurs along the
periodic solution.

Because the characteristic multipliers mi are the eigenvalues of the
linear map DP (x∗), they determine the local stability of the Poincaré
map P (.), and hence the local stability of the periodic solution. If all
mi lie within the unit circle, the map is locally stable, so the periodic
solution is locally stable. Alternatively, if any of the mi lie outside the
unit circle, then the periodic solution is unstable.

Example A simple single machine infinite bus system can be used to
illustrate power system limit cycles. The machine is represented by a
sixth order model [27], and has an AVR of the form shown in Figure 9.2,
but with the PSS disabled. The system has an asymptotically stable
operating point for values of AVR gain KA < 278. A supercritical Hopf
bifurcation [23] occurs near KA = 278. For KA > 278, the equilibrium
point becomes unstable and a stable limit cycle appears. The amplitude
of that limit cycle grows as KA increases, with the maximum field voltage
limiter becoming active for KA > 294.

The limit cycle corresponding to KA = 300 is shown in Figure 9.5, as
a plot of field voltage Efd versus terminal voltage Vt. Notice that the
limit cycle is non-smooth due to the field voltage limit Efd,max = 5 p.u.

For this case the eigenvalues of the Monodromy matrix are 1, 0.84,
0.21±j0.25, 0.08 and four at 0. The unity eigenvalue is always present for
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Figure 9.5. Non-smooth limit cycle.

autonomous systems, as suggested by the theory. The other eigenvalues
are the characteristic multipliers for this limit cycle. Notice that one
of the characteristic multipliers is relatively close to unity, indicating
that the limit cycle is quite poorly damped. Indeed the non-equilibrium
trajectory in Figure 9.5 converges slowly to the limit cycle.

Even though it is theoretically possible to obtain this limit cycle by
simulation, slow convergence makes the process impractical. On the
other hand, shooting method convergence properties follow from the
underlying Newton solution process, rather than from the behavior of the
dynamical system. For this example, the shooting method was initialized
at the unstable equilibrium point corresponding to KA = 300, except
that the angle state was perturbed slightly. Convergence was obtained
in eight iterations from this onerous initialization.
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Figure 9.6. Grazing phenomenon.

4.2 Grazing phenomena
As suggested in Section 1, if a system trajectory encounters the oper-

ating characteristic of a protection device, a trip signal is sent to circuit
breakers. If the trajectory almost touches the operating characteristic
but just misses, no trip signal is issued. The bounding (separating) case
corresponds to the trajectory grazing, i.e., just touching, the operating
characteristic, but not crossing it. Under certain circumstances, this is
referred to as a grazing bifurcation [28, 29]; it separates two cases that
have significantly different forms of behavior.

Figure 9.6 provides a more general picture. For a certain value of
parameter γhit, the system trajectory encounters a performance con-
straint4 at a point xhit. An event occurs, and the trajectory continues
accordingly. However, for a small change in parameter value, to γmiss,
the trajectory misses (at least locally) the constraint and subsequently
exhibits a completely different form of response. At a critical parameter
value γg, lying between γhit and γmiss, the trajectory tangentially en-
counters (grazes) the constraint. Behavior beyond the grazing point xg

is generally unpredictable, in the sense that without further knowledge
of the system, it is impossible to determine whether or not the event
triggers.

4This may be a protection operating characteristic, or some other constraint established to
ensure adequate system performance.
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Grazing is characterised by a trajectory (flow) of the system touching
a triggering hypersurface tangentially. Let the target hypersurface be
described by

b(x) = 0 (9.31)

where b : R
n → R. Vectors that are normal to b are therefore given

by ∇b = (∂b/∂x)T , and the tangent hyperplane is spanned by vectors
u that satisfy ∇bT u = 0. The vector ẋ = f(x) is directed tangentially
along the flow, so at a grazing point

∇bT f(x) = 0 (9.32)

A single degree of freedom is available for varying parameters to find
a grazing point. Recall from (9.7) that parameters λ are incorporated
into the initial conditions x0. Therefore the single degree of freedom can
be achieved by parameterization x0(θ), where θ is a scalar.

Grazing points are therefore described by combining together the flow
definition (9.6) (appropriately parameterized by θ), target hypersurface
(9.31), and tangency condition (9.32), to give

Fg1(xg, θ, tg) := φ(tg, x0(θ)) − xg = 0 (9.33)
Fg2(xg) := b(xg) = 0 (9.34)

Fg3(xg) := ∇b(xg)T f(xg) = 0 (9.35)

Grazing occurs at time tg along the trajectory, and its state-space lo-
cation is given by xg. This set of equations may be written compactly
as

Fg(xg, θ, tg) = Fg(z) = 0 (9.36)

where Fg : R
n+2 → R

n+2 and z = [xT
g θ tg]T .

Numerical solution of (9.36) using Newton’s method amounts to iter-
ating on the standard update formula

zk+1 = zk −
(
DFg(zk)

)−1
Fg(zk) (9.37)

where DFg is the Jacobian matrix

DFg =


 −I Φdx0

dθ f
∇bT 0 0

fT∇2b + ∇bT Df 0 0


 (9.38)

More complete details of this algorithm are given in [26].
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Example An example of grazing is presented in Figure 9.7, where
zone 1 and 2 operating characteristics for a distance protection relay
appear as circles in the impedance plane. The dashed line, which begins
at the pre-fault operating point a1, shows the system response to a
disturbance for nominal system conditions. At the onset of the fault,
the apparent impedance jumps from a1 to b1. It then evolves to c1

during the fault-on period. At fault clearing, the apparent impedance
jumps, approaches the zone 2 characteristic, then turns away. Under
these nominal conditions the relay characteristic is not encountered.

As load increases, the impedance trajectory moves closer to the relay
characteristic. The example considered the load increase required for the
relay characteristic to be encountered. This established the maximum
secure loading level. The problem was formulated according to (9.33)-
(9.35), with b describing the zone 2 operating characteristic, and θ giving
the load deviation. Convergence of (9.37) was obtained in four iterations,
with the grazing trajectory shown as the solid curve in Figure 9.7. The
load change moved the pre-fault operating point from a1 to a2. As
required, this trajectory just touches the relay characteristic.
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5. Challenges in Dynamic Performance
Enhancement

Power systems are becoming increasingly complex. Trends include
greater utilization of special protection schemes, FACTS devices, and
distributed resources. (Market dynamics may also become influential
as the associated time-constants diminish.) These newer influences, to-
gether with operation closer to limits, is resulting in a greater level of
switching (non-smooth) activity. The techniques proposed in this pa-
per are suited to such hybrid behavior. However more work is required.
Hybrid dynamics introduce new challenges for control design. For exam-
ple, minimization of switching events does not fit a normal optimization
framework [30]. Also, assessment of stability limits is technically difficult
[31].

Distributed resources, such as small generation sources, newer FACTS
technology [32], and load control [33, 34], individually exert negligible
influence on dynamic behavior. However collectively their effect may be
significant. Modelling of each device is impossible, so techniques for ag-
gregating behavior and handling the associated model uncertainty will
become vital for meaningful assessment of dynamics. Monte Carlo tech-
niques are impractical, due to the computational burden of repeated
simulations. Emerging practical techniques build on probabilistic collo-
cation [35] and trajectory approximation [36]. Further work is required
though.

6. Conclusions
The response of power systems to large disturbances often involves

interactions between continuous dynamics and discrete events. Power
systems therefore provide an important application area for hybrid sys-
tems. Systematic modelling of hybrid systems facilitates efficient com-
putation of trajectory sensitivities. The variational equations describing
the evolution of trajectory sensitivities through events are well defined,
even though the underlying behavior may be non-smooth.

Many design questions associated with enhancement of power system
dynamic performance can be formulated as dynamic embedded opti-
mization problems. Such problems are constrained to satisfy system
dynamics, and so are closely related to optimal control. If the order-
ing of events remains fixed as parameters vary, the cost function is
smooth, even though underlying dynamic behavior may be non-smooth.
Gradient-based algorithms are appropriate, with trajectory sensitivities
providing the gradient information. Changes in event ordering may how-
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ever result in non-smoothness or even discontinuities in the cost function.
In that case, a combinatorial optimization process may be required.

In contrast to design, analysis questions often take the form of bound-
ary value problems, which can be solved using shooting methods. Limit
cycles provide an example. Smooth and non-smooth limit cycles have
been observed in power systems. Furthermore, unstable limit cycles
often partially bound the region of stable operation. All limit cycles,
whether stable or unstable, smooth or non-smooth, can be obtained re-
liably using shooting methods.

Power system performance constraints seek to achieve appropriate
post-fault response by bounding behavior away from undesirable regions
of state space. An indication of system vulnerability can therefore be
obtained by determining trajectories that tangentially encounter (graze)
those constraints, i.e., by pushing the system to the limit. The conditions
governing such grazing trajectories take the form of a boundary value
problem, which can be solved via a shooting method.
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