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Abstract— The paper develops a hysteresis-based charging
control strategy for plug-in electric vehicles (PEVs) that is
capable of regulating charging load to satisfy system-wide
services, including filling the overnight demand “valley” and
balancing fluctuations in renewable generation. The actual
state-of-charge (SoC) of a PEV battery follows a nominal SoC
profile within a small hysteresis band. This leads to a sequence
of ON and OFF cycles for the charger. The paper shows that
in steady-state the probability distributions of SoC in the ON
and OFF states, normalized around the nominal profile, follow
a uniform distribution over the hysteresis deadband. Based on
this steady-state behavior, a linearized state-space model has
been developed to capture the response of aggregate electricity
demand to shifts in the nominal SoC profile. A feedback control
law is designed based on this linearized model.

I. INTRODUCTION

It has been estimated that by 2020, 25% of all automobile
sales in the United States will be plug-in electric vehicles
(PEVs) [1]. By then PEVs will account for 3%-6% of the
total electricity demand. Unregulated charging of a large
fleet of PEVs will introduce operational difficulties for the
ageing and near-saturated grid infrastructure. On the other
hand, regulating the charging process offers benefits for grid
control. It is likely that most PEV charging will take place
overnight when the non-PEV electricity demand is at its
lowest (the “valley” hours) and wind generation is usually
highest. If the charging of a large fleet of PEVs were to
be regulated, it could serve a two-fold purpose, 1) fill the
overnight demand valley thereby reducing daily cycling of
power plants and the associated operational costs [2], and 2)
encourage higher utilization of wind power by performing
faster generation balancing [3], [4].

Many studies have investigated the feasibility and logistics
of controlling electrical loads to perform generation bal-
ancing. Both centralized and decentralized control schemes
have been investigated. Of particular relevance to this present
work, [5] developed a hysteresis-based control strategy that
enabled the aggregate power demand of a group of thermo-
statically controlled loads (TCLs) to follow fluctuations in
wind power. It was shown that by applying small temperature
setpoint changes uniformly across the population of TCLs,
the net power consumption could be changed substantially.
A tentative extension of this hysteresis-based control strategy
to PEV charging was proposed in [4].
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TABLE I
KEY SYMBOLS

N number of PEVs
SoC state-of-charge (kWh)
Pmax maximum charging rate (kW)
Pnom nominal charging rate (kW)
Emax battery charge capacity (kWh)
∆ deadband width as a fraction of battery capacity
t0 the instant when charging starts
tf the instant when charging completes

A linearized state-space model was developed in [6] to
describe the aggregate response of a homogeneous group of
TCLs to a shift in their temperature setpoints. In this paper,
a similar approach is taken to model the collective behavior
of PEV charging.

II. HYSTERESIS-BASED CHARGING

Hysteresis-based charging of a PEV battery assumes that
charging takes place only at two allowed rates, either the
charger draws power at its maximum rate Pmax when it
is ‘ON’, or it does not draw any power when it is ‘OFF’.
When the PEV charger draws power (in the ON state), the
battery’s state-of-charge (SoC), also a measure of the energy
consumed, increases linearly. During the OFF state, the SoC
remains constant. The charging process concludes when the
SoC reaches the battery capacity Emax.

The sequence of ON and OFF states is determined by
establishing a nominal charging trajectory and a small hys-
teresis band around that trajectory. In subsequent analysis
it will be assumed that the width of the hysteresis band
is the fraction ∆ of the charge capacity for all PEVs. The
SoC always stays within the hysteresis band. The nominal
trajectory can be defined as the SoC profile if charging
occurred at a constant rate Pnom throughout the charging
duration. After the charging process starts (turns ON) at
t0, the charger turns OFF when its SoC touches the upper
deadband limit, and remains OFF until its SoC touches the
lower deadband limit. It then switches back to the ON state.
This process continues until charging is completed at tf .
Fig. 1 shows a typical charging profile, with the left figure
showing the entire charging process, and the right figure
showing an enlargement of a section of that process.

The nominal charge profile over the duration of charging
[t0, tf ], and the hysteresis deadband limits are given by,

SoCnom(t) = (t− t0)Pnom; Pnom =
Emax

tf − t0
(1a)

SoC+(t) = (t− t0)Pnom + Emax∆/2 (1b)
SoC−(t) = (t− t0)Pnom − Emax∆/2. (1c)
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Fig. 1. Hysteresis-based charging profile.

If s(t) denotes the state of a charger, with s(t) = 1 when
ON and s(t) = 0 when OFF, then the dynamics governing
the charging process can be expressed as,

˙SoC(t) = s(t)Pmax (2)

where

s(t) =

 1, SoC(t) ≤ SoC−(t)
0, SoC(t) ≥ SoC+(t)
s(t−), otherwise.

The deadband width for each vehicle is proportional to its
maximum charge capacity, so the ratio of deadband width to
charge capacity is the same for all PEVs. Defining the new
variable

S̃oC(t) :=
SoC(t)− SoCnom(t)

Emax
, (3)

which will be referred to as normalized SoC, the dynamics
in (2) can be modified as,

˙̃
SoC(t) =

(s(t)Pmax − Pnom)

Emax
(4)

where

s(t) =

 1, S̃oC(t) ≤ −∆/2

0, S̃oC(t) ≥ ∆/2
s(t−), otherwise.

This formulation helps in normalizing the hysteresis dead-
band. While the actual deadband is time varying as it is
centered around SoCnom(t), the normalized deadband is
static, centered around zero, and has the same width ∆ for
all PEVs.

If all vehicles were to start charging at the same time
t0, the aggregate power demand would initially display
large oscillations before ultimately settling to a steady-state
aggregate demand, as shown in Fig. 2(a)1. To assist in

1For this example, the number of PEVs is N = 20, 000. Emax was
chosen to be uniformly distributed over the range 12-20 kWh and Pmax to
be uniformly distributed over 3-5 kW. The deadband width is the fraction
∆ = 0.05 of Emax.

understanding this load behavior, it is helpful to consider
the evolution of the probability distribution of S̃oC(t) for
PEVs in the ON state and those in the OFF state. These two
distributions are shown in Figs. 2(b) and 2(c) respectively.
Initially the ON-state probability distribution for S̃oC has a
large peak slightly above zero. Over time, as PEVs charge,
this peak moves toward the upper deadband limit +∆/2.
When that limit is encountered, PEV charging ceases, so
the peak migrates to the OFF-state distribution. The peak
then moves steadily towards the lower deadband limit −∆/2,
where it again migrates to the ON-state distribution. The peak
decays after a few cycles due to heterogeneity, leading to the
steady-state power demand shown in Fig. 2(a).

This oscillation can be avoided, however, if the starting
instant is uniformly distributed over a time window of the
same order as the duration of a typical ON/OFF charg-
ing cycle. Choosing t0 to be uniformly distributed over
a 50 minute time window largely attenuates the starting
oscillations, as shown in Fig. 3(a). Figs. 3(b) and 3(c)
show the corresponding evolution of the ON- and OFF-state
probability distributions, starting from the instant when all
the PEVs have begun charging.

III. LINEARIZED STATE-SPACE MODEL

The goal of the paper is to design a feedback controller
that regulates the aggregate power demand of PEVs by
varying the hysteresis deadband position while keeping the
normalized width ∆ fixed. This section develops a linearized
state-space model of the system based on the steady-state
probability distributions of chargers in the ON and OFF
states. The approach is similar to that used in [6] to de-
velop a state-space model of the response of a group of
thermostatically controlled loads to shifts in the temperature
deadband. Section III-A derives an expression for the steady-
state probability distribution, while Section III-B builds a
system model that is a linearization around that steady-state
distribution. The analysis presented in this section is based
on an assumption that the system is homogeneous and noise-
free. However the Monte-Carlo simulation results presented
later will consider a heterogenous system with noise.

A. Steady-state probability distribution

In steady-state, the aggregate power consumption becomes
(almost, for non-homogeneous noisy systems) constant and
hence the number of chargers in their ON state will be
a constant Non. Likewise, the number of chargers in the
OFF state will also be constant, Noff = N − Non. In
steady-state, the number of chargers in the ON state and
having a normalized SoC within the range [α, β], where
−∆/2 ≤ α < β ≤ ∆/2, will be proportional to the
time it takes to increase S̃oC from α to β. For chargers
in the OFF-state, this would be the time it takes to decrease
S̃oC from β to α. From (4), the time taken for a charger
in the ON state to increase its S̃oC from α to β, with
α, β ∈ [−∆/2,∆/2], would be proportional to the difference
(β − α), and likewise for a charger in the OFF state, albeit
with a different proportionality constant. Thus for both the
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Fig. 2. Aggregate response of hysteresis-based charging when the starting time is common for all PEVs.
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Fig. 3. Aggregate response of hysteresis-based charging when the starting time is uniformly distributed.

ON and OFF states, the probability distributions are uniform
over the range [−∆/2,∆/2].

The values Non and Noff can be found by equating the
incoming and outgoing flux of probability at the boundaries
of the normalized deadband [−∆/2,∆/2]. To maintain a
steady-state distribution, the rate of departure of PEV charg-
ers from the ON state should be equal to the rate of departure
of chargers from the OFF state, so from (4),

Non
Pmax − Pnom

Emax
= Noff

Pnom

Emax
.

Using Non +Noff = N gives,

Non =
NPnom

Pmax
, Noff =

N (Pmax − Pnom)

Pmax
,

and the probability density functions, fon and foff become,

fon =
Pnom

Pmax∆
(5a)

foff =
Pmax − Pnom

Pmax∆
. (5b)

Fig. 4 shows how the probability distributions computed
from (5) compare with the simulated steady-state distri-
butions. The discrepancies could be attributed to the non-
homogeneity and noise present in the simulated system.

B. Linearized step response

The response of an individual PEV to a step change in
its hysteresis deadband will depend on where it is operating
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Fig. 4. Probability distribution of S̃oC for PEVs in the ON and OFF
states.

in its ON/OFF cycle. Aggregating all such responses over
a large population of PEVs establishes the desired step
response of the entire load control scheme. Fig. 5 shows
a typical step response for the aggregate demand. In order
to build a linear model of this aggregate step response, the
ON/OFF cycle will be divided into four cases, as shown in
Fig. 6(a).
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Fig. 6. Individual responses to a shift in the hysteresis deadband.
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Fig. 5. Response of aggregate demand to a step change in the deadband.

Point a: ON state, between (−∆/2 + δ) and ∆/2: The
response of a PEV charger lying in this region to the shift
in the deadband would be similar to Fig. 6(b). Consider
a charger at point ‘a’ in the ON state at the instant the
shift is applied, having a normalized state-of-charge S̃oCa ∈
[−∆/2 + δ,∆/2]. Without a shift it would have stayed ON
until its S̃oC reached ∆/2. But because of the shift, the
upper limit of the deadband moves right to ∆/2 + δ. The
charger will stay ON for some time τa, and then will continue
with its natural OFF/ON sequence. Denote Ton and Toff as
the time spent in the ON and OFF states respectively. Solving
(4), we obtain

Ton =
Emax∆

Pmax − Pnom
, Toff =

Emax∆

Pnom
. (6)

The power response ga(t) in Fig. 6(b) is a time-shifted
version of the square waveform g(t) in Fig. 7, where g(t) =
0 for t < 0. Denoting the Laplace transform of the reference
waveform g(t) as

G(s) =
Pmax

(
1− e−sTon

)
s
(
1− e−s(Ton+Toff )

) , (7)

time

Ton
Toff

g(t)

Pmax

Fig. 7. Reference square-wave g(t).

we obtain the Laplace transform Ga(s) of ga(t) as

ga(t) = g(t+ Ton − τa)1(t) ; (1(t) : unit step)

Ga (s, τa) = es(Ton−τa)G(s)− es(Ton−τa) − 1

s
Pmax

where

τa =
∆/2 + δ − S̃oCa

Pmax − Pnom

is the time taken to increase the normalized SoC from S̃oCa

to ∆/2 + δ.
Point b: OFF state, between (−∆/2 + δ) and ∆/2: A

charger sitting at point ‘b’ in the OFF state will respond to
the shift in the manner shown in Fig. 6(c). Without the shift
its normalized SoC would have decreased until −∆/2 before
switching occurred. However under the shift its normalized
SoC decreases from S̃oCb to −∆/2 + δ in time τb and
then continues on to the natural ON/OFF sequence. The
waveform gb(t) is also a time-shifted version of g(t) and
has the Laplace transform

Gb (s, τb) = e−sτbG(s) (8)

5601



where

τb =
S̃oCb +∆/2− δ

Pnom
(9)

is the time taken for the normalized SoC to decrease from
S̃oCb to −∆/2 + δ.

Point c: ON state, between −∆/2 and (−∆/2 + δ): A
charger at point ‘c’ when the shift occurs will be below the
lower deadband limit (−∆/2 + δ) and hence will have to
charge for a time (τc + Ton) to reach the upper deadband
limit ∆/2+δ. It will then continue onto its natural OFF/ON
cycle. The Laplace transform of the power response in this
case is given by,

Gc (s, τc) = e−sτcG(s) +
(1− e−sτc)

s
Pmax (10)

where

τc =
−∆/2 + δ − S̃oCc

Pmax − Pnom
(11)

is the time taken to increase its normalized SoC from S̃oCc

to −∆/2 + δ.
Point d: OFF state, between −∆/2 and (−∆/2 + δ):

The response of a charger at point ‘d’ in the OFF state
is distinct. While the chargers at points ‘a’, ‘b’ and ‘c’ do
not immediately switch state, chargers in the region marked
by ‘d’ are OFF at the instant the shift takes place and
suddenly find their S̃oC below the new lower deadband limit
(−∆/2 + δ). Hence they must immediately switch to the ON
state. A typical response is shown in Fig. 6(e). The Laplace
transform of this waveform is given by

Gd (s, τd) = e−sτdG(s) +
(1− e−sτd)

s
Pmax (12)

where

τd =
−∆/2 + δ − S̃oCd

Pmax − Pnom
(13)

is the time taken to increase normalized SoC from S̃oCd to
∆/2 + δ.

C. Aggregate response

The aggregate response of all the chargers in the four
regions marked by ‘a’,‘b’,‘c’ and ‘d’ will be,

Pa(s) = N

∫ ∆/2

−∆/2+δ

fonGa (s, τa) dS̃oCa (14)

Pb(s) = N

∫ ∆/2

−∆/2+δ

foffGb (s, τb) dS̃oCb (15)

Pc(s) = N

∫ −∆/2+δ

−∆/2

fonGc (s, τc) dS̃oCc (16)

Pd(s) = N

∫ −∆/2+δ

−∆/2

foffGd (s, τd) dS̃oCd (17)

with the whole population’s aggregate response given by,

Ptot(s) = (Pa(s) +Pb(s) +Pc(s) +Pd(s)) . (18)
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(a) Step increase in the deadband.
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Fig. 8. Model performance compared with Monte-Carlo simulation.

Linearizing about the steady-state power consumption
Pss = NonPmax gives,

P̃tot(s) = Ptot(s)−
Pss

s
(19)

≈

(
I0

s+ σ′ +
A∆

(s+ σ)
2
+ ω2

)
δ (20)

with

I0 = (Pmax − Pnom)N/∆ (21)

ω =
2
√
15Pnom (Pmax − Pnom)

∆
√
P 2
max + 2PnomPmax − 2P 2

nom

(22)

A∆ =
10
√
15P 2

nom (Pmax − Pnom)
2
N

∆(P 2
max + 2PnomPmax − 2P 2

nom)
3/2

, (23)

and where σ
′

and σ are damping parameters associated with
heterogeneity and noise, which must be estimated in real-
time2. The transfer function of the response is therefore given
by,

T(s) =
s I0
s+ σ′ +

s A∆

(s+ σ)
2
+ ω2

. (24)

This is the response to a right shift in the deadband, where
the nominal SoC profile increases. A similar analysis can
be undertaken for a left shift, i.e. δ < 0, in which case the
transfer function has a similar form with I0 = PnomN/∆.
Figs. 8(a) and 8(b) compare the model response with sim-
ulation results for a right and left shift of the deadband,
respectively. The discrepancies in the two responses can be
attributed to the non-homogeneity in the system.

2For the example system, estimation gives σ
′
= 0.2 and σ = 0.025.
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IV. CONTROL DESIGN AND RESULTS

A. Control law

The system with transfer function (24) can be modeled in
state-space form as,

ẋ = Ax+Bu (25)
y = Cx+Du (26)

where the input u(t) ∈ R is the shift in the deadband, and
the output y(t) ∈ R is the displacement of the aggregate
power demand from the steady-state value Pss. The system
is third order, with the state-space matrices are given by

A =


0 0 −σ

′ (
σ2 + ω2

)
1 0 −

(
2σσ

′
+ σ2 + ω2

)
0 1 −

(
σ

′
+ 2σ

)


B =

 −I0σ
′ (
σ2 + ω2

)
A∆ωσ

′ − 2I0σσ
′

A∆ − I0σ
′


C = (0 0 1)

D =

{
(Pmax − Pnom)N/∆, u(t) ≤ 0
PnomN/∆, u(t) < 0.

To design the control law, a sliding surface S(t) is defined,

S(t) := e(t) + ci

∫ t

0

e (τ) dτ, ci > 0 (27)

where
e(t) = y(t)− yd(t), (28)

and yd(t) is the trajectory describing the desired deviation
in total demand from the steady-state value Pss. The aim is
to design a control input u(t) that satisfies the relation,

Ṡ(t) = −ηS(t) (29)

with η > 0. However because of the presence of the non-
zero scalar D in (26), Ṡ(t) will include both u(t) and u̇(t),
as shown by manipulating (29) to give,

u̇(t) +

(
ci +

CB

D

)
u(t) =

−ηS(t) + ẏd(t) + ciyd(t)

D

− (CA+ ciC)x(t)

D
. (30)

Thus instead of an algebraic equation for u(t), (29) yields
an ordinary differential equation in u(t) and u̇(t). Deriving
the control input u(t) requires solution of (30), with initial
condition obtained from,

e(0) = 0

⇒ u(0) =
yd(0)−Cx(0)

D
. (31)

A linear estimator is used to estimate the state x(t) appearing
in (30)-(31).
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Fig. 9. Ideal valley-filling profile.

B. Controller performance

Fig. 9 (left) shows a typical summer overnight base
demand (scaled to suit our example) for the region managed
by the Midwest Independent System Operator (MISO). The
figure is time shifted to center the overnight period, with 0 hr.
corresponding to 4:00pm. An ideal charging strategy would
fill the overnight valley to achieve a flat demand curve, and
at the same time ensure that all PEVs are fully charged by
a stipulated time, say 8:00am which is 16 hr. in Fig. 9.

In order to generate the desired PEV demand trajectory
yd, it is assumed that each vehicle’s required charge Emax,i

is known. Let d(t) be the base (non-PEV) demand. Then the
optimal flat demand level Pdes, and the optimal charging start
and completion time instants, t0 and tf , can be computed by
iteratively solving the relation,∫ tf

t0

(Pdes − d(t)) dt =

N∑
i=1

Emax,i. (32)

The valley-filling optimal PEV demand is then given by

yd(t) =

{
Pdes − d(t), if t ∈ [t0, tf ]

0, otherwise
(33)

as shown in Fig. 9 (right). An alternative approach to deter-
mining the optimal charging trajectory yd is presented in [7].
In that case, all PEVs seek to minimize their charging costs,
and in so doing achieve a Nash equilibrium that establishes
the globally optimal charging trajectory.

Fig. 10 shows the closed loop performance of the con-
troller for different reference trajectories and the correspond-
ing control inputs. In Fig. 10(a) the aggregate PEV demand
tracks the ideal valley-filling trajectory found in Fig. 9.
Fig. 10(b) shows tracking of a reference trajectory which
experiences a “step” decrease midway through the charging
period. This situation could occur when there is a sudden
increase in the non-PEV electricity demand or a sudden
loss of a generator. In this case there is significant non-zero
PEV demand beyond the optimal charge-completion time tf .
This non-zero power demand compensates for the reduced
charging rates that occurred in response to the step decrease
in the reference trajectory. In Fig. 10(c) the aggregate PEV
demand tracks a fluctuating reference trajectory, possibly
arising from wind generation.

It is interesting to note the large control input that’s
required towards the end of the charging process. This can
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Fig. 10. Tracking performance of the controller in response to varying
trajectories.

be attributed to the fact that as the charge completion time
approaches, more and more vehicles become fully charged
and hence take no further part in the closed loop control.
This results in a loss of controllability.

V. CONCLUSIONS

This paper has considered aggregate control of a large
population of plug-in electric vehicles (PEVs). A hysteresis-
based charging strategy has been proposed, and a linearized
model of the aggregate response of PEV chargers to a
shift in the hysteresis deadband has been developed. This
model forms the basis for a controller that enables load
to respond to power system needs. A variety of examples
have been considered, including load scheduling to achieve
valley-filling, response to generator tripping, and tracking
fluctuations in renewable generation. It has been observed
that the controllability of the system is low towards the start
and end of the charging duration. Further research is required
to address these issues.
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