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Abstract— Distribution utilities are becoming increasingly
aware that their networks may struggle to accommodate large
numbers of plug-in electric vehicles (PEVs). In particular,
uncoordinated overnight charging is expected to be problem-
atic, as the corresponding aggregated power demand exceeds
the capacity of most distribution substation transformers. In
this paper, a dynamical model of PEVs served by a single
temperature-constrained substation transformer is presented
and a centralized scheduling scheme is formulated to coordinate
charging of a heterogeneous PEV fleet. We employ the dual-
ascent method to derive an iterative, incentive-based and non-
centralized implementation of the PEV charging algorithm,
which is optimal upon convergence. Then, the distributed open-
loop problem is embedded in a predictive control scheme to
introduce robustness against disturbances. Simulations of an
overnight charging scenario illustrate the effectiveness of the
so-obtained incentive-based coordinated PEV control scheme in
terms of performance and enforcing the transformer’s thermal
constraint.

I. INTRODUCTION

As gasoline prices increase and concerns regarding green-
house gas emissions grow, plug-in electric vehicles (PEV)
become an appealing alternative to the traditional internal-
combustion-based automobiles that prevail today. PEVs are
therefore expected to gain a significant market share over the
next couple of decades.

However, while PEV sales are already on the rise today,
distribution utilities are becoming increasingly aware that
their networks may struggle to accommodate large levels
of plug-in penetration [1]. In particular, en masse unco-
ordinated charging at night is deemed to be problematic,
as the corresponding power demand exceeds the capacity
of most distribution substation transformers [2]. Persistent
overloading of such transformers may cause insulation break-
down, resulting ultimately in transformer failure and black-
out of the full residential area that it serves.

Network upgrades are a trivial but expensive solution to
the above issue. The need for investments may be alleviated
considerably by coordinating PEV charging in such a way
that network restrictions are respected at all times. The
implementation of such control schemes is facilitated by
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modern communication technologies that allow for monitor-
ing and maneuvering of individual electrical loads.

Some of the first PEV-load schemes provided by the
literature rely on centralized open-loop scheduling and direct
manipulation of PEV charging rates by the network utilities,
see [3]–[5]. Such approaches typically suffer from a signif-
icant need for communication and excessive computational
burdens, however. Other work on PEV scheduling focuses
on hierarchical control as a possible means of decreasing
complexity [6]. Therein, the distribution-level transformers
are treated as static network elements with a given power
rating (i.e., a fixed capacity) and the dynamical relationship
between transformer loading and winding temperature is ig-
nored. However, perhaps even more problematic than the as-
sociated computational complexity, utility-controlled charg-
ing may be impractical as PEV owners could be reluctant to
relinquish the control of their vehicles to some centralized
operator, and they might be unwilling to cooperate with each
other if this could affect their own charging performance.

In recent work, see [7], [8], PEV owners are therefore
considered to be autonomous entities whose actions can
only be influenced by providing them with incentives (i.e.,
a time-varying electricity price) for a certain behavior. A
key assumption in [7] is that the PEVs are price takers:
individually, their strategies have no significant effect on the
aggregate power demand and price. The so-obtained coordi-
nated scheduling scheme lets each vehicle effectively react
to the average charging strategy of the total (infinitely large)
PEV population and establishes a Nash-optimal, valley-
filling net charging profile by encouraging additional charg-
ing whenever background demand is low. While [8] achieves
the valley-filling effect with any number of PEVs, both [7]
and [8] employ utility-centric objectives that essentially
sacrifice PEV-owner convenience and access to grid to ensure
that the network capacity is minimally utilized at all times.

In contrast to [7], [8], our interests align with incentive-
based PEV charging control at the distribution-transformer
level, which is characterized by a relatively small vehicle
population (20–50 PEVs). As a consequence, it is possible
for each PEV to affect the aggregate demand considerably
and the price-taking and utility-centric assumptions of [7],
[8] do not hold. Thus, instead of the valley-filling charging
strategy, a different control strategy must be pursued.

In this paper, we formulate a centralized open-loop pre-
dictive optimization problem that, in contrast to the methods
proposed in [6]–[8], explicitly accounts for the transformer’s
thermal limit and dynamics when computing the control
actions. Moreover, because prediction errors and fluctuations
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Fig. 1. PEV charging via a single substation transformer.

in background demand can be severe due to a low extent
of aggregation in the distribution network, we introduce
feedback to disturbances by solving the scheduling problem
in a receding horizon fashion. The resulting centralized
model predictive control (MPC) scheme is then decomposed
into a set of local control laws, which determine the charging
strategy of each individual electric vehicle, and which are
coordinated via a common (pseudo-)price for electrical en-
ergy. This price is generated by a centralized agent in such a
way that aggregated power demand is kept within operational
limits while PEVs are allowed to charge as quickly as
possible. Simulation results are provided to demonstrate the
effectiveness of the distributed approach and to allow for
comparison with existing PEV charging schemes. We end
with conclusions and recommendations for further research.

A. Basic notation and definitions

Let R, R+, Z and Z+ denote the sets of reals, non-negative
reals, integers and non-negative integers, respectively. For
each c ∈ R and Π ⊆ R let Π≥c := {k ∈ Π | k ≥ c}
and similarly, Π≤c. Let ZΠ := Z ∩ Π. For a finite set
{xi}i∈Z[1,N]

, xi ∈ Rni , N ∈ Z≥1, let col({xi}i∈Z[1,N]
) and

col(x1, . . . , xN ) denote the vector
(
x>1 , . . . , x

>
N

)>
. Let 1n

be the all-one vector [ 1 ... 1 ]
> in Rn, and In the n by n

identity matrix. The i-th element of a vector x ∈ Rn is
denoted by [x]i. Define projection [x]+ ∈ Rn

+ by [[x]+]i :=
max{0, [x]i}. Let z := {z(l)}l∈Z+

with z(l) ∈ Rn, l ∈ Z+,
denote an arbitrary sequence. For some scalar c ∈ R, let
dce := mink∈Z≥c

k and let |c| be its absolute value. All
inequalities are interpreted elementwise.

II. DYNAMICAL MODEL

We begin by describing a model for the PEV charging
problem. Consider a fleet of N ∈ Z+ plug-in electric
vehicles, all connected to a distribution grid that is fed by a
single substation transformer, see Fig. 1. Let the continuous-
time charging dynamics of vehicle n ∈ N := {1, . . . , N} be
described by

ṡn(t) = η̃npn(t) = η̃VACin(t), t ∈ R+, (1)

where sn(t), pn(t) [W] and in(t) [A] denote the vehicle
battery’s normalized state of charge (SOC), the charging
power and the charging current at continuous-time instant
t ∈ R+, respectively. We assume that the rms grid voltage
VAC [V] is constant. The parameter η̃n [J−1] is obtained as
the ratio of the vehicle’s charging efficiency αn ∈ R[0,1] and

battery size βn [J]. Note that the above dynamics are valid
only for sn in R[0,1], where sn = 1 and sn = 0 mean that
the battery of vehicle n ∈ N is fully charged and empty,
respectively. Next, suppose that the charging profiles in(t)
are step-wise with step width Ts [s], such that in(t) := in[k]
for t ∈ R[kTs,(k+1)Ts) and k ∈ Z+. Then, (1) yields

sn[k + 1] = sn[k] + ηnin[k], k ∈ Z+, (2)

where sn[k] := sn(kTs) and ηn := Tsη̃nVAC [A−1].
The transformer that connects the distribution grid to the

high-voltage transmission network is modeled as a single
thermal mass with continuous-time temperature dynamics

Ṫ (t) =
1

C

{
Rci

2(t)− T (t)− Ta(t)

R

}
, (3)

with aggregated current i(t) := id(t) +
∑

n∈N in(t) [A],
transformer heat capacity C [J K−1], heat outflow resistance
R [K W−1], coil resistance Rc [Ω], and where T (t) [K] is
the transformer core temperature at time instant t ∈ R+. The
net background/non-PEV current id(t) [A] and the ambient
temperature Ta(t) [K] act as exogenous disturbances. Using
Euler forward discretization and sampling period Ts, the
following discrete-time temperature model is obtained:

T [k + 1] = τT [k] + γ̄i2[k] + ρTa[k], (4)

where τ :=
(
1 − Ts

RC

)
∈ R, γ̄ := TsRc

C ∈ R+ and ρ :=
Ts
RC = 1− τ ∈ R+, and where T [k] is the transformer core
temperature at discrete-time instant k ∈ Z+. For stability,
the sampling period is required to satisfy 0 < Ts < 2RC,
such that τ ∈ R(−1,1).

In what follows, we use a linearized version of (4) to allow
for a tractable implementation of the charging control scheme
described in Sect. III. Linearization around the equilibrium
point T ∗, i∗ :=

√
γ̄−1ρ(T ∗ − T ∗a ) for Ta := T ∗a and id := 0

yields the approximate transformer dynamics described by

∆T [k + 1] =

τ∆T [k] + γ

(
id[k] +

∑
n∈N

∆in[k]

)
+ ρ∆Ta[k], (5)

with ∆T [k] := T [k] − T ∗, ∆in[k] := in[k] − i∗

N and
∆Ta[k] := Ta[k]− T ∗a , and where γ := 2γ̄i∗.

Next, let {sn[l | k]}l∈Z[0,K]
and {∆T [l | k]}l∈Z[0,K]

be the
SOC and temperature sequences generated by (2) and (5)
from initial state [ s1[k] ... sN [k] ∆T [k] ]

> ∈
(
R[0,1]

)N × R,
charging rate sequences {∆in[l | k]}l∈Z[0,K−1]

, n ∈ N , and
disturbances {id[l | k]}l∈Z[0,K−1]

, {∆Ta[l | k]}l∈Z[0,K−1]
over

a finite prediction horizon K ∈ Z+. Next, consider the
following sequence vector notation, i.e.,

T[k] = col
(
{∆T [l | k]}l∈Z[0,K]

)
∈ RK+1

sn[k] = col
(
{sn[l | k]}l∈Z[0,K]

)
∈ RK+1, n ∈ N ,

d[k] = col
(
{d[l | k]}l∈Z[0,K−1]

)
:= col

({[
id[l|k]

∆Ta[l|k]

]}
l∈Z[0,K−1]

)
∈ R2K

πn[k] = col
(
{πn[l | k]}l∈Z[0,K−1]

)
:= col

(
{∆in[l | k]}l∈Z[0,K−1]

)
∈ RK , n ∈ N ,



and the sequence vector of aggregated charging current

π[k] = col
(
{π[l | k]}l∈Z[0,K−1]

)
:=
∑

n∈N πn[k] ∈ RK ,

such that (2) and (5) yield the prediction model

T[k] = Φ∆T [k] + Ψπ[k] + Ψdd[k] (6)
sn[k] = Φssn[k] + ΨSnπn[k], n ∈ N , (7)

with transition matrices Φ ∈ RK+1, Ψ ∈ R(K+1)×K , Ψd ∈
R(K+1)×(2K), Φs ∈ RK+1, ΨSn ∈ R(K+1)×K .

III. CENTRALIZED SCHEDULING OF PEV DEMAND

Next, we formulate a centralized load scheduling strategy
that serves as a starting point for the incentive-based, dis-
tributed control scheme derived in Sect. IV.

We begin by observing that, for safety or performance
reasons, PEV battery charging is subject to strict state and
input constraints. Firstly, battery chargers usually come with
a limited power capacity, i.e.,

πn,min ≤ πn[k] ≤ πn,max, k ∈ Z+, n ∈ N , (8)

with finite πn,min ∈ R, πn,max ∈ R+. Note that vehicle-
to-grid technology, which enables power delivery to the
network, can be taken into consideration via negative πn,min.

Secondly, to prevent transformer overheating, a (relative)
temperature constraint is imposed, i.e.,

T ∗ + ∆T [k] ≤ Tmax, k ∈ Z+. (9)

For simplicity, we restrict our attention to a static upper
bound on temperature, even though this may be overly strict
in practice. Normally, a slight temporary violation of (9) is al-
lowed, provided that secure steady-state operating conditions
are recovered within a sufficiently short subsequent cooling-
down period.

Thirdly, by construction, the SOCs are bounded by

0 ≤ sn[k] ≤ 1, k ∈ Z+. (10)

Additionally, each PEV owner can set a certain SOC target
that needs to be reached by the time they expect to leave
their home. Thus, given (7) and initial states of charge
s1[0], . . . , sN [0], the load scheduling scheme has to select,
for all n ∈ N , an appropriate charging profile πn[k] such
that a certain minimum battery state Sn ∈ R[0,1] is attained
at some discrete-time instant Kn ∈ Z≤K . That is,

Sn ≤ sn[k], k ∈ Z≥Kn
. (11)

Next, recall that the individual charging rates πn[k] are
coupled to temperature dynamics (6) and constraint (9)
through the relation

π[k] =
∑

n∈N πn[k], k ∈ Z+. (12)

The set of solutions {πn}n∈N to (6)–(12) given ∆T [k],
{sn[k]}n∈N and d[k] is the set of valid charging/feasible
control strategies. Note that this set is polytopic (and thus
convex), as all constraints (6)–(12) are affine in πn.

The selection of a particular control schedule out of the
set of feasible strategies may be based on an optimization

criterion. In this paper, a PEV-centric objective is employed,
namely, the minimization of SOC deviations from 1 and
minimization of local battery wear and control effort. Thus,
the centralized controller’s composite objective is

min
πn[k],sn[k],n∈N

∑
n∈N Jn(πn[k], sn[k]) (13)

where Jn : RK × RK+1 → R+, n ∈ N , is defined as

Jn(πn, sn) := π>nRnπn + (sn − 1K+1)>Qs,n(sn − 1K+1),

with Qs,n = Qs,nIK+1 and Rn = RnIK , for some
Qs,n, Rn ∈ R>0. Since both Qs,n and Rn are strictly
positive and constraints (6)–(12) are linear, the optimization
problem obtained by solving (13) over the set of feasible
control strategies is strictly convex and any optimal solution
is therefore globally optimal.

Now consider the following optimization problem.

Problem III.1 (Open-loop Centralized PEV Charging)
Given sn[0 |k] = sn[k] for n ∈ N , ∆T [0 |k] = ∆T [k] and
disturbance forecast d̂[k] := col

(
{d̂[l |k]}l∈Z[0,K−1]

)
, solve

min
πn, n∈N

∑
n∈N

(
π>n (Ψ>Sn

Qs,nΨSn +Rn)πn (14a)

+ 2(ΦSnsn[0 | k]− 1K+1)>Qs,nΨSnπn

)
s.t. Φ∆T [0 | k]+Ψ

(∑
n∈N

πn

)
+Ψdd̂≤Tmax1K+1 (14b)

πn,min1K ≤ πn ≤ πn,max1K (14c)
0 ≤ ΦSnsn[0 | k] + ΨSnπn ≤ 1K+1 (14d)

Sn1K−Kn+1 ≤MKn

(
ΦSnsn[0 | k]+ΨSnπn

)
(14e)

for all n ∈ N , where MKn
∈ R(K−Kn+1)×(K+1) is such

that MKn
sn[k] = col

(
{sn[l |k]}l∈Z[Kn,K]

)
. �

In what follows, we refer to Prob. III.1 as the primal
load scheduling problem. It is obtained by reformulating
constraints (9)–(11) and objective (13) in terms of control
sequences πn[k] only. This is achieved by eliminating state
predictions Tn[k] and sn[k] using (6)–(7) and (12).

IV. INCENTIVE-BASED COORDINATED CHARGING

In what follows, we derive an iterative, price-coordinated
implementation of Prob. III.1. Close inspection of (14) re-
veals that except for the complicating temperature constraint,
i.e., (14b), the centralized charging problem is fully separable
in local control sequences πn. Thus, if it was not for the
temperature constraint that couples the profiles πn for all
n ∈ N , it would be possible to find the optimizer of
Prob. III.1 by solving, in parallel, a set of N local PEV-
specific optimization problems in πn. To derive a non-
centralized implementation while still accounting for the
coupling temperature constraint, consider the partial dual of
Prob. III.1 obtained by relaxing (14b), i.e.,

maxλ∈RK+1
+

Υ (λ) (15)



where

Υ (λ) := min
πn∈Πn

(
sn[0|k]

) ∑
n∈N

(
Ĵn(πn) + λ>Ψπn

)
+ λ>

(
Φ∆T [0 |k] + Ψdd̂− Tmax1K+1

)
,

with Πn

(
sn[0 |k]

)
:= {πn ∈ RK | (14c)–(14e) holds},

Ĵn(πn) := π>n (Ψ>Sn
Qs,nΨSn

+Rn)πn

+ 2(ΦSn
sn[0 |k]− 1K+1)>Qs,nΨSn

πn,

and where λ ∈ RK+1
+ is the Lagrangian multiplier or pseudo-

price vector associated with constraint (14b), see [9].
A well-known decomposition technique from convex op-

timization, the dual-ascent method, can now be applied to
solve Prob. III.1 in a distributed way, see [9], [10]. The
underlying observation is that Υ (λ) allows for separate op-
timization over πn, n ∈ N , yielding the following problem.

Problem IV.1 (Open-loop Coordinated PEV Charging)
At iteration p ∈ Z+, given sn[0 | k] = sn[k],
∆T [0 | k] = ∆T [k], disturbance forecast d̂[k] and
price vector λ(p)[k] ∈ RK+1

+ , solve for each PEV n ∈ N ,

π(p)
n [k] = arg min

πn∈Πn

(
sn[0|k]

) Ĵn(πn

)
+
(
λ(p)[k]

)>
Ψπn. (16)

Then, given initial price λ(0)[k], generate λ(p+1)[k] via

λ(p+1)[k] =
[
λ(p)[k] + α(p) (∇λΥ)

]
+
, (17)

with

∇λΥ := Φ∆T [0 | k]+Ψ

(∑
n∈N

π(p)
n [k]

)
+ Ψdd̂[k]−Tmax1K+1

and iteration-dependent step-size parameter α(p) ∈ R+. �

Prob. IV.1 can be interpreted as follows, see Fig. 2. To
decentralize Prob. III.1, we employ a centralized coordinator
that is responsible for secure transformer operation, and that
supplies the vehicles with a common time-varying pseudo-
price for electrical energy, i.e., λ(p) [$/J]. Each PEV owner
can respond autonomously to this price. In accordance with
(16), rational car owners will adjust their scheduled power
demand in a way that complies with their local constraints
and minimizes the sum of local objectives (i.e., Ĵn(πn))
and energy costs (i.e.,

(
λ(p)

)>
Ψπn). The coordinator is

informed about the individual optimal power profiles π
(p)
n

and updates the price in a way that supports feasibility of
temperature constraint (14b) at iteration p+ 1. More specif-
ically, the corresponding master problem, i.e., maximizing
over λ in (15), is solved via the projected subgradient method
using (17). Accordingly, the price is driven towards zero
at time instants for which the temperature associated with
the profiles π

(p)
n is predicted to be below Tmax. However,

the price is increased, and thus, charging is discouraged, at
instants for which the demand response

∑
n∈N π

(p)
n would

lead to a violation of constraint (9).
Now consider the following theorem.

Theorem IV.2 Let {α(p)}p∈Z+
with α(p) ∈ R+ for p ∈ Z+

be such that
∑∞

p=0 α
(p) = ∞ and

∑∞
p=0

(
α(p)

)2
< ∞.

Then the profiles π
(p)
n , n ∈ N , generated by Prob. IV.1

asymptotically converge to the optimizers π∗n of Prob. III.1,
i.e., ‖π(p)

n − π∗n‖2 → 0 for p→∞.

The above result can be obtained along the following
lines. For the above conditions on the step-size sequence
{α(p)}p∈Z+

, the iterates generated by projected subgradi-
ent step (17) are guaranteed to converge asymptotically to
the optimizer λ∗ of (15), see [9], [10]. Thus, Prob. IV.1
asymptotically recovers the optimal Lagrangian multiplier
associated with complicating constraint (14b) in Prob. III.1.
The result now follows from strong duality of Prob. III.1.

In conclusion, we have obtained a distributed implemen-
tation of Prob. IV.1 that allows for autonomous decision
making of individual PEV owners based on a common
pseudo-price signal. Next, we describe how this incentive-
based scheduling problem can be embedded in a model
predictive control scheme as a means to provide feedback
to disturbances and changing network conditions.

A. Implementation: receding horizon control

The previously defined PEV-load scheduling schemes, i.e.,
Prob. III.1 and Prob. IV.1, compute an optimal charging
profile given a single state measurement and disturbance
forecast. Such approaches are only effective if the future
temperature and SOC values can be predicted with high
accuracy. Although net inelastic demand can be predicted
relatively well on the transmission-network level (in an
empirical fashion), unexpected fluctuations in background
demand can be significant in distribution networks due to a
low extent of aggregation. Moreover, for a PEV-load control
scheme to be useful, it should allow for varying numbers of
connected cars during the charging period. Thus, in practice,
it is difficult to avoid significant prediction errors over a long
horizon K using open-loop scheduling only. However, we
can introduce feedback as a solution to unexpected distur-
bances, modeling errors and changing numbers of PEVs, by
running Probs. IV.1 and III.1 in a receding horizon fashion.
This yields a predictive control law that solves the PEV-load
scheduling problem each sampling time, while taking a new
state measurement and disturbance forecast into account. At
each instant k ∈ Z+, the first sample of the last obtained
control sequences π

(p)
n [k] is applied to the system, before

running the procedure again at time instant k + 1. This
procedure is summarized below.

Algorithm IV.3 At each time instant k ∈ Z+:
1: Obtain SOC sn[k] (PEV controller n), temperature ∆T [k]
and disturbance forecast d̂[k] (coordinator);
2: Initialize λ(0)[k] and run Prob. IV.1 for pmax iterations;
3: Vehicle n charges its battery at a rate of π(pmax)

n [0 | k]. �

Fig. 2 depicts the control/communication architecture associ-
ated with Alg. IV.3. Red lines represent exchange of informa-
tion; measurements and physical inputs are reflected by black



lines. The coordinator performs both price update (17) and
disturbance estimation, whereas PEV behavior is determined
by charging laws (16) and SOC dynamics (2).

In general, there is no guarantee that the iterates π
(p)
n

generated by Prob. IV.1 will be feasible for p <∞. However,
in practice, it may still be possible to obtain a feasible
(yet, not necessarily optimal) set of PEV charging schedules
within a finite number of iterations. In what follows, we
assume that pmax < ∞ iterations are sufficient for this to
occur. Then, for Alg. IV.3 to be suited for implementation in
practice, it is necessary that the time required for evaluating
these iterations does not exceed the sampling period Ts.

Simulation results (see Sect. V) indicate that the number
of iterations required for obtaining feasible control actions
may be reduced by appropriately choosing the sequence
{α(p)}p∈Z+

. Also, convergence speed may be increased
considerably in case of small prediction errors, by initializing
λ(0)[k] = {λ(0)[l | k]}l∈Z[0,K]

as a time-shifted version of the
previous price λ(pmax)[k−1], i.e., λ(0)[l | k] := λ(pmax)[l+1 |
k − 1], l ∈ Z[0,K−1], and random λ(0)[K | k] ∈ R+, for
k ∈ Z≥1. Yet, to the best of our knowledge, general results
on the convergence rate of dual-ascent based optimization
schemes are lacking still.

Remark IV.4 In Alg. IV.3, Prob. IV.1 is run for pmax

iterations each sampling instant. To avoid superfluous com-
putations and reduce the extent of communication between
the vehicles and the coordinator, it may be attractive to stop
iterating earlier, based on some convergence test criterion.
For example, if the convergence of λ(p) is monotonic and
super-linear, sufficiently accurate approximation of λ∗ can
be concluded if ‖λ(p) − λ(p−1)‖ < ε for a small ε ∈ R+.

Although the receding-horizon feedback mechanism in
Alg. IV.3 helps to reduce the effects of prediction inac-
curacy, robust feasibility can only be guaranteed if some
uncertainty model is explicitly accounted for during open-
loop scheduling, i.e., in Prob. III.1 or Prob. IV.1. In what
follows, we assume that the background demand and ambient
temperature can be predicted up to a certain accuracy, that
is, d[l + k] = d̂[l | k] + δ[l + k], with arbitrary, unknown
δ[l+k] ∈ ∆ ⊂ R2. One way of establishing robust feasibility
of Prob. III.1 with respect to inaccuracies δ in the (compact)
set ∆, consists of replacing (14b) by the constraint

Φ∆T [0 | k] + Ψ

(∑
n∈N

πn

)

+ Ψdd̂ +

 maxδ∈∆K [Ψdδ]1
...

maxδ∈∆K [Ψdδ]K+1

 ≤ Tmax1K+1, (18)

A similar worst-case feasibility approach can be employed
in Prob. IV.1, by appropriate modification of ∇λΥ in (17).

V. CASE STUDY: OVERNIGHT PEV CHARGING

Next, we simulate the charging of N = 20 PEVs during
an overnight period from 20:00h (i.e., t = 0 s) to 8:00h. Ta-
ble I summarizes the simulation scenario, where the bracket
notation [a, b], denotes randomly distributed values over the

π[k] d[k]

λ(p)

Transformer

Price Manager / Coordinator

PEVs

T [k]

{π(p)
n }i∈N

Fig. 2. Control/communication architecture of coordinated PEV control.

TABLE I
SIMULATION PARAMETERS

Parameter Value Unit
Sampling Time, Ts 155 s
Temperature limit, Tmax + T ∗ 393 K
Ambient temperature, Ta[k] 303 K
Initial temperature, T [0] 333 K
Transformer parameters, τ, ρ, γ 0.9, 0.1, 0.85 -, -, K/A
Battery parameter, ηn [0.47, 0.75] 1/kA
Current bounds, πn,min, πn,max 0, [10, 20] A
Initial SOC, sn[0] [0, 0.2] -
Required minimum SOC, Sn [0.8 1.0] -
Required minimum SOC time, Kn [4:00, 8:00] hr:min
Initial control input penalty, Rn [0.05, 0.10] -
State penalty, Qs,n [10, 20] -
Dual-ascent step-size parameter, α(p) 2/dp/3e 1 / K
Iterations per time instant, pmax[k] 150 to 20 iterations

interval R[a,b]. The PEV fleet is heterogeneous in terms of
cost parameter values Rn and Qs,n, battery parameters ηn
and charging rate limits πn,max; the latter two were selected
to resemble those of today’s PEVs. The ambient temperature
Ta is constant and representative for a hot summer night. The
employed SOC and charging penalties are constant, except
for a factor 10 increase in Rn after time Kn. This reflects that
PEV owners prefer to charge quickly early in the evening.
The background load id[k], see Fig. 3(c), is representative for
the nightly power demand of 100 households. Finally, note
that the sequence α(p) satisfies the conditions of Thm. IV.2.

We evaluated the performance of Prob. III.1 and Prob. IV.1
in closed-loop with the linearized system characterized by
Table I and (2), (5). Additionally, we simulated uncoordi-
nated charging by evaluating Prob. IV.1 for an all-zero price
signal, i.e., λ(p)[k] = {0, . . . , 0}, for all k, p ∈ Z+. All
schemes were implemented in a receding horizon fashion,
using a 12 h prediction horizon at time instants between
20:00h and 22:00h, and a shrinking horizon with a fixed end-
point at 10:00h at time instants after 22:00h. The coordinator
was provided with a perfect forecast of Ta[t] and a 5 %
uncertain forecast of demand id[k], i.e., id[l+k] = îd[l | k]+
δi[l + k] with δi[k] ∈ ∆i[k] := R[−0.05îd[k],0.05îd[k]]. Robust
feasibility was ensured via temperature constraint (18).

Fig. 3 shows the simulation results for the three charging
schemes. Clearly, the uncoordinated method performs poorly,
since, without the price signal, the PEVs are not affected
by the temperature constraint and thus charge rapidly, taking
only their own SOC requirements and objectives into account
(Fig. 3(b)). Consequently, the temperature exceeds Tmax for
over 3 hours, which could result in transformer failure.

In contrast to uncoordinated charging, both Prob. III.1 and
Prob. IV.1 respected temperature constraint (9). Note that the
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(c) Aggregated transformer current π[k] + id[k].

Fig. 3. Performance of Prob. III.1, Prob. IV.1, and uncoordinated charging.

uncertainty margin employed in (18) caused a performance
degradation of less than two degrees Kelvin as compared
to the noise-free centralized scheme. Also, observe that
the noisy coordinated incentive-based scheme and the noisy
centralized scheme induce only slightly different current and
temperature trajectories, despite pmax being finite.

Because the employed cost functions (13) (and, equiv-
alently, (16)) heavily penalize non-fully charged batteries
early in the evening, PEV owners attempt to charge as
quickly as possible. Fig. 3(a) shows that as a result, the
temperature reaches Tmax as soon as ca. 8:30h. In response to
this, the coordinator increases the price to suppress charging
(Fig. 4), and thus, overloading is prevented. In response to the
decrease in price that occurs from 21:00h to 23:30h, the PEV
charging current increases again. After 00:00h, the increased
penalty on control effort comes with a reduced priority for
rapid charging, causing the average charging rate to decrease
slightly. Combined with low inelastic demand, this causes
the transformer temperature to drop below Tmax, and thus,
the optimal price λ∗[k] is driven to zero (in accordance
with complementary slackness of the optimal Lagrangian
multiplier [9]). For the remainder of the night, the network
offers plenty of charging capacity and the PEV owners can
charge freely, unhindered by a non-zero price, to reach their
SOC target while minimizing their local objectives.

Moreover, even though we employed finite pmax and a 5%
uncertain load forecast, the incentive-based control scheme
performed nearly optimal and was feasible with respect to
constraints (8)-(11) at all simulated time instants.
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Fig. 4. Convergence of the incentive-based charging scheme for k = 0.

VI. CONCLUSIONS

Simultaneous overnight charging of plug-in electric ve-
hicles (PEVs) may cause severe overloading of substation
transformers in the near future. A distributed incentive-based
demand-scheduling problem was derived as a solution to this
issue, based on a dynamical model of a small PEV fleet that
is served by a single temperature-constrained transformer.
Feedback to disturbances was provided by evaluating the
open-loop scheduling problem in a receding horizon fashion,
yielding an iterative model predictive control (MPC) scheme
in which the individual PEVs can autonomously respond to
incentives provided by a coordinator that is responsible for
secure transformer operation. Simulation results showed that
even for a finite number of iterations, the method can be
effective in terms of enforcing the temperature constraint.

For real-time implementation, it is key that the PEV coor-
dination scheme can generate feasible control actions within
each sampling period. Future work will therefore focus on
improving the convergence rate of the iterative scheduling
problem, and alternative non-centralized implementations
that may exhibit faster convergence will be investigated.
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