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Dynamics of Type-3 Wind Turbine Generator Models

Ian A. Hiskens, Fellow, IEEE

Abstract—The influence of wind turbine generators (WTGs)
on power system dynamic performance is becoming increasingly
important as wind generation grows. The dynamic behavior of
WTGs should therefore be thoroughly understood. The paper
analyzes dynamic models of type-3 WTGs, and in particular the
WECC generic model. The behavior of such models is governed by
interactions between the continuous dynamics of state variables,
and discrete events associated with limits. It is shown that these
interactions can be quite complex, and may lead to switching
deadlock that prevents continuation of the trajectory. Switching
hysteresis is proposed for eliminating deadlock situations. Var-
ious type-3 WTG models include control blocks that duplicate
integrators. It is shown that this leads to non-uniqueness in the
conditions governing steady-state, and may result in pre- and
post-disturbance equilibria not coinciding. It also gives rise to a
zero eigenvalue in the linearized WTG model.

Index Terms—Hybrid dynamical systems, singular systems,
small disturbance analysis, switching deadlock, wind turbine
generator modeling.

1. INTRODUCTION

HE dynamic behavior of wind turbine generators (WTGs)
T is quite different to that of synchronous generators. It is to
be expected, therefore, that the dynamic performance of power
systems may change as traditional generation is displaced by
ever-increasing numbers of WTGs. Numerous studies have
investigated this issue, and have drawn various conclusions
[1]-[5]. This current paper does not address the system-wide
implications of large-scale wind generation per se. Rather, it
focuses on the dynamic modeling of WTGs. In particular, the
modeling of type-3 WTGs is considered, as they are currently
the dominant technology for new wind farm developments.
Such WTGs are also known as doubly fed induction generators
(DFIGs) or doubly fed asynchronous generators.

The accuracy of system studies depends on the fidelity of the
underlying models [6], [7]. Accordingly, the modeling of type-3
WTGs has received considerable attention; see [1], [8]-[12],
and references therein. Turbine manufacturers routinely develop
and maintain accurate models for their products, though disclo-
sure of those models is highly restricted. In some cases, they
have released models that describe functionally similar behavior
[13], though such practice is not common. Regional reliability
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organizations need to exchange models and data that are rele-
vant to their jurisdiction. This has motivated the development of
generic models that can be used to capture the functional char-
acteristics of a wide variety of type-3 WTGs [14]-[16].

The electrical characteristics of type-3 WTGs are governed
by interactions between a wound-rotor induction machine and a
back-to-back inverter. The inverter excites the rotor of the induc-
tion machine with a variable AC source. This provides control
of the rotor flux frequency, enabling the rotor shaft frequency to
optimally track wind speed [17]. The inverter response time is
very fast relative to electromechanical time constants. As a re-
sult, the natural dynamics of the induction machine are largely
masked from the power system. The dynamic behavior of a
type-3 WTG, as seen from the grid, is therefore dominated by
controller response rather than physical characteristics. This is
in marked contrast to traditional synchronous generators, where
behavior is governed by device physics.

Controller limits play an integral role in the dynamic per-
formance of type-3 WTGs, with further details provided in
Section II. Intrinsic interactions between continuous dynamics
and limit-induced discrete events suggest that type-3 WTGs
may be classified as hybrid dynamical systems [18]-[20]. It
will be shown in Section III that the resulting hybrid dynamics
may, in fact, lead to unusual forms of behavior. The hybrid
nature of dynamics also has implications for small disturbance
studies.

The studies presented in this paper focus on the WECC
generic type-3 model [15], [16]. This model has been chosen
because it is widely used, and is indicative of type-3 models
that are generally available. All such generic models are an
approximation of the actual dynamics exhibited by a WTG.
It is important, though, that such approximations reflect the
physical reality of the modeled device.

The paper is organized as follows. Section II provides a
thorough description of the WECC type-3 WTG model. It is
shown in Section III that non-windup limiter models may cause
switching deadlock, preventing trajectory continuation in the
usual sense. Alternative model formulations that circumvent
such behavior are discussed. Section IV shows that the model
allows multiple equilibria, and discusses the implications.
Small disturbance analysis is considered in Section V, and
conclusions are presented in Section VI.

II. TypPE-3 WTG MODEL

The WECC type-3 wind turbine generator model is defined
in [15] and [16]. The complete WTG model is divided into four
functional blocks, as indicated in Fig. 1. This paper is primarily
concerned with the dynamic interactions of the converter con-
trol model WT3E, the pitch control model WT3P, and the wind
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Fig. 1. Type-3 WTG dynamic model connectivity, from [15] and [16].
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Fig. 2. Converter control model WT3E, from [15] and [16].

turbine model WT3T. Accordingly, only those models are de-
scribed in detail in the following analysis.

A. Converter Control Model WT3E

The converter control model is composed of separate active
and reactive power control functions. Reactive power control
is very fast, due to the power electronic converter. This paper
focuses on the slower dynamics associated with interactions be-
tween active power (torque) control, pitch control, and the cou-
pling through the shaft dynamics. Accordingly, only the active
power model, which is shown in Fig. 2, will be discussed. Again,
full details of the reactive power controller are provided in [15]
and [16].

The non-windup (anti-windup) limits on the PI block in the
center of Fig. 2 are driven by the non-windup Ppax / Prin limits
associated with the P,.4 lag block. The model documentation
stipulates that:

1) If P,.q is on its P,y limit and we,, (the input to the PI
block) is positive, then the K, q-integrator is blocked, i.e.,
the state T, of that integrator is frozen.

2) If P,.q is on the P, limit and we,, is negative, then the
K, q-integrator state is frozen.

This form of non-windup limit is unusual, though a precedence
can be found in Annex E.5 of IEEE Standard 421.5-2005 [21].
It will be shown in Section III that such non-windup logic can
result in switching deadlock [22].

Assembling all the equations for the model gives

dwref 1
= P, en) — Wre
2 L (Pa) = ) )
dr,
= Kitrq(w - wref) X Yfr (2)

dt
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pc

together with switched equations that are fully described in
[23].! The auxiliary variables required to implement limits and
switching action are

Pyrd,rt1m: the rate-limited version of Poid rate;

Yma,sw: €quals O when Porq = Prpax and 1 otherwise;

Ymn,sw: €quals 0 when Porq = Ppin and 1 otherwise;

yrr: equals O when the conditions for blocking the

K, q-integrator are satisfied and 1 otherwise.

The function f(Pgen) is typically modeled as a piece-wise
affine function. WECC default parameters are provided in the
Appendix.

B. Pitch Control Model WT3P

The pitch control model WT3P is shown in Fig. 3. Of partic-
ular interest is the implementation of the non-windup limiter on
the pitch angle 6. As stated in the model documentation:

“The Pitch Control and Pitch Compensation integrators are
non-windup integrators as a function of the pitch, i.e., the
inputs of these integrators are set to zero when the pitch is
in limits (PI,,.x or Pl,,;n) and the integrator input tends to
force the pitch command further against its limit.”
To illustrate, consider the case where # is on its lower limit
Plin- A negative input to the pitch-control integrator would
cause the corresponding state z,, to reduce, which in turn would
force 6 further against its PI,,;, limit. To prevent that wind-up
effect, the integrator is blocked under such conditions. Similarly,
the pitch-compensation integrator is blocked when its input is
negative. When # is on its upper limit PI,,,, blocking of the
up-stream integrators occurs when their respective inputs are
positive.

This blocking philosophy is the same as that employed in the
converter control model WT3E, as discussed in Section II-A.
It should again be mentioned that such blocking can result in
switching deadlock. This will be explored in Section III.

The equations describing the WT3P model can be written:

dzy
dt

ISpace limitations prevent inclusion of these coupled equations.

= Kip(w - wref) X Yfr (5)
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Fig. 4. Single-mass turbine model WT3T, from [15] and [16].

dx.
dt = Kic(Pord - Psct) X Ygr,2 X Ysw (6)
do
% = Hrtlm X Yma,sw X Ymn,sw @)
1
Hra e = 7 Hcm -0 8
¢ TPI( a—1) ®
ecmd = Tp +zc+ Kpp(w - wrcf) + Kpc(Pord - Psct)
©)

along with switched equations that are fully documented in [23].
In this case, the auxiliary variables required to implement limits
and switching action are
0t1m : the rate-limited version of 6,,;.;
Yma,sw: equals 0 when 6 = Pl and 1 otherwise;
Ymn,sw: €quals 0 when § = Pl,;, and 1 otherwise;
Ysw: €quals 0 when . = 0 and 1 otherwise;
Yrr,1: €quals O when the conditions for blocking the pitch
control integrator are satisfied and 1 otherwise;
Yfr,2: equals O when the conditions for blocking the pitch
compensation integrator are satisfied and 1 otherwise.

C. Wind Turbine Model WT3T

The single-mass wind turbine model WT3T from [15] and
[16] is shown in Fig. 4. A two-mass model is also provided in
[15] and [16], but the single-mass model suffices for the dis-
cussions in this paper. The model consists of two parts, 1) a
simplified model of the aerodynamic relationship between blade
pitch # and mechanical power Pccn, and 2) a model of the
shaft dynamics. The damping constant D is always zero, so the
single-mass WT3T model can be described by

dw 1
E — E(Pmech - Pgen) (10)
Pmech = Pmo - Kaeroa(g - 00)- (11)

D. Hybrid System Model

It is clear from the involvement of the switched equations in
(1)—(11) that the WTG model is composed of:
1) differential and algebraic equations that describe contin-
uous behavior of the associated states; and
2) discrete events that introduce nonsmooth behavior through
switching actions.
Models that involve such interactions between continuous dy-
namics and discrete events have become known as hybrid dy-
namical systems [18]-[20]. The discrete events introduce rich
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forms of behavior that are not exhibited by smooth systems de-
scribed by differential (and possibly coupled algebraic) equa-
tions. In fact, it will be shown in Section III that both the WT3E
and WT3P models are susceptible to switching deadlock, where
a discrete state should simultaneously take two different values.
This situation is impossible, of course; the trajectory is not de-
fined (in the usual sense) beyond such an impasse.

The WTG model, described by (1)-(11) together with the
coupled switched equations, has been formulated according to
the differential-algebraic impulsive switched (DAIS) structure
presented in [20] and [24]. A subtle (but technically important)
modification was required however. In the original DAIS defi-
nition, switched algebraic equations had the form

_ gt (z.y),
0= {g—@:?y),

Ys >0
Ys <0

where behavior is undefined if the trigger variable y5 remains
at zero. In the case of a WTG though, it is quite common for
the pitch angle # to be initialized at the switching condition as-
sociated with its lower limit PI,,;,. To cater for that (and sim-
ilar) situations, the DAIS definition has been altered to allow the
trigger variable y to remain at zero, giving the slightly modi-
fied switching description

_ 9T (z,),
0_{91%w,

ys >0
ys < 0.

In the case of the non-windup limits within the WTG model,
it has been arbitrarily decided that the integrator should remain
active when its state lies at the switching point, i.e., when the
trigger variable ys = 0. The integrator only becomes blocked
when the input seeks to force the state across the limit, resulting
inys, < 0.

Technical issues arise when an equilibrium point coincides
with a switching condition y, = 0. If the equilibrium is asymp-
totically stable, then generically, as the trajectory approaches
the equilibrium point, the time between subsequent switching
events will progressively diminish. In the limit, switching will
(theoretically) become infinitely fast. Also, linearization about
the equilibrium point is not defined, as the vector field is not
smooth. Consequently, small disturbance analysis is not pos-
sible. This latter point is explored further in Section V.

III. TRAJECTORY DEADLOCK

A. Background

Conceptually, deadlock refers to the situation where a trajec-
tory encounters a condition that precludes further progress. Such
behavior is unusual for systems described by continuous dy-
namics,? though differential-algebraic systems can experience
deadlock in the form of algebraic singularity3 [26], [27].

Hybrid dynamical systems, on the other hand, are more prone
to deadlock, due to their inherent interactions between contin-
uous dynamics and discrete events. In this context, deadlock has
been formally defined in [22]. The form of deadlock of partic-
ular relevance to WTG modeling is known as chattering Zeno,

2Technically, deadlock cannot occur if the vector field is Lipschitz [25].

3In this case, the term impasse is often used rather than deadlock.
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Fig.5. Simplified representation of non-windup limited block and upstream PI
controller.

which refers to situations where “the discrete component infin-
itely jumps instantaneously between different domains, while
the continuous component remains unchanged” [22]. Subse-
quent sections describe this behavior in the context of the type-3
WTG model, and provide an alternative model formulation that
alleviates the deadlock phenomenon.

It should be noted that because deadlock precludes con-
tinuation of a trajectory, numerical simulation techniques
that accurately capture hybrid system dynamics cannot pro-
ceed beyond the deadlock point. Conversely, simulators that
continue through deadlock cannot be truly implementing the
hybrid system model. Special techniques have been developed
for continuing approximate solutions beyond deadlock, with
Filippov solution concepts forming the basis for those methods
[28]. Such concepts are required, for example, in analyzing
sliding mode behavior [29]. They are not pursued in this paper.

B. Deadlock in WTG Models

The switching logic that gives rise to trajectory deadlock in
the type-3 WTG model can be explained with the aid of the
simplified model of Fig. 5. Referring to Fig. 3, it can be seen
that this reduced model is equivalent to the output lag block and
one of the upstream PI regulators of the WT3P model.

Consider the case where 1 is on its lower limit x,;,, and
the input w is negative. According to the non-windup logic of
WTS3P, the x2-integrator would be blocked. Assume that u is
increasing, though remains negative. This increase in u will
translate directly into an increase in ¥, as x9 is constant. With
increasing y, conditions conducive to deadlock occur when ¥
reaches the value z,,i,. This may be explained by noting that
%1 = (y — x1)/T, and hence ©; = 0 at the point where y
equals 1 = Tnin. The evolution of z; from that point is there-
fore governed by z1, which can be written

b1 = (i~ 1) = i = i+ ).
If the xo-integrator is blocked, &5 = 0, giving #; = (1/T)4 >
0 because u is increasing. In this case, z; will tend to increase
away from the z,;, limit, and the x,-integrator will become
unblocked. On the other hand, if the z2-integrator is unblocked,
the sign of Z; is given by 11+ 2 = @+ Ku, which may be nega-
tive. If so, 21 will tend to decrease onto the z,,;, limit, blocking
the zo-integrator. A contradiction arises: if the xs-integrator is
blocked, it should unblock, but if it is unblocked, it should block.
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Returning to the type-3 WTG model, this deadlock phenom-
enon can be illustrated using the WECC test system and de-
fault parameters that are provided in the Appendix. Resulting
trajectories are shown in Fig. 6. For the sake of clarity, only
the pitch-compensation integrator will be discussed, though the
pitch-control integrator exhibits similar behavior. It should be
noted that in order to generate the trajectories shown in Fig. 6, it
was necessary to introduce hysteresis into the switching process
associated with the pitch angle non-windup limit. The imple-
mentation of hysteresis is discussed in Section III-C.

The pitch angle 6 is initially in steady-state on the lower non-
windup limit, where 6y = PI,;;, = 0 deg. In response to the
disturbance, 6 undergoes a transient increase, before returning
to Plnin at 5.6 s. The error signal ¢ e;r = Pora — Pset driving
the pitch-compensation integrator is negative at that time, so the
corresponding state z. is frozen. Over the subsequent period,
and z. remain frozen, but the signal 8o,y = 0ema — 6, which
drives variations in 6, steadily increases until reaching zero# at
around 7 s. At that point, # should transition from blocked to un-
blocked, so the pitch-compensation integrator driving . should
also unblock. But notice that z. ., 1S negative, so as soon as
the integrator unblocks, z. will decrease, driving ., negative.
This forces 6 back onto its PI,,;, limit, blocking x. again. But
with z. blocked, 6., increases above zero, and z. is unblocked.
Without hysteresis, this process would repeat ad infinitum.

In summary, at the point where f,,, encounters zero

e If 0 is blocked, then # and z. should unblock.

e If # is unblocked, then 6 and z. should block.

In other words, at the instant when 6., = 0, the discrete
state describing integrator blocking undergoes infinitely many
switches, preventing the continuation of the trajectory. This
impasse can be circumvented by implementing hysteresis in
the blocking/unblocking process, as described in the following
section.

4The hysteresis implementation actually allows e, to rise a little beyond

zero before the . -integrator is unblocked. Further details are provided in Sec-
tion III-C.
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It should be mentioned that this example was not concocted
to highlight deadlock, but is just the WECC test system with de-
fault parameters [15], [16]. Similar behavior has been observed
in studies of numerous other systems, suggesting deadlock sit-
uations are not uncommon. It should be kept in mind, though,
that this is an artifact of the simplified modeling, and is not ob-
served in real WTGs.

C. Implementation of Hysteresis

The explanation of hysteresis will refer to Fig. 7. This is an
expanded view of the relevant time interval of Fig. 6. In order to
provide a clearer view of behavior, however, the hysteresis band
has been widened from 0.002 in Fig. 6 to 0.05 in Fig. 7.

At 6.85 s, the error signal §,, crosses through zero. Upon
doing so, the integrator driving the pitch angle € is unblocked,
so f begins to increase. At 7.3 s, # encounters the hysteresis
threshold, whereupon the pitch-compensation integrator is un-
blocked. The error signal z. ¢, driving that integrator is neg-
ative, as shown in Fig. 6, so . immediately begins to reduce.
This causes 0., to reduce. Eventually §.,, goes negative, and
6 begins to fall, encountering the non-windup limit PI,,;, = 0
at 7.6 s. When that limit is encountered, 6 and x. are imme-
diately blocked, so .., again begins to increase. The process
then repeats. The actual implementation of the hysteresis logic
is presented in [30].

The width of the hysteresis band € influences behavior during
the deadlock period, but has little effect on the subsequent tra-
jectory. This influence was explored using trajectory sensitivi-
ties [31]. Fig. 8 shows the sensitivity of the # and .. trajectories
to a one percent change in the nominal width ¢ = 0.002 of the
hysteresis band. It can be seen that the effect of the perturbation
in € accumulates over the deadlock period, but subsequently de-
cays very quickly. Choosing a suitable value for € results in a
tradeoff between the magnitude of the chatter during the dead-
lock period versus the number of switching operations.

469

-3

x 10
2 T T
1.5
@ T
&
2 o05F
2 1 4J /
3
2] 0
-0.5[
-9 L 1 L )
6 7 8 9 10
Time (sec)
x107°
T T T
6 4
x° 4F .
2
2
3 2r B
2
& o
(o] L ‘ I
o o
1 1 L 1 |
6 7 8 9 10 11 12 13

Time (sec)

Fig. 8. Sensitivity of § and = trajectories to a one percent change in the width
€ of the hysteresis band.

IV. EQUILIBRIUM CONDITIONS

A. Initialization

For the initial point to be in equilibrium, the derivatives in
(1)—(3), (5)—(7), and (10) must be set to zero. Notice though
that because (2) and (5) are effectively duplicate integrators,
they both contribute exactly the same equilibrium equation, w —
wret = 0. The redundant equation will be ignored when assem-
bling the complete set of initialization equations.

The status of the switched equations must also be consistent
with equilibrium conditions. It is safe to assume that none of
the limits in the converter control model WT3E would be active
during normal steady-state operation. Under that assumption,
Pyrq will equal the electrical power Pgen, delivered to the WTG
terminal bus. This relationship will be used to eliminate Pgey,
from the equilibrium equations.

In the case of the pitch control model WT3P, limits may be ac-
tive at steady-state. For wind conditions up to rated wind-speed,
the pitch angle # would normally sit at its minimum limit PT,;,,.
Blocking the associated integrator would, however, leave the
initial value of f.,4 undefined. The initialization process must
therefore override integrator blocking, or equivalently, assume
6 lies infinitesimally above the PI;, limit.

The pitch compensation non-windup limiter of WT3P has the
equilibrium characteristic shown in Fig. 9. If the input P,.q —
P,et < 0 at steady-state, then z. will be forced to its lower
limit of zero. On the other hand, if Py,q — Pset = 0O at steady-
state, then =, may take any non-negative value. Summarizing
this relationship gives

Te Z 07 Pset - Pord Z 07 ‘Tc(Pset - Pord) =0
which is a complementarity condition [32], [33] that can be ex-
pressed compactly using standard notation

0 S Te 4 (Psot - Pord) Z 0. (12)
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The resulting initialization equations can be written

0 = f(Pora) — Wret (13)
0=w — Wref (14)
0=wTl, — Pya (15)
0 = Pno — Kaerof (0 = 05) — Precn (16)
0 = Pmech — Pord (17)
0=1p, + 2+ Kpe(Pord — Pset) — Bema (18)
0="0cma—0 (19)

together with (12). The dependent state variables are wyef,
Tw7 Pord7 Tp,Te, 67 w, acmd’ and Pmecln while Kaerm KpC7 Pmo,
and Ps.; are parameters. By definition, 6, is the specified initial
value for the pitch angle 6, thereby providing a further initial-
ization equation
6—6,=0. (20)
Because Py, and P are independent parameters, it is im-
portant to consider initialization for the three cases, P, <
Picty, Pno = Piet, and Py, > Piet. To do so, first notice that
(16)—(17) and (20) together infer P, = P,.q at initialization.
Therefore, for the case Pyno = Porda < Pset, the complemen-
tarity condition (12), expressed visually in Fig. 9, ensures that
z. = 0. Inthe second case, when P, = Porg = Pset, (12) only
specifies that z. > 0. It follows that the initialization description
consists of only eight independent equations describing nine
variables. The set of equations is under-determined. This can
be confirmed by noting that . and z,, appear only in (18), and
therefore cannot be uniquely determined. To resolve this situa-
tion, (12) should be replaced at initialization by an equation that
assigns a specific initial value to x. or x,. For consistency with
the P, < Pset case, it is convenient to replace (12) by

2y

x. = 0.

The third case P, = Pora > Pset implies the integrator would
be driven by a sustained positive input. The WT3P model does
not define an upper limit though, so equilibrium could not be
achieved.

B. Post-Disturbance Steady-State

For well-posed dynamical models, the post-disturbance
steady-state should match the pre-disturbance (initial) equi-
librium when pre- and post-disturbance parameter sets are
identical. This is generically not the case for the WECC type-3
WTG model. The following analysis shows that this unusual
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behavior is due to switching associated with the duplicate
integrators (2) and (5).

The initialization equations (12)—(19) govern post-distur-
bance steady-state conditions, as they were obtained by setting
derivatives to zero. Initialization also made use of the aux-
iliary equation (20), but that equation plays no role as the
system evolves towards steady-state. As a consequence of
discarding (20), the description of steady-state conditions is
under-determined.

This indeterminacy is resolved when the duplicate integrators
(2) and (5) remain unblocked for the entire time horizon. In that
case, the integrator states can be written in integral form

t
T.(t) =T+ Kmq/ (w(T) — wret(T))dT (22)
0
t
zp(t) = T, + Kip (w(T) — wret(7))dT (23)
0
where T and z; are the initial values for the respective
states. Equating the integrals in (22) and (23) gives the affine

relationship

K ip

K, TY
z,(t) = o Tow(t) + <xg -k > (24)
itrq

Kitrq

which implies that any variation in T, (¢) will be matched by
a corresponding variation in z,(t). This relationship provides
the extra equation required to uniquely determine the post-dis-
turbance steady-state, and in fact implies that if all parameters
remain unchanged, the system will evolve to a steady-state that
exactly matches the initialization point.

The assumption that the duplicate integrators remain un-
blocked for all time is seldom true, however. Blocking of one
or other of the integrators will alter the corresponding integral
term in (22) or (23), invalidating the relationship (24). Under
such conditions, it becomes impossible for both 7., and z,, to
evolve back to their initial values. Consequently, the system
will settle to a post-disturbance steady-state that cannot equal
the initial point, even though the parameters of the system are
unchanged.

The WECC test system and default parameters of the
Appendix illustrate this phenomenon. The pitch angle response
of Fig. 6 is repeated in Fig. 10, where the time horizon has
been extended to 30 s. Notice that the pitch angle evolves to a
steady-state value of 0.33 deg, even though it was initialized at
0 deg.

Fig. 11 shows the relationship between T, and z,,. These two
states initially follow a straight line given by (24), with the states
reaching the extreme point (1, z,,) = (0.847,0.56), before re-
turning along the line to (0.835,0.08). At that instant, the pitch
angle # encounters its limit, causing the integrator driving z,
to block. The integrator remains blocked until # enters a pe-
riod where hysteresis is active. During that period, the x,-inte-
grator successively blocks and unblocks, giving rise to the stair-
case phenomenon apparent in the figure. At the end of that pe-
riod, # finally comes off its limit, the x,-integrator is restored
to normal operation, and the behavior of 7;, and z,, reverts to a
straight-line locus given by an affine relationship like (24). The
slope over that final section is the same as earlier, but the offset
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Fig. 10. Large-disturbance response of pitch angle 6.
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Fig. 11. Relationship between T, (t) and 2, (¢).

has changed. Hence, the system converges to a steady-state that
differs from the starting equilibrium point.

As was the case with deadlock, this situation is a consequence
of simplified modeling, and does not occur in actual WTGs.

V. SMALL DISTURBANCE ANALYSIS

A. Singularity

Linearizing the WTG (1)—(11) about an equilibrium point,
and eliminating the algebraic equations, yields the sev-
enth-order linear model

M Awref ] fa11 @13
ATL,_, a1 a7
g | AFora azy azz2 a3 asy
% AIP = a41 a4
AV S as53
Al ag1 a3 G4 G5 066 06T
L Aw | L ars are -
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[ AWrof T
AT,
AP)ord
X | Az,
Az,
Af
Aw

(25)

where the a;; refer to elements of the system A-matrix that
are potentially nonzero, while all other elements are identically
zero. The exact arrangement of the nonzero a;; is dependent
upon the status of limits.

As in Section 1V, it is assumed that none of the limits in
the converter control model WT3E are enforced at steady-state,
and that pitch angle # dynamics are active. In the case of the
pitch compensation z.-integrator, its dynamics may be active
at steady-state or the limiter may be enforced, as indicated in
Fig. 9. Both situations must be considered.

The initial value 6, for the pitch angle also has an important
influence on the linear model. When (11) is linearized with 6, =
0, the term associated with the simplified aerodynamic model
becomes zero. In that case, perturbations in the pitch angle
have no influence on Py..h, and as a consequence a7zg = 0 in
(25). On the other hand, when 6, # 0, the aerodynamic model
contributes a nonzero term to (11), resulting in azg # 0.

In considering the various cases identified above, it should
be kept in mind that (2) and (5) are duplicate integrators. Be-
cause these integrators differ only by a scaling factor, the cor-
responding rows of the A-matrix, 2 and 4, respectively, are lin-
early dependent. Therefore, A must have at least one eigenvalue
whose value is zero.

The two conditions for the x.-integrator, together with the
two possibilities for 6, give four separate cases:

1) x.-Integrator Active, 8, # 0: The condition 6, # 0 im-
plies a7g # 0, so all the a;; shown in (25) are nonzero. The
A-matrix has a single zero eigenvalue due to the linear depen-
dence of rows 2 and 4, which correspond to the duplicate in-
tegrators. By inspection, columns 4 and 5 are linearly depen-
dent, implying that the right eigenvector associated with the
zero eigenvalue involves only Az, and Ax.. Substituting that
zero-eigenvectord into (25) gives a matrix-vector product that
is zero. Hence, the linear system will be in steady-state at any
point along the zero-eigenvector.

2) x.-Integrator Active, 8, = 0: In this case, 6, = 0, so
a7¢ = 0. By inspection, rows 5 and 7 are linearly dependent, as
well as rows 2 and 4, implying the system now has two eigen-
values that are zero. This second zero-eigenvalue is a conse-
quence of pitch angle Af being decoupled from mechanical
power APpecn When 6, = 0 in the simplified aerodynamic
model. With az¢ = 0, columns 4, 5, and 6 are clearly linearly
dependent. The two zero-eigenvectors in this case involve Az,
Az, and Af. The linear system will be in steady-state at any
point on the plane spanned by the two zero-eigenvectors.

3) xz.-Integrator Blocked, 6, # 0: Blocking the x.-inte-
grator implies Az. = 0. Accordingly, the fifth row and column
of the A-matrix should be removed, reducing the linearized

SFor convenience, the right eigenvector associated with the zero eigenvalue
will be referred to as the zero-eigenvector.
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Fig. 12. Standard test system for evaluating WTG dynamic performance.

system to six dynamic states. The linear dependence of rows 2
and 4 is unaffected by this reduction, so one of the eigenvalues
remains zero. Because azg # 0, no simple pairing of columns
produces linear dependence. In fact, linear dependence involves
all the columns of the reduced A-matrix. Accordingly, the
zero-eigenvector includes a contribution from all six states of
the reduced model.

4) x.-Integrator Blocked, 6, = 0: This case also has Az. =
0, so the A-matrix is again reduced. Because 6, = 0, the el-
ement azg = 0, and by inspection the columns corresponding
to Az, and Af are linearly dependent. The zero-eigenvector
therefore involves only Az, and Af.

B. Eliminating the Zero Eigenvalue

It is possible to eliminate the zero eigenvalue caused by in-
tegrator duplication by exploiting the explicit coupling between
integrator states 7, and x,, given by (24). Linearizing that affine
relationship gives

K.

L AT, (t).

A.Tp(t) = K‘t
itrq

(26)

In the linearized model (25), removing the row corresponding to
Az,, and replacing all occurrences of Az, by (26), reduces the
system dimension by one. It can be shown that the remaining
eigenvalues are exactly the same as the original nonzero eigen-
values. If those original nonzero eigenvalues all have negative
real parts, as is generically the case, the system will be expo-
nentially stable.

Even though the linear model has a continuum of equilibria
defined by the zero-eigenvector, perturbations that satisfy (26)
will induce behavior that returns to the original equilibrium
point. On the other hand, perturbations that do not satisfy (26)
will result in convergence to points on the zero-eigenvector that
generically differ from the original point.

C. Linearizing at Limits

Linearization about an equilibrium point requires the dynam-
ical system to be smooth in a neighborhood of that point. With
hybrid dynamical systems, such as the WT'G model, equilibria
may coincide with conditions that induce switching. In such
cases, it is impossible to find a neighborhood of the equilibrium
point where the dynamical system is smooth. Linearization is
therefore not well defined.

Consider the pitch compensation z.-integrator, whose equi-
librium characteristic is provided in Fig. 9. Linearizing about

i

P —

SN

||
M 100 MW

equivalent wind
Turbine-level shunt
compensation

an equilibrium point anywhere on the vertical or horizontal sec-
tions of the characteristic, away from the transition point at the
origin, is well defined and discussed in Section V-A. At the
origin, however, switching will occur as perturbations in z. tran-
sition from positive to zero. To establish a linear model at this
point, switching must be disabled. The z.-limit may be ignored,
so the origin behaves like a point on the vertical characteristic,
or it may be enforced, in which case the origin will act like a
point on the horizontal characteristic. It is important to note that
the two cases will result in different linear models, and hence
eigen-structures that differ. Neither is strictly correct, and re-
sults must be interpreted with great care.

A similar discussion applies for the pitch angle # dynamics.
As mentioned in Section IV-A, it is common for é to be initial-
ized on its lower limit PIL,,;,. A choice must be made whether
to treat the integrator as active or blocked. The analysis of
Section V-A was based on the assumption that the integrator
was active.

The ill-defined nature of linearization at a switching point
is particularly important for analysis packages that use finite
differences to generate approximate derivatives. Care must be
taken to ensure that differences are calculated using pertur-
bations that are physically meaningful. Otherwise, the linear
model may be quite inaccurate.

VI. CONCLUSION

The dynamic behavior of type-3 WTGs is governed by inter-
actions between a wound-rotor induction machine and a back-
to-back inverter. The inverter response time is much faster than
the time constants of the induction machine, allowing the in-
verter to respond rapidly to the electromechanical dynamics of
the WTG. Consequently, the dynamic characteristics of a type-3
WTG that are important from the grid perspective are dominated
by the response of controllers that regulate active power, pitch
angle, and terminal voltage. These controllers involve interac-
tions between continuous dynamics of state variables and dis-
crete events that occur when limits are encountered. WTGs may
therefore be classed as hybrid dynamical systems.

Non-windup limits within the WECC type-3 WTG model
have been structured so that various integrators are blocked
when a limit is encountered. The interactions inherent in this
model structure can be quite complex, and may lead to a form
of trajectory deadlock known as chattering Zeno. Deadlock
precludes continuation of the trajectory in the normal sense, so
numerical simulation techniques that accurately capture hybrid
system dynamics cannot proceed beyond such a point. Filippov
solution concepts are required for continuing the trajectory. It
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TABLE 1
IMPEDANCE VALUES FOR THE TEST SYSTEM OF FIG. 12

Ry =Ry | X1 =X | By =Bsy Ry Xt

0.025 0.250 0.05 0.0 0.1

Re Xe Be Rte Xte

0.015 0.025 0.01 0.0 | 0.05
TABLE II

PARAMETER VALUES FOR WT3G

| Xeq ‘ Kpll | Kipll | Pllmaa: |
| 0.8 l 30 | 1 | 0.1 |

TABLE III
PARAMETER VALUES FOR WT3E REACTIVE POWER CONTROL

| varﬂg | Vltﬂg | Vref | in | Vmaa: | VnLi'rL ‘
0 [ 0 [ T [0l ] IT | 09 |

TABLE IV
PARAMETER VALUES FOR WT3E ACTIVE POWER (TORQUE) CONTROL

| Kptrq I Kitrq | Tpc I Pmin [ Praz I Ipmarz I deaa:/dt [ Tsp |
[ 3 ] 06 [005] 004 [ I.I2 [ LI | 045 [ 5 ]

TABLE V
PARAMETER VALUES FOR SPEED-POWER CURVE f( Pyen)

[ Wpmin | wp20 | wpdo | wpeo | Puwploo | wpioo |

| 0.69 | 0.78 | 0.98 | 1.12 | 0.74 | 1.2 |
TABLE VI
PARAMETER VALUES FOR WT3T SINGLE-SHAFT MODEL
| Kaero l 0o | Prmo I H I D ‘
| 0.007 [ 0 | 1 | 4.94 | 0 |

TABLE VII
PARAMETER VALUES FOR WT3P

|Kpp|KipIKpC|Kic|TPIIPImaI‘PIminIPI’I‘at6|Pset|
[150 ] 25 3 [30[03] 27 [ 0 [ 10 [ 1 |

has been shown that deadlock can be eliminated by incorpo-
rating hysteresis into the switching of non-windup limits.

The converter controller and the pitch controller of the WECC
type-3 WTG model both include an integrator that is driven by
the same frequency error signal. This integrator duplication re-
sults in an under-determined description of steady-state condi-
tions, allowing the existence of a continuum of equilibria. As a
consequence, power systems that incorporate WTGs may con-
verge to a post-disturbance steady-state that does not match ini-
tial conditions, even though the parameter set has not changed.
Furthermore, the duplicate integrators result in linearly depen-
dent rows in the linearized WTG model, so the system is sin-
gular. Small disturbance analysis of power systems with WTGs
will yield at least one zero-eigenvalue for every WTG.

APPENDIX
WECC DEFAULT PARAMETER VALUES

The test system is given in Fig. 12. Parameter values are
given in Tables I-VII. The wind generator output is 100 MW =
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1.0 pu. A 10-MVAr capacitor is connected at bus 3, but no shunt
is connected at bus 5.

A three-phase fault is applied at bus 2 at 1 s. It is cleared at
1.15 s by disconnecting one of the 230-kV transmission lines.
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