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Abstract— The optimal power flow (OPF) problem minimizes
the operating cost of an electric power system. Applications of
convex relaxation techniques to the non-convex OPF problem
have been of recent interest, including work using the Lasserre
hierarchy of “moment” relaxations to globally solve many OPF
problems. By preprocessing the network model to eliminate low-
impedance lines, this paper demonstrates the capability of the
moment relaxations to globally solve large OPF problems that
minimize active power losses for portions of several European
power systems. Large problems with more general objective
functions have thus far been computationally intractable for
current formulations of the moment relaxations. To overcome
this limitation, this paper proposes the combination of an
objective function penalization with the moment relaxations.
This combination yields feasible points with objective function
values that are close to the global optimum of several large
OPF problems. Compared to an existing penalization method,
the combination of penalization and the moment relaxations
eliminates the need to specify one of the penalty parameters
and solves a broader class of problems.

I. INTRODUCTION

Determining the most efficient operating point for a power
system requires solution of the optimal power flow (OPF)
problem. This problem optimizes power system operation
subject to both network equality constraints and engineering
limits. Non-linearity of the constraint equations generally
makes the OPF problem non-convex and can lead to local
optima [1]. Many solution techniques have been proposed,
including successive quadratic programs, Lagrangian relax-
ation, heuristic optimization, and interior point methods [2],
[3]. Some of these techniques calculate at-least-locally opti-
mal solutions for many large problems. However, while many
local solution techniques often find global solutions [4], they
may fail to converge or converge to a local optimum [1], [5].

Recent research attention has focused on convex relax-
ations of the OPF problem, which provide lower bounds on
the optimal objective value and can certify infeasibility. Fur-
ther, a convex relaxation based on semidefinite programming
(SDP) globally solves many OPF problems [6].

The SDP relaxation of [6] has been generalized to a family
of “moment relaxations” using the Lasserre hierarchy [7] for
polynomial optimization [8]–[10]. The moment relaxations
take the form of SDPs, and the first-order relaxation in
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this hierarchy is equivalent to the SDP relaxation of [6].
Increasing the relaxation order in this hierarchy enables
global solution of a broader class of OPF problems.

The ability to globally solve a broader class of OPF
problems has a computational cost; the moment relaxations
quickly become intractable with increasing order. Fortu-
nately, second- and third-order moment relaxations globally
solve many small problems for which the first-order relax-
ation fails to yield the globally optimal decision variables.

However, increasing system size results in computational
challenges even for low-order moment relaxations. The
second-order relaxation is computationally intractable for
OPF problems with more than ten buses. Exploiting network
sparsity enables solution of the first-order relaxation for
systems with thousands of buses [11], [12] and the second-
order relaxation for systems with about forty buses [10],
[13]. Recent work [13] solves larger problems (up to 300
buses) by both exploiting sparsity and only applying the
computationally intensive higher-order moment relaxations
to specific buses in the network. Other recent work improves
tractability using a second-order cone programming (SOCP)
relaxation of the higher-order moment constraints [14].

Solving larger problems using moment relaxations is often
limited by numerical convergence issues rather than com-
putational performance. We present a preprocessing method
that improves numerical convergence by removing low-
impedance lines from the network model. Similar methods
are commonly employed (e.g., PSS/E [15]), but more exten-
sive modifications are needed for adequate convergence due
to the limited numerical capabilities of current SDP solvers.

After this preprocessing, the moment relaxations globally
solve several large OPF problems which minimize active
power losses for European power systems. Directly using the
moment relaxations to globally solve more general large OPF
problems with objective functions that minimize generation
cost has been computationally intractable thus far.

To solve these OPF problems, we form moment relax-
ations using a penalized objective function. Previous lit-
erature [16], [17] augments the SDP relaxation [6] with
penalization terms for the total reactive power generation and
the apparent power loss of certain lines. For many problems,
this penalization finds feasible points with objective function
values that are very close to the lower bounds obtained from
the SDP relaxation. Related work [18] uses a Laplacian-
based objective function with a constraint on generation cost
to find feasible points that are very near the global optima.
This paper analyzes the physical and convexity properties of
the reactive power penalization.
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There are several disadvantages of the penalization method
of [17]. This penalization often requires choosing multiple
parameters. (See [18] for a related approach that does not
require choosing penalty parameters.) Also, there are OPF
problems that are globally solved by the moment relaxations,
but no known penalty parameters yield a feasible solution.

We propose a “moment+penalization” approach that aug-
ments the moment relaxations with a reactive power penalty.
Typical penalized OPF problems only require higher-order
moment constraints at a few buses. Thus, for a variety of
large test cases, augmenting the moment relaxation with
the proposed single-parameter penalization achieves feasible
solutions that are at least very near the global optima
(within at least 1% for a variety of example problems). The
moment+penalization approach enables solution of a broader
class of problems than either method individually.

This paper is organized as follows. Section II introduces
the OPF problem. Section III reviews the moment relax-
ations. Section IV describes the low-impedance line prepro-
cessing. Section V discusses the existing penalization and
the proposed moment+penalization approaches. Section VI
demonstrates the moment+penalization approach using sev-
eral large test cases, and Section VII concludes the paper.

II. OPTIMAL POWER FLOW PROBLEM

We first present an OPF formulation in terms of rectangu-
lar voltage coordinates, active and reactive power injections,
and apparent power line-flow limits. Consider an n-bus
system, where N = {1, . . . , n} is the set of buses, G is
the set of generator buses, and L is the set of lines. Let
PDk + jQDk represent the active and reactive load demand
and Vk = Vdk + jVqk the voltage phasors at each bus k ∈
N . Superscripts “max” and “min” denote specified upper
and lower limits. Buses without generators have maximum
and minimum generation set to zero. Denote the network
admittance matrix as Y = G + jB.

Define a convex quadratic cost of active power generation:

fCk (Vd, Vq) = ck2 (fPk (Vd, Vq))
2 + ck1fPk (Vd, Vq) + ck0 (1)

The power flow equations describe the network physics:

PGk =fPk (Vd, Vq) = Vdk

n∑
i=1

(GikVdi −BikVqi)

+ Vqk

n∑
i=1

(BikVdi +GikVqi) + PDk (2a)

QGk =fQk (Vd, Vq) = Vdk

n∑
i=1

(−BikVdi −GikVqi)

+ Vqk

n∑
i=1

(GikVdi −BikVqi) +QDk (2b)

Define a function for squared voltage magnitude:
|Vk|2 = fV k (Vd, Vq) = V 2

dk + V 2
qk (3)

We use a line model with an ideal transformer that
has a specified turns ratio τlme

jθlm : 1 in series with a Π
circuit with series impedance Rlm + jXlm (equivalent to an
admittance of glm+jblm = 1

Rlm+jXlm
) and shunt admittance

jbsh,lm. The line-flow equations are:

Plm = fPlm (Vd, Vq) =
(
V 2
dl + V 2

ql

) glm
τ2lm

+ (VdlVdm + VqlVqm) (blm sin (θlm)− glm cos (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm sin (θlm) + blm cos (θlm)) /τlm
(4a)

Pml = fPml (Vd, Vq) =
(
V 2
dm + V 2

qm

)
glm

− (VdlVdm + VqlVqm) (glm cos (θlm) + blm sin (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm sin (θlm)− blm cos (θlm)) /τlm
(4b)

Qlm = fQlm (Vd, Vq) = −
(
V 2
dl + V 2

ql

)(
blm +

bsh,lm
2

)
/τ2lm

+ (VdlVdm + VqlVqm) (blm cos (θlm) + glm sin (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm cos (θlm)− blm sin (θlm)) /τlm
(4c)

Qml = fQml (Vd, Vq) = −
(
V 2
dm + V 2

qm

)(
blm +

bsh,lm
2

)
+ (VdlVdm + VqlVqm) (blm cos (θlm)− glm sin (θlm)) /τlm

+ (−VdlVqm + VqlVdm) (glm cos (θlm) + blm sin (θlm)) /τlm
(4d)

(Slm)2 = fSlm (Vd, Vq) = (fPlm (Vd, Vq))
2 + (fQlm (Vd, Vq))

2

(4e)

(Sml)
2 = fSml (Vd, Vq) = (fPml (Vd, Vq))

2 + (fQml (Vd, Vq))
2

(4f)

The classical OPF problem is then

min
Vd,Vq

∑
k∈G

fCk (Vd, Vq) subject to (5a)

Pmin
Gk ≤ fPk (Vd, Vq) ≤ Pmax

Gk ∀k ∈ N (5b)

Qmin
Gk ≤ fQk (Vd, Vq) ≤ Qmax

Gk ∀k ∈ N (5c)

(V min
k )2 ≤ fV k (Vd, Vq) ≤ (V max

k )2 ∀k ∈ N (5d)

fSlm (Vd, Vq) ≤ (Smax
lm )2 ∀ (l,m) ∈ L (5e)

fSml (Vd, Vq) ≤ (Smax
lm )2 ∀ (l,m) ∈ L (5f)

Vq1 = 0 (5g)

Constraint (5g) sets the reference bus angle to zero.

III. MOMENT RELAXATIONS

Since all constraints and the objective function are poly-
nomials in the voltage components Vd and Vq , the OPF
problem (5) is a polynomial optimization problem that can be
solved with tools from algebraic geometry. We first review
the “moment” relaxations from the Lasserre hierarchy [7]
for polynomial optimization problems and then summarize a
method for exploiting network sparsity.

A. Review of Moment Relaxations

Polynomial optimization problems are a special case of
“generalized moment problems” [7]. Global solutions to
generalized moment problems can be approximated using
moment relaxations that are formulated as SDPs. For poly-
nomial optimization problems with bounded variables, such
as OPF problems, the approximation approaches the global
solution(s) as the relaxation order increases [7]. The first-
order relaxation in the Lasserre hierarchy is equivalent to
the SDP relaxation of [6]; higher-order moment relaxations
generalize the SDP relaxation of [6].
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We begin with several definitions. Let the vector x̂ =[
Vd1 Vd2 . . . Vqn

]ᵀ
contain all first-order monomials

of the decision variables in (5). Given a vector α ∈ N2n

representing monomial exponents, the expression x̂α =
V α1

d1 V
α2

d2 · · ·V α2n
qn defines the monomial associated with x̂

and α. A polynomial g (x̂) is

g (x̂) ,
∑
α∈N2n

gαx̂
α (6)

where gα is the scalar coefficient corresponding to x̂α.
Define a linear functional Ly {g} which replaces the

monomials x̂α in a polynomial g (x̂) with scalars yα:

Ly {g} ,
∑
α∈N2n

gαyα (7)

Apply Ly {g} to each element of a matrix argument.
Consider the vector x̂ =

[
Vd1 Vd2 Vq2

]ᵀ
containing the

voltage components of a two-bus system, where the angle
reference (5g) is used to eliminate Vq1, and the polynomial
g (x̂) = − (0.95)

2
+ fV 2 (Vd, Vq) = − (0.95)

2
+ V 2

d2 + V 2
q2.

(Constraining g (x̂) ≥ 0 forces the voltage magnitude at
bus 2 to be greater than or equal to 0.95 per unit.) Then
Ly {g} = − (0.95)

2
y000+y020+y002. Thus, Ly {g} converts

a polynomial g (x̂) to a linear function of y.
Define the vector xγ composed of all monomials of the

voltage components up to the specified relaxation order γ:

xγ ,
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γqn

]ᵀ
(8)

The moment relaxations constrain moment and localizing
matrices. The symmetric moment matrix Mγ {y} has entries
yα corresponding to all monomials x̂α up to order 2γ:

Mγ {y} , Ly
{
xγx

ᵀ
γ

}
(9)

Symmetric localizing matrices are defined for each con-
straint of (5). The localizing matrices consist of linear
combinations of the moment matrix entries y. Each poly-
nomial constraint of the form f (x̂) − a ≥ 0 in (5) (e.g.,
fV 2 (x̂)− V min

2 ≥ 0) corresponds to the localizing matrix

Mγ−β {(f (x̂)− a) y} , Ly
{
(f (x̂)− a)xγ−βx

ᵀ
γ−β

}
(10)

where the polynomial f has degree 2β. Example moment
and localizing matrices for the second-order relaxation of a
two-bus system are presented in (14) and (15), respectively.

The order-γ moment relaxation of (5) is

min
y
Ly

{∑
k∈G

fCk

}
subject to (11a)

Mγ−1

{(
fPk − Pmin

k

)
y
}
� 0 ∀k ∈ N (11b)

Mγ−1

{(
Pmax
k − fPk

)
y
}
� 0 ∀k ∈ N (11c)

Mγ−1

{(
fQk −Qmin

k

)
y
}
� 0 ∀k ∈ N (11d)

Mγ−1

{(
Qmax
k − fQk

)
y
}
� 0 ∀k ∈ N (11e)

Mγ−1

{(
fV k −

(
V min
k

)2)
y

}
� 0 ∀k ∈ N (11f)

Mγ−1

{(
(V max
k )2 − fV k

)
y
}
� 0 ∀k ∈ N (11g)

Mγ−2

{(
(Smax
lm )2 − fSlm

)
y
}
� 0 ∀ (l,m) ∈ L (11h)

Mγ−2

{(
(Smax
lm )2 − fSml

)
y
}
� 0 ∀ (l,m) ∈ L (11i)

Mγ {y} � 0 (11j)
y00...0 = 1 (11k)
y0...00η0...0 = 0 η = 1, . . . , 2γ (11l)

where � 0 indicates that the corresponding matrix is positive
semidefinite. The constraint (11k) enforces x0 = 1. The
constraint (11l) corresponds to the angle reference (5g); the
η in (11l) is in the index n + 1, which corresponds to the
variable Vq1. The angle reference can alternatively be used
to eliminate all terms corresponding to Vq1 to reduce the size
of the SDP, as in (13)–(15).

The objective function and apparent power line flow con-
straints are quartic polynomials in Vd and Vq . For γ = 1, use
a Schur complement formulation of these polynomials [13].

The order-γ moment relaxation yields a single global
solution upon satisfaction of the rank condition

rank (Mγ {y}) = 1 (12)

The global solution x∗ to the OPF problem (5) is then
determined by a spectral decomposition of the diagonal block
of the moment matrix corresponding to the second-order
terms. Specifically, let µ be a unit-length eigenvector cor-
responding to the non-zero eigenvalue λ from the diagonal
block of the moment matrix corresponding to the second-
order monomials (i.e., [Mγ {y}]2:k,2:k, where k = 2n+1 and
subscripts indicate entries in MATLAB notation). Then the
vector V ∗ =

√
λ
(
µ1:n + jµ(n+1):2n

)
is the global solution.

A solution with rank (Mγ {y}) > 1 indicates that the
order-γ moment relaxation only yields a lower bound on the
objective value. Increasing the relaxation order will improve
the lower bound and may give a global solution.

B. Exploiting Network Sparsity
The matrices in the moment relaxations quickly grow

with both the relaxation order and the system size. For
an n-bus system, the number of rows and columns in the
order-γ relaxation’s moment matrix is (2n+ γ)!/ ((2n)!γ!).
Solving second- and higher-order moment relaxations of
problems with more than about ten buses requires exploiting
network sparsity [10], [13]. Full details are excluded from
this summary for brevity; see [13] for a complete description.

We use a matrix completion theorem [19] to exploit
network sparsity. A symmetric matrix W with partial in-
formation (i.e., not all entries of W have known values)
can be completed to a positive semidefinite matrix (i.e., the
unknown entries of W can be chosen such that W � 0) if
and only if certain submatrices of W are positive semidef-
inite. Consider a chordal extension of the power system
network graph.1 The matrix W is positive semidefinite if and

1A chordal extension contains all links in the network as well as additional
links such that every cycle of length four or more nodes has an edge
connecting two non-adjacent nodes in the cycle. A chordal extension can be
calculated using a Cholseky factorization of the network Laplacian matrix
using an approximate minimize-degree permutation to maintain sparsity.
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x2 =
[
1 Vd1 Vd2 Vq2 V 2

d1 Vd1Vd2 Vd1Vq2 V 2
d2 Vd2Vq2 V 2

q2

]ᵀ
[Note : (5g) is used to remove Vq1] (13)

M2 {y} = Ly {x2x
ᵀ
2} =



y000 y100 y010 y001 y200 y110 y101 y020 y011 y002
y100 y200 y110 y101 y300 y210 y201 y120 y111 y102
y010 y110 y020 y011 y210 y120 y111 y030 y021 y012
y001 y101 y011 y002 y201 y111 y102 y021 y012 y003
y200 y300 y210 y201 y400 y310 y301 y220 y211 y202
y110 y210 y120 y111 y310 y220 y211 y130 y121 y112
y101 y201 y111 y102 y301 y211 y202 y121 y112 y103
y020 y120 y030 y021 y220 y130 y121 y040 y031 y022
y011 y111 y021 y012 y211 y121 y112 y031 y022 y013
y002 y102 y012 y003 y202 y112 y103 y022 y013 y004


(14)

M1

{(
fV 2 − (0.95)2

)
y
}
=

y020 + y002 − (0.95)2 y000 y120 + y102 − (0.95)2 y100 y030 + y012 − (0.95)2 y010 y021 + y003 − (0.95)2 y001
y120 + y102 − (0.95)2 y100 y220 + y202 − (0.95)2 y200 y130 + y112 − (0.95)2 y110 y121 + y103 − (0.95)2 y101
y030 + y012 − (0.95)2 y010 y130 + y112 − (0.95)2 y110 y040 + y022 − (0.95)2 y020 y031 + y013 − (0.95)2 y011
y021 + y003 − (0.95)2 y001 y121 + y103 − (0.95)2 y101 y031 + y013 − (0.95)2 y011 y022 + y004 − (0.95)2 y002

 (15)

only if the submatrices of W corresponding to all maximal
cliques (i.e., the largest completely connected subgraphs) of
the chordal extension are positive semidefinite.

The matrix completion theorem enables decomposition of
a positive semidefinite constraint for a single large matrix to
constraints on many smaller matrices. This eliminates many
terms which do not appear in the constraint equations of the
OPF problem (5). See [11]–[13], [20] for details.

Exploiting network sparsity enables solution of the
second-order relaxation for problems with up to about 40
buses. Recognizing that the first-order relaxation is suffi-
cient for large regions of typical OPF problems, previous
work [13] proposed an iterative algorithm to selectively apply
the higher-order relaxation constraints to specific regions of
the network [13]. This algorithm used a “power injection
mismatch” heuristic to determine where to apply the higher-
order moment constraints.

We next summarize this heuristic. A moment relaxation
yields the global optimum if the moment matrix has rank
one, in which case the algorithm terminates. If the rank
of the moment matrix is greater than one, we calculate
the closest rank-one matrix using an eigen decomposition.
The power injection mismatch heuristic compares the power
injections corresponding to the closest rank-one matrix with
the power injections corresponding to the higher-rank mo-
ment matrix. Typical OPF problems result in small power
injection mismatches at the majority of buses with a small
fraction of buses having large mismatches. Each iteration
of the algorithm in [13] tightens the relaxation by applying
higher-order relaxation constraints for the two buses with
greatest power injection mismatch.

IV. PREPROCESSING LOW-IMPEDANCE LINES

By exploiting sparsity and selectively applying the higher-
order constraints, the moment relaxations globally solve
many OPF problems with up to 300 buses. Solution of larger
problems with higher-order relaxations is typically limited
by numerical convergence issues rather than computational
concerns. This section describes a preprocessing method for
improving numerical properties of the moment relaxations.

Low-impedance lines, which often represent “jumpers”
between buses in the same physical location, cause numerical
problems for many algorithms. Low line impedances result
in a large range of values in the bus admittance matrix Y,
which causes numerical problems in the constraint equations.

To address these numerical problems, many software pack-
ages remove lines with impedances below a threshold. For
instance, lines with impedance below a parameter thrshz
are removed prior to applying other algorithms in PSS/E [15].

We use a slightly modified version of the low-impedance
line removal procedure in PSS/E [15].2 Low-impedance lines
are eliminated by grouping buses that are connected by lines
with impedances below a specified threshold thrshz. Each
group of buses is replaced by one bus that is connected to all
lines terminating outside the group. Generators, loads, and
shunts (including the shunt susceptanes of lines connecting
buses within a group) are aggregated. The series parameters
of lines connecting buses within a group are eliminated.

Removing low-impedance lines typically has a small im-
pact on the solution. To recover an approximate solution to
the original power system model, assign identical voltage
phasors to all buses in each group and distribute flows on
lines connecting buses within a group under the approxima-
tion that all power flows through the low-impedance lines.

A typical low-impedance line threshold thrshz is
1× 10−4 per unit. However, the numerical capabilities of
SDP solvers are not as mature as other optimization tools.
Therefore, we require a larger thrshz = 1× 10−3 per unit
to obtain adequate convergence of the moment relaxations.
This larger threshold typically introduces only small errors
in the results, although non-negligible errors are possible.

MATPOWER solutions obtained for the Polish [21] and
most PEGASE systems [22] were the same before and after
low-impedance line preprocessing to within 0.0095 per unit
voltage magnitude and 0.67◦ voltage angle difference across
each line. Operating costs for all test problems were the same
to within 0.04%. The 2869-bus PEGASE system had larger

2Lines with non-zero resistances are not considered to be “low
impedance” by PSS/E. We consider both the resistance and the reactance.
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differences: 0.0287 per unit voltage magnitude and 1.37◦

angle difference. A power flow solution for the full network
using the solution to the OPF problem after low-impedance
line preprocessing yields smaller differences: 0.0059 per unit
voltage magnitude and 1.17◦ angle difference. Thus, the dif-
ferences from the preprocessing for the 2869-bus PEGASE
system can be largely attributed to the sensitivity of the
OPF problem itself to small changes in the low-impedance
line parameters. Preprocessing reduced the number of buses
by between 21% and 27% for the PEGASE systems and
between 9% and 26% for the Polish systems.

These results show the need for further study of the sensi-
tivity of OPF problems to low-impedance line parameters as
well as additional numerical improvements of the moment
relaxations and SDP solvers to reduce thrshz.

V. MOMENT RELAXATIONS AND PENALIZATION

As will be shown in Section VI, the moment relaxations
globally solve many large OPF problems with active power
loss minimization objectives after removing low-impedance
lines as described in Section IV. Directly applying the
moment relaxations to many large OPF problems with more
general cost functions has so far been computationally in-
tractable. This section describes the non-convexity associated
with more general cost functions and proposes a method
to obtain feasible solutions that are at least near the global
optimum, if not, in fact, globally optimal for many problems.

Specifically, we propose augmenting the moment re-
laxations with a penalization in the objective function.
Previous literature [16], [17] adds terms to the first-
order moment relaxation that penalize the total reac-
tive power injection and the apparent power line loss

(i.e.,
√

(fPlm + fPml)
2

+ (fQlm + fQml)
2) for “problem-

atic” lines identified by a heuristic. This penalization often
finds feasible points that are at least nearly globally optimal.

However, the penalization in [17] requires choosing two
penalty parameters and fails to yield a feasible solution to
some problems. This section describes progress in addressing
these limitations by augmenting the moment relaxations
with a reactive power penalization. The proposed “mo-
ment+penalization” approach only requires a single penalty
parameter and finds feasible points that are at least nearly
globally optimal for a broader class of OPF problems. This
section also analyzes the convexity properties and provides
a physical intuition for reactive power penalization.

A. Penalization of Reactive Power Generation

The penalization method proposed in [17] perturbs the
objective function (1) to include terms that minimize the total
reactive power loss and the apparent power loss on specific
lines determined by a heuristic method. These terms enter
the objective function with two scalar parameter coefficients.
Obtaining a feasible point near the global solution requires
appropriate choice of these parameters.

For typical operating conditions, reactive power is strongly
associated with voltage magnitude. Penalizing reactive power
injections tends to reduce voltage magnitudes, which also

tends to increase active power losses since a larger current
flow, with higher associated loss, is required to deliver a
given quantity of power at a lower voltage magnitude.

For many problems for which the first-order moment
relaxation fails to yield the global optimum, the relaxation
“artificially” increases the voltage magnitudes to reduce
active power losses. This results in voltage magnitudes and
power injections that are feasible for the relaxation (11) but
infeasible for the OPF problem (5).

By choosing a reactive power penalty parameter that bal-
ances these competing tendencies (increasing voltage mag-
nitudes to reduce active power losses vs. decreasing voltage
magnitudes to reduce the penalty), the penalized relaxation
finds a feasible solution to many OPF problems. Since losses
typically account for a small percentage of active power
generation and active and reactive power are typically loosely
coupled, the reactive power penalization often results in a
feasible point that is near the global optimum.

We next study the convexity properties of the cost function
and the reactive power penalization. The cost function (1)
is convex in terms of active power generation but not
necessarily in terms of the voltage components Vd and Vq due
to the non-convexity of (2a).3 Thus, the objective function is
a potential source of non-convexity which may result in the
relaxation’s failure to globally solve the OPF problem.

Consider the eigenvalues of the symmetric matrices C
and D, where, for the vector x̂ containing the voltage
components, x̂ᵀCx̂ is a linear cost of active power generation
(i.e., c2 = c0 = 0 in (1)) and x̂ᵀDx̂ calculates the reactive
power losses. For the 2383-bus Polish system [21], which has
linear generation costs, the most negative eigenvalue of C
is −8.53× 107. Thus, the objective function of the original
OPF problem (5a) is non-convex in terms of the voltage
components, which can cause the relaxation (11) to fail
to yield the global optimum. Conversely, active power loss
minimization is convex in terms of the voltage components
due to the absence of negative resistances.

As indicated by the potential for negative eigenvalues of
D (e.g., the matrix D for the 2383-bus Polish system has a
pair of negative eigenvalues at −0.0175), penalizing reactive
power losses is generally non-convex due to capacitive
network elements (i.e., increasing voltage magnitudes may
decrease the reactive power loss). See [18] for related work
that uses a convex objective based on a Laplacian matrix.

Further work is needed to investigate the effects of reactive
power penalization on OPF problems with more realistic
generator models that explicitly consider the trade-off be-
tween active and reactive power outputs (i.e., generator “D-
curves”). A tighter coupling between active and reactive
power generation may cause the reactive power penalization
to yield solutions that are far from the global optimum.

The apparent power line loss penalty’s effects are not as
easy to interpret as the reactive power penalty. Ongoing work
includes understanding the effects of the line loss penalty.

3The cost function of the moment relaxation (11a) is always convex.
This section studies the convexity of the penalized objective function for
the original non-convex OPF problem (5a).
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B. Moment+Penalization Approach

Although the reactive power penalization often yields a
near rank-one solution (i.e., rank-one matrices for most of the
submatrices in the decomposition discussed in Section III-B),
this penalization alone is not sufficient to obtain a feasible
point for many problems. Reference [17] penalizes the ap-
parent power line loss associated with certain lines to address
the few remaining non-rank-one “problematic” submatrices.
However, this approach has several disadvantages.

First, penalizing apparent power line losses introduces
another parameter.4 Introducing parameters is problematic,
especially when lacking an intuition for appropriate values.

Second, the combination of reactive power and line loss
penalization may not yield a feasible solution to some
problems. For instance, the OPF problems case9mod and
case39mod1 from [1] are globally solved with low-order
moment relaxations, but there is no known penalization of
reactive power and/or apparent power line loss that yields a
feasible solution for these problems. Also, the penalization
approach is not guaranteed to yield a feasible solution that
is close to the global optimum.

Unlike the penalization approach, the moment relaxation
approach does not require the choice of penalty parameters,
globally solves a broader class of OPF problems, and is
guaranteed to yield the global optimum when the rank
condition (12) is satisfied. However, direct application of the
moment relaxations to large problems has so far been limited
to active power loss minimization objective functions. We
conjecture that the non-convexity associated with more gen-
eral cost functions requires higher-order moment constraints
at too many buses for computational tractability.

To apply the moment relaxations to large OPF problems
with active power generation cost objective functions, we
augment the moment relaxations with a reactive power
penalty. Specifically, we apply the sparsity-exploiting mo-
ment relaxations described in Section III to the OPF prob-
lem (5) where the objective function (5a) is replaced by∑

k∈G

(fCk (Vd, Vq) + εbfQk (Vd, Vq)) (16)

where εb is the scalar reactive power penalization parameter.
That is, rather than apply an apparent power loss penalization
to the objective function, we apply higher-order moment
constraints to specific buses [13]. As will be demonstrated in
Section VI, higher-order moment constraints are only needed
at a few buses in typical OPF problems after augmenting the
objective function with a reactive power penalization term.

Similar to the existing penalization, when the rank con-
dition (12) is satisfied, the proposed “moment+penalization”
approach yields the global solution to the modified OPF prob-
lem (16), but not necessarily to the original OPF problem (5).
However, since the penalization does not change the con-
straint equations, the solution to the moment+penalization
approach is feasible for the original OPF problem (16).

4Reference [17] uses the same penalization parameter for each “problem-
atic” line. Generally, each line could have a different penalty parameter.

The first-order moment relaxation without penalization (i.e.,
εb = 0) gives a lower bound on the globally optimal
objective value for the original OPF problem (5). This lower
bound provides an optimality metric for the feasible solution
obtained from the moment+penalization approach. As will be
shown in Section VI, the feasible solutions for a variety of
problems are within 1% of the global optimum.

The moment+penalization approach inherits a mix of the
advantages and disadvantages of the moment relaxation
and penalization methods. First, the moment+penalization
approach requires selection of a single scalar parameter (one
more than needed for the moment relaxations, but one less
than generally needed for the penalization in [17]). This
parameter must be large enough to result in a near rank-
one solution (i.e., the solution should have many rank-one
submatrices in the decomposition described in Section III-B),
but small enough to avoid large changes to the OPF problem.

Second, the penalization eliminates the moment relax-
ations’ guarantees: the moment+penalization approach may
yield a feasible solution that is far from the global optimum
or not give any solution. However, the moment+penalization
approach finds global or near-global solutions to a broader
class of small OPF problems than the penalization approach
of [17] (e.g., case9mod and case39mod1 with εb = 0, and
case39mod3 with εb = $0.10/MVAr [1]). This suggests that
the moment+penalization approach inherits the ability of the
moment relaxations to solve a broad class of OPF problems.

Finally, the penalization in the moment+penalization ap-
proach enables calculation of feasible solutions that are at
least nearly globally optimal for a variety of large OPF
problems with objective functions that minimize active power
generation cost rather than just active power losses.

Note that it is not straightforward to compare the com-
putational costs of the moment+penalization approach and
the penalization approach in [17]. A single solution of a
penalized first-order moment relaxation, as in [17], is faster
than a relaxation with higher-order moment constraints.
Thus, if one knows appropriate penalty parameters, the
method in [17] is faster. Although a relatively wide range
of penalty parameters tends to work well for typical OPF
problems, there are problems for which no known penalty
parameters yield feasible solutions. For these problems, the
moment+penalization approach has a clear advantage.

The moment+penalization approach has the advantage of
systematically tightening the relaxation rather than requiring
the choice of penalty parameters. However, the higher-order
constraints can significantly increase solver times. Thus,
there is a potential trade-off between finding appropriate
penalization parameters for the approach in [17] and in-
creased solver time from the moment+penalization approach.
The speed of the moment+penalization approach may be
improved using the mixed SDP/SOCP relaxation from [14].

VI. RESULTS

This section first globally solves several large, active-
power-loss minimizing OPF problems using moment re-
laxations without penalization (εb = 0). Next, this section
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applies the moment+penalization approach to find feasible
points that are at least nearly globally optimal for several test
cases which minimize active power generation cost. Unless
otherwise stated, the preprocessing method from Section IV
with thrshz set to 1 × 10−3 per unit is applied to all
examples. No example enforces a minimum line resistance.

The results are generated using the iterative algorithm
from [13] which selectively applies the higher-order moment
relaxation constraints as summarized in Section III-B. The
algorithm terminates when all power injection mismatches
are less than 1 MVA.

The implementation uses MATLAB 2013a, YALMIP
2015.06.26 [23], and Mosek 7.1.0.28, and was solved using a
computer with a quad-core 2.70 GHz processor and 16 GB
of RAM. The test cases are the Polish system models in
MATPOWER [21] and several PEGASE systems [22] repre-
senting portions of the European power system.

A. Active Power Loss Minimization Results

Table I shows the results of applying the moment relax-
ations to several large OPF problems that minimize active
power losses (i.e., the cost coefficients in (1) are c2 = c0 = 0,
c1 = $1/MWh). The solutions to the preprocessed problems
are guaranteed to be globally optimal since there is no
penalization. The columns in Table I list the case name,
the number of iterations of the algorithm from [13], the
maximum power injection mismatch, the globally optimal
objective value, and the solver time summed over all iter-
ations. The abbreviation “PL” stands for “Poland”. Table I
excludes several cases (the 89-bus PEGASE system and the
Polish 2736sp, 2737sop, and 2746wp systems) which only
require the first-order relaxation and thus do not illustrate the
capabilities of the higher-order relaxations.

TABLE I
ACTIVE POWER LOSS MINIMIZATION RESULTS5

Case Num. Global Obj. Max Smis Solver
Name Iter. Val. ($/hr) (MVA) Time (sec)

PL-2383wp 3 24990 0.25 583
PL-2746wop 2 19210 0.39 2662
PL-3012wp 5 27642 1.00 319
PL-3120sp 7 21512 0.77 387

PEGASE-1354 5 74043 0.85 407
PEGASE-2869 6 133944 0.63 921

Each iteration of the algorithm in [13] after the first
adds second-order constraints at two buses. Thus, a small
number of second-order buses (between 0.1% and 0.7% of
the number of buses in the systems in Table I after the low-
impedance line preprocessing) are applied to all examples
in Table I. This results in computational tractability for the
moment relaxations.

Note that PL-2746wop has a much greater solver time
than the other systems even though it only has second-order
constraints at two buses. This slow solution time is due to
the fact that the two second-order buses are contained in

5PEGASE-1354 and PEGASE-2869 use a thrshz of 3× 10−3 per unit.
All other systems use 1× 10−3 per unit.
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Fig. 1. Eigenvalue ratio (largest/second-largest eigenvalue) for each subma-
trix for PL-2383wp. Large values (>104) indicate satisfaction of the rank
condition (12). For εb = 0 (green), most of the submatrices are not rank one.
For εb = $50/MVAr (red), most submatrices satisfy the rank condition
with the exception of those on the far left of the figure. Applying second-
order moment constraints to two of the buses that are in these submatrices
(blue) results in all submatrices satisfying the rank condition.

submatrices corresponding to cliques with 10 and 11 buses.
The second-order constraints for these large submatrices
dominate the solver time. The mixed SDP/SOCP relaxation
in [14] may be particularly beneficial for such cases.

Since the low-impedance line preprocessing has been
applied to these systems, the solutions do not exactly match
the original OPF problems. MATPOWER [21] solutions of
the original problems have objective values that are slightly
larger than the values in Table I due to losses associated with
the line resistances removed by the preprocessing.

After the low-impedance line preprocessing, local solu-
tions from MATPOWER match the solutions from the moment
relaxations and are therefore, in fact, globally optimal. This
is not the case for all OPF problems [1], [13].

B. Moment+Penalization for More General Cost Functions

As discussed in Section V-A, minimization of active
power generation cost often yields a non-convex objective
function in terms of the voltage components. Despite this
non-convexity, low-order moment relaxations typically yield
global solutions to small problems, including problems with-
out known penalty parameters for obtaining a feasible points
(e.g., case9mod and case39mod1 from [1]).

However, the moment relaxations are thus far intractable
for some large OPF problems with non-convex objective
functions. A reactive power penalty often results in the
first-order moment relaxation yielding a solution that is
nearly globally optimal (i.e., most of the submatrices in the
decomposition described in Section III-B satisfy the rank
condition (12)). Enforcing higher-order constraints at buses
in the remaining submatrices yields a feasible solution to the
OPF problem. This is illustrated in Fig. 1, which shows the
ratio between the largest and second-largest eigenvalues of
the submatrices of the moment matrix, arranged in increasing
order, for the 2383-bus Polish system. If the submatrices
were all rank one, then this eigenvalue ratio would be infinite.
Thus, large numeric values (i.e., greater than 1×104) indicate
satisfaction of the rank condition within numerical precision.
Without the reactive power penalty, the rank condition is
not satisfied for most submatrices. With the reactive power
penalty, the rank condition is satisfied for many but not all
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submatrices. Enforcing higher-order moment constraints at
two buses which are in the high-rank submatrices results in
a feasible (rank-one) operating point for the OPF problem
which is within 0.74% of the global optimum.

To further illustrate the effectiveness of the mo-
ment+penalization approach, Table II shows the results of
applying the moment+penalization approach to several large
OPF problems with active power generation cost functions.
The optimality gap column gives the percent difference
between a lower bound on the optimal objective value from
the first-order moment relaxation and the feasible solution
obtained from the moment+penalization approach for the
system after low-impedance line preprocessing.

TABLE II
GENERATION COST MINIMIZATION RESULTS

Case εb Num. Opt. Max Smis Solver
Name ($/MVAr) Iter. Gap (MVA) Time (sec)

PL-2383wp 50 2 0.74% 0.13 152.2
PL-3012wp 50 7 0.49% 0.20 1056.3
PL-3120sp 100 6 0.92% 0.08 1164.4

The penalized first-order relaxation requires 74.6, 88.9,
and 97.0 seconds for PL-2383wp, PL-3012wp, and PL-
3120sp, respectively. Attributing the rest of the solver time
to the higher-order constraints implies that these constraints
accounted for 3.1, 433.7, and 582.4 seconds beyond the time
required to repeatedly solve the first-order relaxations.

The moment+penalization approach can yield feasible
points that are at least nearly globally optimal for cases
where both the penalization method of [17] and low-order
moment relaxations fail individually. For instance, the mo-
ment+penalization approach with a reactive power penalty of
εb = $0.10/MVAr gives a feasible point within 0.28% of the
global optimum for case39mod3 from [1], but both second-
and third-order moment relaxations and the penalization
method in [17] fail to yield global solutions.

VII. CONCLUSION

“Moment” relaxations from the Lasserre hierarchy for
polynomial optimization globally solve a broad class of OPF
problems. By exploiting sparsity and selectively applying the
computationally intensive higher-order moment relaxations,
previous literature demonstrated the moment relaxations’
capability to globally solve moderate-size OPF problems.
This paper presented a preprocessing method that removes
low-impedance lines to improve the numerical conditioning
of the moment relaxations. After applying the preprocessing
method, the moment relaxations globally solve a variety of
OPF problems that minimize active power losses for systems
with thousands of buses. A proposed “moment+penalization”
method is capable of finding feasible points that are at least
nearly globally optimal for large OPF problems with more
general cost functions. This method has several advantages
over previous penalization approaches, including requiring
fewer parameter choices and solving a broader class of OPF
problems. The results are demonstrated using large OPF
problems representing European power systems.
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