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1 Introduction

Postmortem analysis of power system disturbances invariably reveals discrepancies between
measured and simulated behaviour. Load model inaccuracy is often found to be an important
contributing factor. This is not a new issues, with many instances reported in the literature
over the years. For example, the inadequacy of constant admittance load models was discussed
in [1], in the context of analyzing a major system disturbance that resulted from a staged
test. Other studies from that era also suggest load representation has an important influence
on power system behaviour [2]. More recently, studies of the WECC power systems, which
spans the western US, have identified load modelling as an important issue in replicating
measurements from large disturbances [3, 4].

Recognition of the importance of load modelling motivated numerous task force reports
[5, 6, 7]. A huge effort has been directed towards identifying load model parameters from
measurements of natural and deliberately-induced disturbances [8, 9]. Yet even after extensive
investment in load model improvement, analysis of subsequent disturbances invariably reveals
errors in load models [10]. This should not be unexpected though, given that load models are
meant to account for the aggregated effects of many time-varying composite loads [2]. Load
composition, and hence behaviour, will generally differ from one disturbance to the next.

Expressing load models as a deterministic set of parameters would therefore seem pointless.
Rather, parameters should be described via their statistical distributions [11]. But that raises
the issue of how to use such information. A Monte-Carlo approach, whereby sets of load
parameters are randomly sampled and a time-domain simulation performed for each set, is
computationally infeasible. Statistical analysis of load effects is feasible though, by utilizing
techniques that build on probabilistic collocation [12] and/or trajectory sensitivities [13]. This
paper however takes a different line.

In terms of quantitative analysis, for example matching simulations with measurements,
it is absolutely clear that accurate load modelling is vitally important. But for qualitative
investigations, where the aim of dynamic simulation is to assess the likelihood of a certain
disturbance scenario being stable or unstable, then the need for accurate load modelling is
much reduced. In other words, if a system is stable (unstable) for a certain set of load model
parameters, then it will most likely also be stable (unstable) for perturbed load models. The
paper will explore this conjecture through the use of trajectory sensitivity concepts. It will
be shown that for such qualitative assessment, it is more important to know the sensitivity
of behaviour to load parameters, than to precisely know the parameter values.

A caveat is required though. Most power system failures are not initiated by instability
[14], though instability is frequently a consequence. Rather, it is more common for an ini-
tiating (relatively minor) disturbance to escalate through reactionary protection operation.
Examples of such reactionary effects include zone 3 distance protection unnecessarily tripping
feeders, and volts/hz relays tripping generators. This subsequent weakening of the system
may induce further protection operation, leading to a cascading system failure. It has been
found from disturbance analysis that load modelling can be very important in predicting such
reactionary protection behaviour [10].

Protection is binary; either the system encounters the operating characteristic initiating
a trip, or it does not encounter the characteristic and the component remains in service.
The bounding case, separating protection operation from non-operation, corresponds to the
trajectory gazing (just touching) the operation characteristic [15]. Parameter sets that induce
grazing are pivotal, in that they divide parameter space into regions that exhibit vastly
different behaviour [16]. It follows that in potential grazing situations, where reactionary



protection operation may or may not occur, special care should be given to understanding
the influence of load parameter variations.

The paper is organized as follows. Section 2 provides brief background to modelling
concepts, and to trajectory sensitivities. The IEEE 39 bus system is used in Section 3 to
illustrate various aspects of the influence and significance of load modelling. Conclusions are
presented in Section 4.

2 Background

2.1 System model

In response to large disturbances, power systems typically exhibit periods of smooth behav-
iour, interspersed with discrete events. Smooth behaviour is driven by devices such as gen-
erators, that are well described analytically by differential-algebraic models. Discrete events,
arising for example from operation of protection devices or enforcement of controller hard
limits, are not so easy to describe analytically. Systems that exhibit intrinsic interactions
between continuous dynamics and discrete events have become known generically as hybrid
systems [17], or piecewise smooth dynamical systems.

Analysis of power system dynamics requires a non-restrictive model formulation that is
capable of capturing the full range of continuous/discrete hybrid system dynamics, yet is
computationally efficient. It is shown in [18, 19] that these specifications are met by a model
that consists of a set of differential-algebraic equations, adapted to incorporate switching of
the algebraic equations, and impulsive (state reset) action. The details of this model are not
vital for later discussions, therefore concepts will be presented in terms of the simpler model,

ẋ = f(x;λ), x(0) = x0 (1)

where x ∈ Rn describes the system state, and λ ∈ Rp are parameters. The behaviour of the
system, as driven by (1), can be represented by the flow,

x(t) = φ(x0, t; λ). (2)

The extension of this flow concept to more realistic hybrid system behaviour is straighforward.

2.2 Load models

It is common for aggregate load models to be composed of a static voltage dependent com-
ponent together with an induction motor [4, 7]. This composition can be described paramet-
rically by

Stot = νSv + (1− ν)Sind (3)

where Stot is the total complex power of the load,

Sv = P0V
ηp + jQ0V

ηq (4)

describes the voltage dependent part of the load, and Sind is the complex power demanded
by the induction motor component. The dynamics underlying Sind are typically described by
a third order differential equation model [20].

Each of the load components in (3) should be sized to match the total bus demand. The
parameter ν provides the necessary scaling, with 100ν specifying the percentage of static
load. The significance of the load composition, i.e., the weighting between Sv and Sind, can
be captured by the sensitivity of dynamic behaviour to variations in ν. Later examples will
consider uncertainty in ηp, ηq and ν.



2.3 Trajectory sensitivities

Sensitivity concepts are generally associated with the linearization of an input-output rela-
tionship. Small changes in inputs map through the linearized relationship to small output
changes. Trajectory sensitivities fit this framework by describing the changes in the trajec-
tory (the output) resulting from perturbations in the underlying parameters and/or initial
conditions (the inputs). They provide a linearization around the trajectory, as against small
disturbance analysis which builds on linearization around the equilibrium point. Trajectory
sensitivity concepts are not new [21], though until recently progress on practical applications
was impeded by:

• Computational inefficiency. Sensitivity to each parameter or initial condition required
an additional full simulation.

• Non-smooth behaviour. Sensitivities were not well defined for situations where events
influenced behaviour.

However both these limitations have recently been overcome, with efficient computation of
trajectory sensitivities now possible for large-scale, non-smooth systems [18].

Trajectory sensitivities are motivated by the Taylor series expansion of the flow (2), which
can be expressed as

φ(x0, t; λ + ∆λ) = φ(x0, t; λ) +
∂φ(x0, t; λ)

∂λ
∆λ + E(x0, t; λ,∆λ) (5)

where E captures the higher order terms. For small ‖∆λ‖, the higher order terms may be
neglected, giving

∆x(t) = φ(x0, t; λ + ∆λ)− φ(x0, t; λ) ≈ ∂φ(x0, t;λ)
∂λ

∆λ

≡ Φ(x0, t; λ)∆λ (6)

where Φ is the sensitivity transition matrix, or trajectory sensitivities, associated with the
flow [21]. Equation (6) describes the approximate change ∆x(t) in a trajectory, at time t
along the trajectory, for a given small change in parameters ∆λ.

Evolution of the sensitivity transition matrix Φ is described by variational equations that
follow from differentiating (1) with respect to λ. This gives

Φ̇ = fx(t)Φ + fλ(t), Φ(0) = 0 (7)

where fx ≡ ∂f/∂x, fλ ≡ ∂f/∂λ and Φ(t) ≡ ∂x(t)/∂λ. Note that fx and fλ are evaluated
along the trajectory, and hence are time varying matrices. The computational burden of
numerically integrating this (potentially high order) linear time-varying system is minimal
though. It is shown in [18, 22] that when an implicit numerical integration technique such
as trapezoidal integration is used, the solution of (7) can be obtained as a by-product of
computing the underlying trajectory.

2.4 Sensitivity behaviour under stressed conditions

Consider a trajectory of (1) which lies exactly on the stability boundary. (This is of course
unachievable [23], but is conceptually possible.) Under certain (fairly generic) conditions, the
trajectory must approach an unstable equilibrium point (UEP) in the limit [24]. But at that
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Figure 1: IEEE 39 bus system.

UEP, the matrix fx driving the evolution of Φ in (7) is constant and unstable. Therefore
‖Φ(t)‖ will diverge to infinity as t increases.

It follows intuitively that if a trajectory approaches, but does not encounter, the stabil-
ity boundary, then ‖Φ(t)‖ will grow very large, before contracting back to its steady state.
Therefore larger values of ‖Φ(t)‖ along a trajectory suggest a small stability margin.

3 Examples

The examples throughout this section utilize the IEEE 39 bus system of Figure 1. All genera-
tors in this system were represented by a fourth order machine model [25], and were regulated
by the IEEE standard AVR/PSS models AC4A and PSS1A [26]. All generator and network
data were obtained from [27].

3.1 Parameter ranking

Trajectory sensitivities provide a basis for ranking the relative influence of parameters. Large
sensitivities imply that parameter variations have a large effect on behaviour, whereas small
sensitivities suggest behaviour changes very little with parameter variation. In this exam-
ple, trajectory sensitivities are used to rank the importance of voltage indices at all loads
throughout the IEEE 39 bus system. A three-phase fault was applied at bus 16 at 0.1 sec,
and cleared (without any line tripping) 0.2 sec later. The static load model (4) was used for
all loads, with ηp = ηq = 2 in all cases.

The sensitivities of bus 16 voltage V16 to load indices ηp and ηq at all buses were computed
in conjunction with the nominal trajectory. These trajectory sensitivities are provided in
Figure 2, where the vertical axis gives the change in the pu voltage for a unity change in
load index values. It is immediately clear that the real power index ηp for bus 20 has a
much greater influence on behaviour than all other indices. (The reason is that generator 5
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Figure 2: Trajectory sensitivities for all load indices.

is marginally stable for this disturbance scenario, and bus 20 lies on the corridor linking that
generator to the rest of the system.) The loads at buses 4, 8 and 23 also display a reasonable,
though certainly less pronounced, level of influence. Loads 4 and 8 are influential due to their
large size. Load 23 has an important impact on the dynamics of generator 7. The influence of
all other loads, for this disturbance scenario, is negligible. Of course a different disturbance
could possible highlight some other set of loads.

Field testing loads to determine their (approximate) voltage dependence is an expensive
exercise. However, by utilizing trajectory sensitivities, the most important loads can be
immediately identified, and attention focused accordingly. This use of trajectory sensitivities
relates to parameter identifiability, and was used in [28] to determine the most influential
generator parameters.

3.2 Indicator of stressed conditions

It was shown in Section 2.4 that as systems become more heavily stressed, sensitivity to
parameter variation increases significantly. This can be illustrated by continuing the previous
example. The upper plot of Figure 3 shows the behaviour of generator 5 angle (relative
to generator 10) for a range of fault clearing times. (The fault clearing time used in the
previous example was 0.2 sec.) The critical clearing time is 0.213 sec; slower clearing results
in generator 5 losing synchronism. Notice that the angular deviations do not show a great
increase, even though instability is imminent.

The sensitivity of V16 to the bus 20 load index ηp, for the same range of fault clearing
times, is shown in the lower plot of Figure 3. The deviations exhibited by these trajectory
sensitivities grow dramatically as critical conditions are approached. This behaviour moti-
vated the sensitivity related measures developed in [29, 30] to predict conditions that induce
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Figure 3: Trajectory and sensitivity variation for increasing system stress.

marginal stability. Further work is required though to fully exploit this phenomenon.

3.3 Load-induced variations in qualitative behaviour

Previous analysis and examples have suggested that load models have negligible qualitative
influence on the behaviour of systems that are robustly stable. This will be further illustrated
using the IEEE 39 bus system of Figure 1, though in this case the disturbance scenario involves
a solid three-phase fault on line 16-21, at the bus 21 end. The fault was cleared after 0.15 sec
by tripping the faulted line. That left buses 21 and 23, and generators 6 and 7, radially fed
over line 23-24.

The loads at buses 23 and 24 were modelled according to (3), with ν23 and ν24 both nom-
inally set to 0.5. In other words, both loads were composed of 50% static voltage dependent
load and 50% induction motor load. The static load component was modelled as constant
admittance, while the induction motor component used parameter values from [20, p. 305],
with appropriate per unit scaling.

The response of generator 6 angle (relative to generator 1), under the nominal load con-
ditions, is shown as a dashed line in Figure 4. The load composition parameters ν23 and
ν24 were then varied between extremes of 0 and 1. The corresponding behaviour is shown
as thick solid lines in Figure 4. Notice that this large variation in load composition, in the
area directly affected by the disturbance, has negligible effect on the qualitative form of the
response.

The fault clearing time was then increased to 0.18 sec, quite close to the critical clearing
time of 0.18375 sec. Nominal behaviour is again shown as a dashed line, with behaviour
corresponding to extremes in ν23 and ν24 shown as thinner solid lines. In this case, it turns
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Figure 4: Influence of load parameter perturbations with increased system stress.

out that reduction of ν24 to 0 has a marked effect on the qualitative form of the response; the
system is only just stable.

This example supports the hypotheses that load modelling only becomes important qual-
itatively when the system is close to instability, and that proximity to instability can be
detected by high sensitivity.

3.4 Protection operation

The previous example showed that for unstressed systems, load composition has negligible
effect on the qualitative form of behaviour. However that example did not take account
of protection. In this example, zone 3 protection at the bus 23 end of line 23-24 will be
considered. Figure 5 shows the separation2 between the zone 3 mho characteristic [31] and
the apparent impedance seen from bus 23. The dashed line was obtained for a fault clearing
time of 0.15 sec, and using the nominal set of load parameters. It remains above zero,
suggesting the zone 3 characteristic is not entered.

An uncertainty of ±0.2 was assumed in both load composition parameters, so that

0.3 ≤ ν23, ν24 ≤ 0.7. (8)

Worst-case analysis [13] was used to explore bounds on behaviour, and in particular to deter-
mine whether this uncertainty could affect conclusions regarding protection operation.

Based on this nominal trajectory, sensitivities indicated that over the time frame of in-
terest, where the trip signal approached zero, worst behaviour (lowest dip) occurred for load
indices ν23 = 0.7 and ν24 = 0.3. Best behaviour (least dip) occurred for ν23 = 0.3 and

2This distance goes negative when the apparent impedance enters the mho characteristic.
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ν24 = 0.7. The corresponding bounds on behaviour are shown as solid lines in Figure 5.
Every selection of ν23 and ν24 from the range (8) results in a trajectory that lies within those
bounds. Notice that the lower bound passes below zero, indicating the possibility of a zone 3
trip. Knowledge of the load composition is therefore very important in this case.

4 Conclusions

Quantitative analysis of power system dynamics, for example matching simulations to distur-
bance measurements, requires accurate load modelling. However load model accuracy is not
so crucial for qualitative investigations, where the aim is to assess the likelihood of a certain
disturbance scenario being stable or unstable. Though it should be kept in mind that most
power system failures are not initiated by instability, but rather by reactionary (unantici-
pated) protection operation. Accurate load modelling can be very important in predicting
such behaviour.

Trajectory sensitivities provide an efficient way of ranking the relative influence of pa-
rameters. Furthermore, as systems become more heavily stressed, sensitivity to parameter
variation increases significantly. This characteristic can be used to predict disturbance sce-
narios that induce marginally stable behaviour.
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