
Mixed SDP/SOCP Moment Relaxations of the

Optimal Power Flow Problem

Daniel K. Molzahn and Ian A. Hiskens

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI USA 48109

{molzahn, hiskens}@umich.edu

Abstract—Recently, convex “moment” relaxations developed
from the Lasserre hierarchy for polynomial optimization prob-
lems have been shown capable of globally solving many optimal
power flow (OPF) problems. The moment relaxations, which take
the form of semidefinite programs (SDP), generalize a previous
SDP relaxation of the OPF problem. This paper presents an
approach for improving the computational performance of the
moment relaxations for many problems. This approach enforces
second-order cone programming (SOCP) constraints that es-
tablish necessary (but not sufficient) conditions for satisfaction
of the SDP constraints arising from the higher-order moment
relaxations. The resulting “mixed SDP/SOCP” formulation im-
plements the first-order relaxation using SDP constraints and
the higher-order relaxations using SOCP constraints. Numerical
results demonstrate that this mixed SDP/SOCP relaxation is ca-
pable of solving many problems for which the first-order moment
relaxation fails to yield a global solution. For several examples,
the mixed SDP/SOCP relaxation improves computational speed
by factors from 1.13 to 18.7.

Index Terms—Optimal power flow, convex relaxation, semidef-
inite programming, second-order cone programming

I. INTRODUCTION

The optimal power flow (OPF) problem determines an

optimal operating point for an electric power system in terms

of a specified objective function (typically generation cost

per unit time). The OPF problem is constrained by network

equality constraints (the power flow equations, which model

the relationship between voltages and power injections) and

engineering limits (e.g., inequality constraints on voltage mag-

nitudes, active and reactive power generations, and line flows).

The OPF problem is generally non-convex due to the non-

linear power flow equations and may have local solutions [1].

Many OPF solution techniques have been proposed, including

successive quadratic programs, Lagrangian relaxation, interior

point methods, and many types of heuristic optimization [2],

[3]. Some of these techniques are quite mature and capable

of finding at-least-locally optimal solutions to many large-

scale OPF problems with reasonable computational burden.

However, while typical local solution techniques often in fact

find globally optimal solutions [4], they may fail to converge

or converge to a local optimum [1], [5].

Recently, significant research attention has focused on

convex relaxations of the OPF problem. Convex relaxations

provide lower bounds on the optimal objective value and

can certify infeasibility. Further, convex relaxations based on

semidefinite programming (SDP) [6] and second-order cone

programming (SOCP) [7] formulations have proven capable

of globally solving many OPF problems.

The SDP relaxation of [6] has been generalized to a family

of “moment relaxations” using the Lasserre hierarchy [8]

for polynomial optimization problems [9]–[11]. The moment

relaxations take the form of SDPs. The first-order relaxation

in this hierarchy is equivalent to the SDP relaxation of [6].

Increasing the relaxation order in this hierarchy enables global

solution of a broader class of OPF problems.

The ability to globally solve a broader class of OPF

problems comes with the computational cost of larger SDPs.

The moment relaxations quickly become computationally in-

tractable with increasing order. Fortunately, second- and third-

order moment relaxations globally solve many small problems

for which the first-order relaxation fails to yield the globally

optimal decision variables.

However, increasing system size results in computational

challenges even for low-order moment relaxations. For in-

stance, the second-order relaxation is computationally in-

tractable for OPF problems with more than ten buses. In

order to globally solve larger OPF problems, one must exploit

network sparsity. This enables solution of the first-order relax-

ation for systems with thousands of buses [12], [13] and the

second-order relaxation for systems with approximately forty

buses [11], [14]. To solve larger problems, recent work [14]

has both exploited network sparsity and only applied the

computationally intensive higher-order moment relaxations to

specific regions of the network. This approach has enabled

solution of systems with up to 300 buses.

To further improve computational performance, we propose

a “mixed SDP/SOCP” moment relaxation. The first-order

relaxation is formulated using SDP constraints, while the SDP

constraints of the higher-order relaxations are replaced by

SOCP constraints that establish necessary (but not sufficient)

conditions for satisfaction of the displaced SDP constraints.

This mixed SDP/SOCP relaxation is thus a “middle ground”

between the first- and higher-order moment relaxations imple-

mented with SDP constraints.

Since the SOCP constraints are less computationally chal-

lenging than SDP constraints, the mixed SDP/SOCP moment



relaxation generally solves more quickly than formulations of

the moment relaxation that use only SDP constraints (hereafter

referred to as SDP-based moment relaxations). Numerical

results detailed in this paper illustrate typical speed up factors

between 1.13 and 18.7 for many moderate-size systems.1 We

emphasize that the mixed SDP/SOCP moment relaxation finds

the global solution to these problems. Hence, the additional

computational effort required for the SDP-based moment

relaxation is unnecessary for these problems.

However, there are some example problems for which the

mixed SDP/SOCP formulation requires additional higher-order

constraints, which may result in slower solution times for these

problems. This was observed for one example in this paper. We

also present two examples for which the SDP-based relaxation

succeeds but the mixed SDP/SOCP formulation fails to find

the global solution.

This paper is organized as follows. After introducing the

OPF formulation in Section II and reviewing the moment

relaxations in Section III, we describe the mixed SDP/SOCP

moment relaxation in Section IV. Numerical results are then

presented in Section V, and Section VI concludes the paper.

II. OPTIMAL POWER FLOW PROBLEM

We first present an OPF formulation in terms of rectangular

voltage coordinates, active and reactive power injections, and

apparent-power line-flow limits. Consider an n-bus power

system, where N = {1, 2, . . . , n} is the set of all buses, G
is the set of generator buses, and L is the set of all lines. Let

PDk + jQDk represent the active and reactive load demand

and Vk = Vdk + jVqk the voltage phasors at each bus k ∈ N .

Superscripts “max” and “min” denote specified upper and

lower limits. Buses without generators have maximum and

minimum generation set to zero. Let Y = G+ jB denote the

network admittance matrix.

The power flow equations describe the network physics:

PGk =fPk (Vd, Vq) = Vdk

n
∑

i=1

(GikVdi −BikVqi)

+ Vqk

n
∑

i=1

(BikVdi +GikVqi) + PDk (1a)

QGk =fQk (Vd, Vq) = Vdk

n
∑

i=1

(−BikVdi −GikVqi)

+ Vqk

n
∑

i=1

(GikVdi −BikVqi) +QDk (1b)

Define a quadratic cost function for active power generation:

fCk (Vd, Vq) = ck2 (fPk (Vd, Vq))
2 + ck1fPk (Vd, Vq) + ck0 (2)

Define a function for squared voltage magnitude:

(Vk)
2 = fV k (Vd, Vq) = V 2

dk + V 2
qk (3)

1The higher-order forms of both the SDP-based moment relaxation and the
mixed SDP/SOCP moment relaxation are currently limited to moderate-size
systems due to numerical convergence issues with larger systems.

We use a line model with an ideal transformer that has a

specified turns ratio τlmejθlm : 1 in series with a Π circuit with

series impedance Rlm+ jXlm (equivalent to an admittance of

glm + jblm = 1
Rlm+jXlm

) and shunt admittance jbsh,lm.

Plm = fPlm (Vd, Vq) =
(

V 2

dl + V 2

ql

) glm
τ 2

lm

+ (VdlVdm + VqlVqm) (blm sin (θlm)− glm cos (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm sin (θlm) + blm cos (θlm)) /τlm
(4a)

Pml = fPml (Vd, Vq) =
(

V 2

dm + V 2

qm

)

glm

− (VdlVdm + VqlVqm) (glm cos (θlm) + blm sin (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm sin (θlm)− blm cos (θlm)) /τlm
(4b)

Qlm = fQlm (Vd, Vq) = −
(

V 2

dl + V 2

ql

)

(

blm +
bsh,lm

2

)

/τ 2

lm

+ (VdlVdm + VqlVqm) (blm cos (θlm) + glm sin (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm cos (θlm)− blm sin (θlm)) /τlm
(4c)

Qml = fQml (Vd, Vq) = −
(

V 2

dm + V 2

qm

)

(

blm +
bsh,lm

2

)

+ (VdlVdm + VqlVqm) (blm cos (θlm)− glm sin (θlm)) /τlm+

+ (−VdlVqm + VqlVdm) (glm cos (θlm) + blm sin (θlm)) /τlm
(4d)

(Slm)2 = fSlm (Vd, Vq) = (fPlm (Vd, Vq))
2 + (fQlm (Vd, Vq))

2

(4e)

(Sml)
2 = fSml (Vd, Vq) = (fPml (Vd, Vq))

2 + (fQml (Vd, Vq))
2

(4f)

The classical OPF problem is then

min
Vd,Vq

∑

k∈G

fCk (Vd, Vq) subject to (5a)

Pmin
Gk ≤ fPk (Vd, Vq) ≤ Pmax

Gk ∀k ∈ N (5b)

Qmin
Gk ≤ fQk (Vd, Vq) ≤ Qmax

Gk ∀k ∈ N (5c)

(V min
k )2 ≤ fV k (Vd, Vq) ≤ (V max

k )2 ∀k ∈ N (5d)

fSlm (Vd, Vq) ≤ (Smax
lm )

2 ∀ (l,m) ∈ L (5e)

fSml (Vd, Vq) ≤ (Smax
lm )

2 ∀ (l,m) ∈ L (5f)

Vq1 = 0 (5g)

Constraint (5g) sets the reference bus angle to zero.

III. MOMENT RELAXATIONS

All constraints and the objective function in the OPF prob-

lem (5) are polynomial functions of the voltage components Vd

and Vq . This enables application of polynomial optimization

tools from algebraic geometry. This section first reviews the

“moment” relaxations from the Lasserre hierarchy [8] for

polynomial optimization problems and then summarizes a

method for exploiting network sparsity.

A. Review of Moment Relaxations

Polynomial optimization problems are a special case of

“generalized moment problems” [8]. Global solutions to gen-

eralized moment problems can be approximated using moment

relaxations that are formulated as SDPs. For polynomial



optimization problems with bounded variables, such as OPF

problems, the approximation approaches the global solution(s)

as the relaxation order increases [8].

Formulating the moment relaxations requires several defini-

tions. Define a vector containing all first-order monomials of

the decision variables in (5): x̂ =
[

Vd1 Vd2 . . . Vqn

]⊺

.

Given a vector α ∈ N
2n representing monomial exponents,

the expression x̂α = V α1

d1 V α2

d2 · · ·V α2n
qn defines the monomial

associated with x̂ and α. A polynomial g (x̂) is

g (x̂) ,
∑

α∈N2n

gαx̂
α (6)

where gα is the scalar coefficient corresponding to x̂α.

Define a linear functional Ly {g} which replaces the mono-

mials x̂α in a polynomial g (x̂) with scalar variables yα:

Ly {g} ,
∑

α∈N2n

gαyα (7)

When g (x̂) is a matrix, the functional Ly {g} is applied to

each element of g (x̂).

Consider the vector x̂ =
[

Vd1 Vd2 Vq2

]⊺

corresponding

to the voltage components of a two-bus system, where the an-

gle reference (5g) is used to eliminate Vq1, and the polynomial

g (x̂) = − (0.95)
2
+ fV 2 (Vd, Vq) = − (0.95)

2
+ V 2

d2 + V 2
q2.

(The constraint g (x̂) ≥ 0 forces the voltage magnitude at

bus 2 to be greater than or equal to 0.95 per unit.) Then

Ly {g} = − (0.95)
2
y000+ y020+ y002. Thus, Ly {g} converts

a polynomial g (x̂) to a linear function of y.

The order-γ relaxation forms a vector xγ composed of all

monomials of the voltage components up to order γ:

xγ ,
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]⊺

(8)

We now define moment and localizing matrices. The sym-

metric moment matrix Mγ{y} has entries yα corresponding

to all monomials x̂α up to order 2γ:

Mγ {y} , Ly

{

xγx
⊺

γ

}

(9)

Symmetric localizing matrices are defined for each con-

straint of (5). The localizing matrices consist of linear com-

binations of the moment matrix entries y. Each polynomial

constraint of the form f (x̂) − a ≥ 0 in (5) (e.g., fV 2 (x̂) −
V min
2 ≥ 0) corresponds to the localizing matrix

Mγ−β {(f (x̂)− a) y} , Ly

{

(f (x̂)− a)xγ−βx
⊺

γ−β

}

(10)

where the polynomial f has degree 2β. Example moment and

localizing matrices for the second-order relaxation of a two-

bus system are presented in (13) and (14), respectively.
The order-γ moment relaxation of (5) is

min
y

Ly

{

∑

k∈G

fCk

}

subject to (11a)

Mγ−1

{(

fPk − Pmin

k

)

y
}

� 0 ∀k ∈ N (11b)

Mγ−1

{(

Pmax

k − fPk

)

y
}

� 0 ∀k ∈ N (11c)

Mγ−1

{(

fQk −Qmin

k

)

y
}

� 0 ∀k ∈ N (11d)

Mγ−1

{(

Qmax

k − fQk

)

y
}

� 0 ∀k ∈ N (11e)

Mγ−1

{(

fV k − V min

k

)

y
}

� 0 ∀k ∈ N (11f)

Mγ−1

{(

V max

k − fV k

)

y
}

� 0 ∀k ∈ N (11g)

Mγ−2

{(

Smax

lm − fSlm

)

y
}

� 0 ∀ (l, m) ∈ L (11h)

Mγ−2

{(

Smax

lm − fSml

)

y
}

� 0 ∀ (l, m) ∈ L (11i)

Mγ{y} � 0 (11j)

y00...0 = 1 (11k)

y0...00η0...0 = 0 η = 1, . . . , 2γ (11l)

where � 0 indicates that the corresponding matrix is positive

semidefinite. The moment relaxation is thus a SDP. The con-

straint (11k) enforces x0 = 1. The constraint (11l) corresponds

to the angle reference constraint (5g); the η in (11l) is in the

(n+ 1)-th location, ensuring that V η
q1 = 0.2

The objective function and apparent-power line-flow con-

straints are quartic polynomials in the voltage components

Vd and Vq . For γ = 1, these fourth-order polynomials

can be rewritten as second-order using a Schur complement

reformulation [14].

The order-γ moment relaxation yields a single global solu-

tion if rank (Mγ{y}) = 1. The global solution x∗ to the OPF

problem (5) is then determined by a spectral decomposition

of the diagonal block of the moment matrix corresponding

to the second-order terms. Specifically, let µ be a unit-

length eigenvector associated with the non-zero eigenvalue λ
from the diagonal block of the moment matrix corresponding

to the second-order monomials (i.e., [Mγ{y}]2:k,2:k, where

k = 2n + 1 and subscripts indicate entries in MATLAB

notation). Then the vector V ∗ =
√
λ
(

µ1:n + jµ(n+1):2n

)

is

the global solution.

In the absence of multiple global optima to the OPF

problem (5), a solution with rank (Mγ{y}) > 1 indicates that

the order-γ moment relaxation only yields a lower bound on

the objective value.3 The order-(γ + 1) moment relaxation will

improve the lower bound and may give a global solution.

B. Summary of Sparsity-Exploiting Moment Relaxations

The matrices in the moment relaxations quickly grow with

both the relaxation order and the system size. Specifically,

for an n-bus system, the number of rows and columns in the

order-γ relaxation’s moment matrix is (2n+ γ)!/ ((2n)!γ!).
The formulation in (11) is computationally intractable for

systems with more than ten buses. Solving the moment re-

laxation for larger OPF problems requires exploiting network

2The angle reference can alternatively be used to eliminate all terms
corresponding to Vq1 to reduce the size of the SDP.

3OPF problems generically have a single global optimum. The solution
recovery procedure in [8] can be used to recover multiple global optima.



x2 =
[

1 Vd1 Vd2 Vq2 V 2

d1 Vd1Vd2 Vd1Vq2 V 2

d2 Vd2Vq2 V 2

q2

]

⊺

(12)

M2{y} = Ly{x2x
⊺

2
} =





























y000 y100 y010 y001 y200 y110 y101 y020 y011 y002
y100 y200 y110 y101 y300 y210 y201 y120 y111 y102
y010 y110 y020 y011 y210 y120 y111 y030 y021 y012
y001 y101 y011 y002 y201 y111 y102 y021 y012 y003
y200 y300 y210 y201 y400 y310 y301 y220 y211 y202
y110 y210 y120 y111 y310 y220 y211 y130 y121 y112
y101 y201 y111 y102 y301 y211 y202 y121 y112 y103
y020 y120 y030 y021 y220 y130 y121 y040 y031 y022
y011 y111 y021 y012 y211 y121 y112 y031 y022 y013
y002 y102 y012 y003 y202 y112 y103 y022 y013 y004





























(13)

M1

{(

fV 2 − (0.95)2
)

y
}

=








y020 + y002 − (0.95)2 y000 y120 + y102 − (0.95)2 y100 y030 + y012 − (0.95)2 y010 y021 + y003 − (0.95)2 y001
y120 + y102 − (0.95)2 y100 y220 + y202 − (0.95)2 y200 y130 + y112 − (0.95)2 y110 y121 + y103 − (0.95)2 y101
y030 + y012 − (0.95)2 y010 y130 + y112 − (0.95)2 y110 y040 + y022 − (0.95)2 y020 y031 + y013 − (0.95)2 y011
y021 + y003 − (0.95)2 y001 y121 + y103 − (0.95)2 y101 y031 + y013 − (0.95)2 y011 y022 + y004 − (0.95)2 y002









(14)

sparsity [11], [14]. Full details are excluded from this summary

for the sake of brevity; see [14] for a complete description.

Exploiting sparsity in the moment relaxations is accom-

plished using a matrix completion theorem [15] which draws

on graph theory. The graph in question for the OPF problem

is the power system network. Several graph theoretic defini-

tions are necessary for understanding the matrix completion

theorem. A clique is a subset of the graph nodes for which

each node in the clique is connected to all other nodes in the

clique. A maximal clique is a clique that is not a proper subset

of another clique. A graph is chordal if each cycle of length

four or more nodes has a chord, which is an edge connecting

two nodes in the cycle that are not adjacent.

The maximal cliques of a chordal graph can be determined

in linear time [16]. Since realistic power networks are gener-

ally not chordal, we use a chordal extension technique which

adds fictitious edges to the network graph to obtain a chordal

super-graph. A chordal extension can be determined using a

Cholesky factorization of the network Laplacian matrix with

an approximate minimum-degree permutation of the buses to

maintain sparsity.

To state the matrix completion theorem, define a matrix W

with partial information (i.e., not all entries of W have known

values) with an associated undirected chordal graph. The

matrix completion theorem states that W can be completed to

a positive semidefinite matrix (i.e., the unknown entries of W

can be chosen such that W � 0) if and only if the submatrices

associated with each of the maximal cliques of the graph

defined by W are all positive semidefinite. Thus, this theorem

enables decomposition of a positive semidefinite constraint for

a single large matrix to constraints on many smaller matrices.

This effectively eliminates the need to consider many terms

which do not appear in the constraint equations of the OPF

problem (5). See [12]–[14], [17] for details.

Exploiting network sparsity enables solution of the second-

order relaxation for problems up to approximately 40 buses.

Using the observation that the first-order relaxation gives a

valid solution for large regions of typical OPF problems, larger

problems can be solved by selectively applying the higher-

order relaxation constraints to specific regions of the network

[14]. The choice of where to apply higher-order relaxation

constraints is achieved through a heuristic that is based on

observations of power mismatches. This heuristic compares the

power injections from the solution to the moment relaxation

with the power injections implied by the rank-one matrix that

is “closest” to the moment matrix. That is, let W represent

the moment matrix given by the solution of the moment

relaxation (i.e., W = Mγ {y}). The block of the moment

matrix corresponding to the first-order relaxation terms is

W2:k,2:k, where k = 2n+1. Define W
(1)
2:k,2:k as the projection

of W2:k,2:k onto the space of rank-one matrices.4 The power

injection mismatch is defined as the absolute value of the

difference between the power injections implied by W2:k,2:k

and W
(1)
2:k,2:k.

For first-order relaxations of typical OPF problems, the

power injection mismatch is very small at the majority of

buses, with large mismatches at only a few buses. The buses

with large mismatch provide an indication of where to add the

higher-order moment constraints. Each iteration of the algo-

rithm in [14] applies the higher-order relaxation constraints

to the two buses with greatest power injection mismatch.

Thus, each iteration of the algorithm progressively tightens

the relaxation until a rank-one (global) solution is obtained.

IV. MIXED SDP/SOCP MOMENT RELAXATIONS

By exploiting sparsity and selectively applying the higher-

order moment constraints, the SDP-based moment relaxation

is capable of solving OPF problems of up to 300 buses.

The feasible space for the moment relaxation is defined

4Projection on the space of rank-one matrices is calculated by only keeping
the terms in an eigen-decomposition that correspond to the largest eigenvalue.



with positive semidefinite matrix constraints, resulting in a

computationally intensive solution process.

In order to improve the computational performance of

the moment relaxations, this section describes a “mixed

SDP/SOCP” relaxation that implements the higher-order re-

laxation constraints with a SOCP formulation that is less

computationally intensive than the SDP formulation.

We begin with necessary conditions for an arbitrary sym-

metric matrix A to be positive semidefinite. If A � 0, then

all off-diagonal terms Aik satisfy the SOCP constraints

AiiAkk ≥ |Aik|2 ∀ {(i, k) | k > i} (15)

Only off-diagonal terms in the upper triangular part of A need

to be considered in (15) due to matrix symmetry. Since the

SOCP constraints are necessary but not sufficient for ensuring

that the corresponding matrix is positive semidefinite, (15)

forms a relaxation of A � 0.

In [7], the SOCP constraints (15) are applied to a complex

form of the first-order moment relaxation. While this signif-

icantly reduces the computational burden compared to using

SDP constraints, the SOCP relaxation in [7] typically only

yields the global solution to a limited set of OPF problems.5

Conversely, the relaxation proposed in this paper formulates

the first-order moment relaxation with SDP constraints. This

alone is sufficient to globally solve many OPF problems [6],

[13]. For OPF problems where the first-order relaxation does

not yield the global solution, this paper applies a SOCP

formulation for the higher-order constraints rather than use

the computationally intensive SDP formulation. Thus, the pro-

posed “mixed SDP/SOCP” relaxation forms a middle ground

between the first- and higher-order moment relaxations.

Specifically, consider the moment matrix constraint in (11j).

For notational convenience, define W
k as the submatrix of

the moment matrix corresponding to the kth maximal clique.

(i.e., W
k contains all terms in the moment matrix that

are only associated with buses in the kth maximal clique;

see Section III-B and [14] for further details.) The mixed

SDP/SOCP relaxation applies a SDP constraint to the sub-

matrix corresponding to the first-order relaxation:

W
k
2:2nk+1,2:2nk+1 � 0 ∀ maximal cliques k (16)

where nk is the number of buses in the kth maximal clique.

For all maximal cliques k determined to require higher-order

constraints by the algorithm summarized in Section III-B,

enforce the SOCP necessary constraints defined in (15) for

W
k −





0 0 0

0 W
k
2:2nk+1,2:2nk+1 0

0 0 0



 ∀ maximal cliques k

(17)

where the 0 entries are appropriately sized blocks of zeros.

That is, enforce (15) for the terms in the moment matrix

5The SOCP relaxation in [7] is guaranteed to globally solve OPF problems
with radial networks that satisfy certain non-trivial technical conditions, but
generally fails for mesh network topologies.

corresponding to the higher-order constraints. Similarly, apply

SOCP constraints using (15) to the localizing matrices in (11).6

This relaxation is tighter than the first-order SDP relaxation,

and therefore solves many problems where the first-order re-

laxation fails. However, it is generally not as tight as the SDP-

based higher-order moment relaxation (i.e., the relaxation that

enforces W
k � 0); there are problems for which the mixed

SDP/SOCP relaxation fails but the second-order SDP-based

moment relaxation succeeds in finding the global solution.

V. RESULTS

The computational efficiency of the mixed SDP/SOCP mo-

ment relaxation will be illustrated through comparison with the

SDP-based relaxation. Salient test cases require that the first-

order relaxation fail to yield the global solution. Accordingly,

this paper uses test cases from [1] and [14].

This comparison used the iterative algorithm from [14],

which is summarized in Section III-B, with a termination

criterion that all power injection mismatches are less than

1 MVA. (The solutions typically had significantly smaller mis-

match.) The implementation used MATLAB 2013a, YALMIP

2014.12.18 [18], and Mosek 7.1.0.12, and the results were

generated using a computer with a quad-core 2.70 GHz

processor and 16 GB of RAM.

A second-order relaxation with the mixed SDP/SOCP for-

mulation globally solves a variety of small test problems for

which the first-order relaxation does not yield the global solu-

tion, including the two- and five-bus systems in [1]. However,

these small problems do not demonstrate the computational

advantages of the mixed SDP/SOCP relaxations.

Fig. 1 shows the solver times for several moderate-size

test cases from [14]. The first and second columns in each

group show the solver times for the SDP-based and mixed

SDP/SOCP moment relaxations, respectively. The stacked

bars show the solver time required for each iteration of the

algorithm summarized in Section III-B.

These results demonstrate significant computational speed

improvements from the mixed SDP/SOCP relaxation. Both the

SDP-based and mixed SDP/SOCP relaxations globally solve

all test cases in Fig. 1. For case14Q, case57L, case118Q,

case118L, and case300 from [14], the mixed SDP/SOCP

relaxation requires the same number of iterations, but the

solver times are between a factor of 1.13 and 18.70 faster

than the SDP-based relaxation.

Solver times are most improved when the iterative algorithm

increases the relaxation order for a bus which corresponds to

a maximal clique containing many buses. In such cases, the

moment and localizing matrices are large, so the higher-order

relaxation constraints make a major contribution to the solver

times (e.g., case118Q, which has higher-order constraints

corresponding to maximal cliques with up to nine buses).

Thus, replacing the SDP constraints with SOCP constraints

6Terms corresponding to odd-order monomials in the off-diagonal blocks
of the moment and localizing matrices do not appear in the OPF constraints.
Therefore, terms corresponding to the odd-order monomials are set to zero
and do not require SOCP constraints.
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Fig. 1. Solver times for test cases from [14]. The first column in each group
corresponds to the SDP-based moment relaxation. The second column in
each group corresponds to the mixed SDP/SOCP relaxation. The stacked bars
represent the time required for each iteration of the algorithm summarized in
Section III-B and described fully in [14].

has a large impact. If the solver times are dominated by the

first-order relaxation (e.g., case300, which has higher-order

constraints corresponding to maximal cliques with only up to

five buses), enforcing the higher-order relaxation with SOCP

constraints does not yield a large improvement.

For case14L, case39L, and case57Q, the algorithm requires

one additional iteration for the mixed SDP/SOCP relaxation

compared to the SDP-based relaxation (i.e., the algorithm

applies higher-order relaxation constraints to additional buses

for the mixed SDP/SOCP relaxation). Despite the additional

higher-order constraints required by case14L and case57Q,

the mixed SDP/SOCP relaxation was still faster by factors of

3.72 and 2.07, respectively, than the SDP-based relaxation. As

demonstrated by the 5% speed decrease for case39L, though,

it is possible for the mixed SDP/SOCP relaxation to have

worse performance than the SDP-based relaxation. However,

the results in Fig. 1 suggest that this is atypical.

There are also cases where the SDP-based relaxation suc-

ceeds but the mixed SDP/SOCP relaxation fails to yield

a global solution. For instance, a second-order SDP-based

relaxation globally solves case9mod from [1], but even third-

and fourth-order mixed SDP/SOCP relaxations fail to yield

the global optimum. Similarly, a mix of second- and third-

order relaxations results in the global solution to case39mod

from [1] using the SDP-based formulation, but even applying

third-order constraints to all buses in this system fails to yield

the global solution with the mixed SDP/SOCP relaxation.

VI. CONCLUSION

A hierarchy of convex “moment” relaxations formulated

as SDPs are capable of globally solving a broader class of

OPF problems than other relaxations. However, even low-

order relaxations in this hierarchy can be computationally

prohibitive. This paper has proposed a middle ground between

the first- and higher-order relaxations that implements the

first-order relaxation with SDP constraints and higher-order

relaxations with SOCP constraints. This mixed SDP/SOCP

relaxation is capable of solving many OPF problems for which

the first-order relaxation fails to yield a global solution. Several

numerical examples demonstrate that the mixed SDP/SOCP

relaxation typically has a significant computational speed

advantage over the SDP-based formulation.
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