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Abstract— The paper develops a state-space model for the
aggregate power drawn by a group of plug-in electric vehicle
(PEV) chargers under hysteresis-based charging. The aggregate
response of the PEV charging loads to changes in the hysteresis
deadband is nonlinear, requiring detailed analysis to accu-
rately capture the dynamics. Related work, which focused on
thermostatically controlled loads (TCLs), addressed state-space
modelling by dividing the hysteresis deadband into equally
sized bins and keeping track of the inter-bin migration of
loads. A system of PEV chargers can be treated similarly. A
new modelling paradigm has been developed to allow for fast
variation of the hysteresis deadband. This model tracks the
distribution of PEV chargers within the hysteresis deadband,
with the inter-bin migration of chargers used to capture the
aggregate dynamics.

I. INTRODUCTION

Hysteresis-based processes underpin the control of many
electrical loads, particularly those that involve thermostats,
for example air-conditioner and water heaters. While
hysteresis-based control is not natural for charging the bat-
teries of plug-in electric vehicles (PEVs), it has been shown
in [1], [2] that by establishing a nominal charging profile
and a surrounding deadband, charging can be formulated as
a hysteresis-based mechanism. An illustration is provided in
Fig. 1.

Numerous studies have shown that useful control laws
can be designed so that the aggregate power demanded by
a group of hysteresis-based electrical loads follows certain
desired trajectories [1]-[8]. To design a good control law, it is
important to completely understand the dynamic behaviour
of the aggregated load group. A necessary step is the
development of a state-space model that accurately captures
the response of the population to a wide range of controlled
variations of the hysteresis band.

A Fokker-Planck model was derived in [9] to capture the
aggregate dynamics of a population of thermostats. It was
shown in [3] that the probability of thermostatic loads being
ON (drawing power) or OFF (not drawing any power) can
be estimated rather accurately for a large population. More
recent work has shown that population dynamics can be mod-
elled by dividing the hysteresis band into several equal-sized
bins and keeping track of the movement of thermostats from
one bin to another [4], [5], [6]. An alternative, linearized
input-output transfer function model was developed in [2]
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Fig. 1. Hysteresis-based PEV charging strategy.

for the hysteresis-based PEV charging strategy proposed in
[1]. However the aggregate response of PEV charging load
to changes in the position of the hysteresis band is inherently
nonlinear, hence the need for detailed analysis to capture the
holistic dynamics.

The paper considers a hysteresis-based control strategy for
regulating the power demand of a homogeneous population
of PEV chargers. A state-space model is developed to accu-
rately represent the system response to changes in the dead-
band position. Section II briefly introduces the hysteresis-
based charging process. The modelling approach is described
in Section III, while Section IV presents simulation results
that explore the capabilities of the developed model over a
wide range of control signals. Conclusions are presented in
Section V.

II. SYSTEM DESCRIPTION

In modelling the aggregate demand of a group of PEV
chargers, a homogeneous noise-free system will be consid-
ered. A typical hysteresis-based charging profile is shown
in Fig. 1, where the state-of-charge (SoC) always remains
within the deadband established around the nominal SoC
profile. By making the deadband width of each PEV charger
proportional to its maximum charge requirement Emax, the
SoC can be normalized such that the corresponding normal-
ized deadband is symmetric around zero [2]. The dynamics
of the resulting normalized SoC can be expressed as,

˙̃SoC(t) =
s(t)Pmax−Pnom

Emax
(1a)

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 2535



TABLE I
KEY SYMBOLS

Nv number of PEVs
N number of bins into which the deadband is divided
SoC state-of-charge (kWh)
S̃oC normalized state-of-charge (SoC)
Pmax maximum charging rate (kW)
Pnom nominal charging rate (kW)
Emax battery charge capacity (kWh)
∆ deadband width as a fraction of battery capacity
xi(t) probability density of chargers in ith bin
u(t) shift in normalized SoC deadband over time
v(t) rate at which normalized SoC deadband changes

where

ṡ = 0 while −∆/2 < S̃oC(t)< ∆/2 (1b)

and

s(t+) =

{
s(t)+1 when S̃oC(t) =−∆/2
s(t)−1 when S̃oC(t) = ∆/2,

(1c)

with t+ denoting the time instant immediately following the
switching induced by S̃oC reaching the upper or lower limit
of the (normalized) deadband. With this formulation, the
width of the deadband becomes ∆. It is also useful to define
the two parameters αon and αo f f as the rate of increase and
decrease of S̃oC, respectively. From (1a) ,

αon :=
(Pmax−Pnom)

Emax
(2)

αo f f :=−Pnom

Emax
. (3)

The remainder of the paper focuses on the normalized
deadband and normalized SoC. For brevity, the qualifier
“normalized” will subsequently be dropped.

III. MODELLING AGGREGATE DYNAMICS

A. All chargers inside the hysteresis band

If any PEV chargers are initially outside the (normalized)
deadband, then the dynamics of (1) will force them to move
inside. Once a charger is inside the deadband, it will remain
inside unless the deadband moves quickly, as discussed in
Section III-B, or charging is completed.

One approach to capturing the aggregate dynamics of a
population of hysteresis-based PEV chargers is to divide the
deadband into N sections of equal width,

δbin := ∆/N, (4)

and quantify the migration of chargers from one bin to
another [4], [5]. At any moment, some of the chargers within
the deadband will be in the ON-state while the rest will be
in the OFF-state. It is therefore useful to consider N bins of
equal width each holding a (not necessarily equal) number
of ON chargers and another N bins each holding a number
of OFF chargers. The number of chargers in each of those
2N bins describes the probability distribution of SoC across
the population. Fig. 2 provides an illustration. The height of

... ...

......

on

-off

1 2 k-1 k N-1 Nk+1

2N 2N-1 m+1 m N+2 N+1m-1

vv

v v

Fig. 2. Inter-bin migration when all the loads are inside the deadband.

a bin represents the probability density of chargers in that
bin. Let the height of the i-th bin at time t be given by
xi(t), i = 1, . . . ,2N. The probability that a PEV lies within
the i-th bin is then xi(t)δbin, and hence,

δbin

2N

∑
i=1

xi(t) = 1. (5)

Bins numbered 1 to N account for the ON-state chargers
while bins numbered N+1 to 2N account for the OFF-state
chargers. The chargers in the ON-state move to the right
(as their SoC increases) at a speed αon and the OFF-state
chargers move to the left at a rate αo f f . The dynamic model
(1) ensures that no ON-state chargers can exist to the right of
the upper deadband limit, while no OFF-state chargers may
exist to the left of the lower deadband limit. Any ON-state
chargers hitting the upper deadband limit instantly switch to
the OFF-state, and any OFF-state chargers that encounter the
lower deadband limit switch to the ON-state.

1) Static deadband: To start with, the deadband is as-
sumed to be static, i.e. the control action u(t) describing the
shift in the deadband is zero. As discussed in [4], the change
in probability density xi(t) is nothing but the difference
between the inflow of chargers from the (i− 1)-th bin and
the outflow of chargers from the i-th bin, for i = 2, . . . ,2N.
For i = 1, the inflow is from the 2N-th bin. Taking care of
the switching at the two deadband limits, the dynamics can
be written,

ẋi(t)δbin =


−x2N(t)αo f f − x1(t)αon, i = 1(
xi−1(t)− xi(t)

)
αon, i = 2, . . . ,N

xN(t)αon + xN+1(t)αo f f , i = N +1
−
(
xi−1(t)− xi(t)

)
αo f f , i = N +2, . . . ,2N.

(6)
The total power demand is given by,

Ptot(t) = NvPmaxδbin

N

∑
i=1

xi(t). (7)

2536



... ...

...

aon

-aoff

1 2 n n+1 N-1 N

2N 2N-1 2N-n N+2 N+1

vv

v v

uΔ
rel

(a) Chargers lie left of the lower deadband limit
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(b) Chargers lie right of the upper deadband limit

Fig. 3. Inter-bin migration when some of the chargers lie outside the deadband limits.

Note that the N + 1, ...,2N bins correspond to OFF-state
chargers and hence do not contribute to instantaneous power
demand.

2) Slowly moving deadband: The above description holds
when the deadband is static. However if the deadband moves,
under the influence of a control signal u(t), then it is
necessary to reconsider the meaning of the bins. As before,
the deadband is still divided into N bins of equal width δbin,
but now those bins move with the deadband. The SoC range
associated with each bin is no longer defined in absolute
terms, but rather is defined relative to the moving deadband.
Consequently, if control u(t) causes the deadband to move
at a rate du(t)

dt ≡ v(t), then the effective rate at which inter-
bin migrations take place will change. For example, if the
deadband limits move with a rate v = αon/2 in the same
direction as αon, as illustrated in Fig. 2, the effective rate
at which the ON-state chargers in the N-th bin hit the
upper limit will be αon/2 and the rate at which OFF-state
chargers in the 2N-th bin hit the lower deadband limit will
be αon/2−αo f f .

If the rate v(t) at which the deadband limits move has a
magnitude that is less than the natural rates1 αon and −αo f f ,
then the migrations will continue to occur, but with adjusted
rates αon−v(t) and −αo f f +v(t) instead of αon and −αo f f ,
respectively. Consequently, the dynamics of migration in (6)
become,

ẋi(t)δbin =
−x2N(t)(αo f f − v(t))− x1(t)(αon− v(t)), i = 1(
xi−1(t)− xi(t)

)(
αon− v(t)

)
, i = 2, ...,N

xN(t)
(
αon− v(t)

)
+ xN+1(t)

(
αo f f − v(t)

)
, i = N +1

−
(
xi−1(t)− xi(t)

)(
αo f f − v(t)

)
, i = N +2, ...,2N

(8)

1Recall αo f f < 0 by definition (3).

with total power given by (7). The existence of terms such
as xi(t)v(t) in the right-hand side of (8) indicates that the
resulting state-space model is bilinear [4].

It is anticipated that the state-space model will become
more complicated when the deadband moves quickly. While
the rate of change of the deadband is relatively slow, αo f f <
v(t) < αon, chargers will continue encountering the upper
and lower limits of the hysteresis band, the right boundary
for ON-state chargers and the left boundary for OFF-state
chargers. As a result, all of the chargers will remain inside
the deadband even as it moves. However, if the deadband
varies at a sufficiently high rate, switching between states
will no longer operate according to (8). In particular, if the
deadband moves towards the right with a speed v(t)> αon,
switching at the upper deadband limit will no longer occur,
though the OFF-state chargers will continue to encounter the
lower deadband limit, with a rate v(t)−αo f f . Consequently,
over time the N-th bin will lag behind the upper deadband
limit and will separate from it. This is illustrated in Fig. 3(a).
Furthermore, some of the ON-state chargers will now lie
outside the deadband, to the left of the lower limit. An
equivalent situation occurs when v(t)<αo f f , as illustrated in
Fig. 3(b). In this case, the 2N-th bin and the lower deadband
limit will become separated, and some of the OFF-state
chargers will lie to the right of the upper deadband limit.

B. Chargers lying outside the hysteresis band

In considering this case, it is assumed that initially all
the chargers were inside the deadband and as the deadband
moved faster than the natural rates αon and −αo f f , some
or all of the chargers fell behind the shifted deadband.
Fig. 3(a) shows a typical case where the deadband has moved
quickly to the right, and some of the ON-state chargers
now lie to the left of the lower deadband limit. Considering
the dynamics in (8), it can be seen that as v(t) increases
and approaches αon, the rate of inter-bin migration of ON-
state chargers, proportional to αon− v(t), decreases. As v(t)
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increases beyond αon, the inter-bin migration within the
ON-state, and the ON- to OFF-state switching at the right
boundary, both stop. A “gap” is created between the N-th
bin and the right boundary. An equivalent situation occurs
for the OFF-state when v(t) decreases faster than αo f f , as
shown in Fig. 3(b).

The “gap” between the extreme end bin and the upper or
lower boundary can be quantified using the variable urel

∆
, as

shown in Fig. 3. When u(t) varies continuously, so that v(t)
is finite, the behaviour of urel

∆
is governed by the switched

dynamical system:
durel

∆

dt
= y(t) (9a)

where

y(t) =
v(t)−αon,

(
urel

∆
(t) = 0∧ v(t)≥ αon

)
∨urel

∆
(t)> 0

v(t)−αo f f ,
(

urel
∆
(t) = 0∧ v(t)≤ αo f f

)
∨urel

∆
(t)< 0

0, otherwise
(9b)

and ∧ and ∨ denote standard Boolean operators. With all
chargers initially inside the deadband limits, the gap urel

∆
(t)

will remain zero while the rate v(t) at which the deadband
varies remains within the natural rates at which SoC varies,
i.e. αo f f < v(t)< αon. If v(t) deviates beyond those bounds,
then urel

∆
(t) will become non-zero, implying that some bins

lie outside the deadband. Bins will lie below the lower
deadband limit if urel

∆
(t) > 0, as illustrated in Fig. 3(a).

Fig. 3(b) shows that for urel
∆
(t) < 0, bins will lie above the

upper deadband limit.
If u(t) undergoes a step change, then v(t) will be undefined

at that instant and (9) is no longer applicable. To resolve this
difficulty, the input signal can be decomposed into a compo-
nent u(t) that varies continuously and a component ∆u(t)
that is constant apart from step changes. The continuous
component u(t) establishes v(t), and thus drives variations
in urel

∆
(t) according to (9). To account for the step-wise

contribution given by ∆u(t), the total variation in urel
∆
(t) is

given by,
urel

∆ (t) = urel
∆(9)(t)+∆u(t) (10)

where urel
∆(9)(t) refers to the value of urel

∆
(t) given by (9).

The number of bins (either ON or OFF) lying outside
the deadband is nominally given by urel

∆
(t)/δbin. This will

generically result in a non-integer number of bins though.
To overcome this difficulty, bins that straddle a deadband
limit will be treated as lying entirely outside the deadband.
Accordingly, the number of bins outside the deadband at time
t is given by,

nt := min

(⌈∣∣urel
∆
(t)
∣∣

δbin

⌉
,N

)
. (11)

The approximation inherent in rounding up, as achieved by
the “ceiling” function in (11), is incidental as the width of a
bin is a small fraction, 1/N, of the deadband width.

A general purpose model must be able to quantify the
inter-bin migration of chargers for situations such as those
depicted in Fig. 3. In Section III-A, the deadband was divided
into N equal bins, with (8) describing the evolution of
chargers within those bins. This resulted in a state-space of
dimension 2N. It is natural to consider increasing the number
of bins to cover the possibility of chargers lying outside the
deadband. However, this would require a larger state-space,
and might result in scalability and/or computational issues if
the shifts in deadband had the potential to be large. It will be
shown that stretching the state-space is not necessary, with
2N states able to capture the dynamics under all situations.

1) Chargers lying left of the lower limit, urel
∆
(t) > 0:

Consider the case when some (or all) of the chargers are
lying to the left of the lower deadband limit. There is a
gap between the right-most ON-state charger and the upper
deadband limit, as illustrated in Fig. 3(a). Thus no chargers
will encounter the upper limit, and hence no switching
from the ON- to the OFF-state will occur. Consequently
all the ON-state bins must move towards the right with
the common natural rate αon, and so no inter-bin migration
will occur between any of the ON-state bins. However,
switching from the OFF- to the ON-state at the lower limit
will continue, thereby increasing the height of the ON-state
bin that coincides with the lower deadband limit.

When all the chargers were inside the deadband limits
(Section III-A) the bins were referenced relative to the dead-
band. Even though the deadband moved at v(t)∈ (αo f f ,αon),
the bin positions relative to the deadband remained fixed. In
the case when chargers lie to the left of the lower deadband
limit, the ON-state bin positions can be chosen as reference.
That is, the ON-state bins remain fixed and the deadband
moves with relative rate v(t)−αon. Consequently, the SoC
of the OFF-state chargers vary at the relative rate αo f f −αon.
Due to the absence of any boundary switching from the
ON- to the OFF-state, the height of the (N + 1)-th bin in
the OFF-state will simply decrease at a rate proportional to
(αon−αo f f )xN+1(t). The rate of OFF- to ON-state switching
is proportional to x2N−nt (t)max

(
0,v(t)−αo f f

)
, where nt is

given by (11). This takes into account that if v(t) < αo f f
there can be no switching from the OFF- to the ON-state.
The state dynamics for all bins can be summarized as:

ẋi(t)δbin =

x2N−nt (t)max
(
0,v(t)−αo f f

)
, i = nt +1

xi(t)(αo f f −αon), i = N +1
−
(
xi−1(t)− xi(t)

)
(αo f f −αon), i = N +2, ..,2N−nt −1

−xi(t)max
(
0,v(t)−αo f f

)
− xi−1(t)(αo f f −αon)

, i = 2N−nt

0, all other i.
(12)

2) Chargers lying right of the upper limit, urel
∆
(t) < 0:

When some or all of the chargers lie to the right of the upper
deadband limit, as illustrated in Fig. 3(b), a formulation
similar to that in Section III-B.1 can be established, though
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Fig. 4. Case 1, corresponding to Section III-A. The deadband moves slowly and all chargers remain within the limits.
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Fig. 5. Case 2, corresponding to Section III-B. The deadband moves rapidly and some chargers fall outside the limits.

in this case the OFF-state bins provide the reference. With
this reference, the SoC of the OFF-state chargers remains
constant, with no inter-bin migration occurring. The SoC of
the ON-state chargers varies at the rate αon−αo f f , however.
Also, the ON- to OFF-state switching at the right deadband
limit is proportional to xN−nt (t)max

(
0,(αon− v(t))

)
, where

nt is the number of OFF-state bins lying to the right of the
upper deadband limit at time t, as given by (11). The state
equations become:

ẋi(t)δbin =

−xi(t)(αon−αo f f ), i = 1(
xi−1(t)− xi(t)

)
(αon−αo f f ), i = 2, . . . ,N−nt −1

−xi(t)max
(
0,αon− v(t)

)
+ xi−1(t)(αon−αo f f )

, i = N−nt

xN−nt (t)max
(
0,αon− v(t)

)
, i = N +nt +1

0, all other i.
(13)

IV. SIMULATION

The model built in Section III has been compared with
Monte-Carlo simulation of a homogeneous population of
PEV chargers2, each governed by the dynamics of (1). Fig. 4
illustrates a situation where the deadband moves slowly.

2Referring to Table I, parameters for the simulation are: Nv = 1000,
N = 200, ∆ = 0.05, Pmax = 4 kW, Pnom = 2.4 kW, Emax = 16 kW-hr. The
continuous dynamics of (1) was discretized using a time-step of 0.2 min.

Fig. 4(a) shows that the deadband oscillates sinusoidally,
while Fig. 4(b) confirms that the rate of movement stays
within (αo f f ,αon). Given this slow movement, urel

∆
(t) equals

zero throughout, as seen in Fig. 4(a), and all the chargers
remain inside the deadband limits. The resulting aggregate
power demand is shown in Fig. 4(c). It can be seen that the
model output closely matches the Monte-Carlo simulation.

The second case considers fast movement of the deadband,
and is illustrated in Fig. 5. The deadband position u(t),
shown in Fig. 5(a), moves faster than the natural SoC rates,
and as a result, v(t) deviates outside the range (αo f f ,αon).
This is shown in Fig. 5(b). Some chargers start to fall
outside the deadband limits, with Fig. 5(a) showing that
urel

∆
(t) takes on non-zero values. At the instant when v(t)

increases beyond αon, the relative “gap” between the bins
and the deadband urel

∆
(t) becomes positive. It remains so

until after v(t) has dropped below αon and the bins have
caught up with the deadband limits. Fig. 5(c) shows that
the aggregate demand undergoes large oscillations, with
fluctuations ranging between the maximum demand, when
all PEVs are charging, and zero.

In the third case, presented in Fig. 6, the deadband is
forced to undergo high-frequency pulses, followed by a
much slower sinusoidal oscillation. The input signal u(t) and
corresponding “gap” measure urel

∆
are provided in Fig. 6(a).

Fig. 6(b) shows that even after the deadband movement slows
down, the total power continues to oscillate between the
maximum and zero, though with a reduced frequency. Thus
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Fig. 6. Case 3, high-frequency deadband movement renders the system less responsive to slow variations.

exposure to high frequency, and relatively large, movements
in the deadband position can synchronize chargers, rendering
the system almost unresponsive to subsequent small and slow
changes in the deadband position.

V. CONCLUSIONS

The paper has considered a hysteresis-based charging
process that enables regulation of the aggregate power de-
mand of a large population of PEVs. To achieve control,
the hysteresis band of all PEVs is adjusted by a common
input signal. A detailed nonlinear state-space model has been
developed to capture the aggregate population dynamics in
response to deadband movement. The model is able to accu-
rately replicate dynamic behaviour even in the presence of
very large fluctuations in the deadband position. It provides
the basis for exploring system response to a wide range of
control actions. The modelling approach is not restricted
to populations of PEV chargers. It is just as applicable to
other hysteresis-based processes, such as thermostatically
controlled loads.
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