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Abstract— The paper develops and illustrates a novel de-
centralized charging control algorithm for large populations
of plug-in electric vehicles (PEVs). The proposed algorithm
is an application of the so-called Nash certainty equivalence
principle (or mean-field games.) The control scheme seeks
to achieve social optimality by establishing a PEV charging
schedule that fills the overnight demand valley. The paper
discusses implementation issues and computational complexity,
and illustrates concepts with various numerical examples.
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I. INTRODUCTION

In order to reduce the emission of green-house gases and

reliance on exhaustible petroleum sources, high penetrations

of plug-in electric vehicles are expected to substitute the

current conventional petroleum-combustion vehicles over the

next few decades. The electricity demand from this large

populations of PEVs may have a significant impact on the

electrical power grid. For example, suppose that 30% of the

234 million conventional vehicles in the US were substituted

by PEVs, that the average size of the PEV batteries is about

10 kWh, and that the charging rate of each PEV is about

2 kW. The total charging load would be 140 GW, which is

18% of the US summer peak load of 780 GW.

Quite a few studies have been undertaken recently to

explore the potential impacts of high penetrations of PEVs on

the power grid [1], [2], [3], [4]. In [5], we study centralized

optimal charging control, for large populations of homoge-

neous PEVs. This work shows that under certain reasonable

conditions, the control strategy results in valley filling, i.e. the

total demand, consisting of aggregated PEV charging load

and non-PEV demand, is constant during charging intervals.

Note that all these proposals assume that the utility can

directly control the charging rates of individual PEVs.

The implementation of centralized charging control for

large populations of PEVs is computationally intractable in

general. It may also be impractical, due to the possible

reluctance of PEV owners to allow their utility to directly

control vehicle charging rates. In this paper, we suppose that
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each of the PEV agents implements local charging controls

for its own PEV.

The (electricity) charging price, seen by all PEVs, is

responsive to the total demand of the grid, which is the

summation of the inelastic non-PEV base demand together

with the aggregated charging rates of the whole population

of PEVs. Because of the coupling through this common

price signal, each PEV agent effectively interacts with the

average charging strategy of the rest of the PEV population.

As the population grows substantially, the influence of each

individual PEV on that average charging strategy becomes

negligible. Accordingly, for large populations, the average

charging strategy seen by every PEV is identical.

As a consequence, considering the charging controls for

an infinite PEV population, a collection of local charging

controls is a Nash equilibrium (NE), if

(i) Each of the local controls is optimal with respect to one

commonly observed charging trajectory, and

(ii) The average of these local optimal charging controls is

equal to the common trajectory, i.e. the average charging

strategy is collectively reproduced by the local optimal

control laws.

This result is referred to as the Nash certainty equivalence

(NCE) principle, as proposed by Huang et al. [6], [7]. This

framework has connections with mean-field game models

that were studied by Lasry and Lions [8], [9], and close con-

nections with the notion of oblivious equilibrium proposed

by Weintraub, Benkard, and Van Roy [10] via a mean-field

approximation.

Under certain reasonable conditions, the paper demon-

strates via illustrative examples that there exists a Nash

equilibrium. Moreover assuming that the electricity price is

strictly increasing with respect to the total demand, it is

verified that at a Nash equilibrium, the aggregated charging

rates (of the PEV population) almost achieve ‘valley-fill’

(hence are nearly socially optimal.) For homogeneous PEVs,

the charging control turns out to be a ‘valley-fill’ strategy.

The paper is organized as follows. A class of PEV

decentralized charging control problems is formulated in

Section II. Section III introduces the so-called Nash certainty

equivalence (NCE) principle. Using the NCE methodology,

an algorithm is designed to implement the underlying de-

centralized control strategy. The illustrative examples of

Section IV demonstrate algorithm behaviour. The cost per-

formance of the decentralized charging strategy is compared

for different system specifications. Section V proposes an

approach to handling unpredicted changes in system condi-

tions. Conclusions are presented in Section VI, along with a
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TABLE I

LIST OF SYMBOLS (FOR PEV n).

xn

t
∈ [0 1] state of charge (SOC) at time t

xn

0
initial SOC

un

t
≥ 0 charging rate at time t

αn charging efficiency
βn battery size
T0 starting charging time (identical for all PEVs)
T terminal charging time (identical for all PEVs)

discussion of future research directions.

II. DECENTRALIZED CHARGING CONTROL PROBLEMS

FOR LARGE POPULATIONS OF PEVS

We consider charging control for a significant penetration

of PEVs with a population size equal to N . For individual

PEV n, we adopt the notation of Table I. It follows that the

charging dynamics can be written,

xn

t+1 = xn

t
+

αn

βn
un

t
, t = T0, · · · , T − 1 (1)

with an initial state-of-charge (SOC) of xn

0 . We assume the

PEV is fully charged at the end of the charging interval,

xn

T
= 1. Accordingly, we define the set of feasible full

charging controls,

Un ,

{

un ≡
(

un

T0
, · · · , un

T−1

)

; s.t. un

t
≥ 0, xn

T
= 1

}

.

We denote u ,
{

un; 1 ≤ n ≤ N
}

as the collection of

charging rates of the whole PEV population, and u
−n ,

{

um; m 6= n
}

as the collection of charging rates for the

PEV population excluding the n-th PEV.

Coordinated control of PEV charging often assumes a

centralized control framework, where the utility controls the

charging rates for all PEVs. The objective is to implement

a collection of PEV charging rates that achieve the dual

objectives, 1) the aggregated PEV load fills the over-night

valley of the base load, and 2) every PEV is fully charged

at the end of its charging interval.

In contrast, this paper proposes a charging control scenario

where individual PEVs minimize their own operating cost

by implementing a charging strategy that takes into account

the collection of charging strategies adopted by other agents.

More specifically, consider a collection of charging strategies

u, with each un ∈ Un, and suppose that the cost function of

agent n is given by

Jn(u) ,

T−1
∑

t=T0

{

ptu
n

t
+ δ

(

un

t
− avg(ut)

)2
}

(2)

where δ is a non-negative constant, and avg(ut) =
1

N

∑

N

n=1
un

t
. The price pt ≡ p(dt + Navg(ut)) denotes the

electricity price at instant t, which is dependent upon the

inelastic demand dt and the total PEV demand. It follows

from (2) that each agent’s optimal charging strategy must

achieve a trade-off between the total electricity cost pun and

the cost incurred in deviating from the average behaviour of

the PEV population (un − avg(u))2.

The tracking cost term may be thought of as a real-

time regulation fee required by the utility for PEV agents

to join the decentralized control scheme. The examples in

Section IV will illustrate that the small tracking costs are

more than compensated by cost savings that arise from valley

filling.

The underlying decentralized PEV charging control

scheme is a finite-horizon noncooperative dynamic game.

Each PEV agent shares with other PEV agents the (limited,

valuable and divisible) electricity resources beyond the in-

elastic non-PEV demand base d, and also tracks the average

charging strategy of the whole population. A collection of

charging controls u is a Nash equilibrium if, for all n,

un ∈ Un is a charging strategy that minimizes the operation

cost (2) with respect to u
−n.

So far we have formulated the decentralized charging

control problem as a class of dynamic games. Such problems

are, however, generally computationally intractable for large

population size N . This issue is addressed in Section III

through the introduction of the Nash certainty equivalence

(NCE) principle, and the use of NCE in the design of an

algorithm to implement this class of problem. The illustrative

examples of Section IV demonstrate the implementation

of the decentralized charging control algorithm. The cost

performance of the decentralized charging strategy under

different system specifications will be discussed.

III. IMPLEMENTATION OF DECENTRALIZED PEV

CHARGING CONTROL USING THE NCE METHODOLOGY

The Nash certainty equivalence principle was first ex-

plored by M. Huang et al. [6], [11], [7] in the context

of large scale dynamic games for sets of weakly coupled

stochastic control systems. In such systems, the dynamics

and the payoff/cost function of each individual agent are

influenced by certain average values of the collection of

agents.

At an established Nash equilibrium, each agent reacts

optimally with respect to its local state and the collectively

generated average trajectory of all other agents. These trajec-

tories are approximated by an identical deterministic infinite

population limit (associated with the mean field or ensemble

statistics of the random agents) which is the solution of a

particular fixed point problem.

It is straightforward to check that the decentralized charg-

ing control problem formulated in Section II, with the SOC

dynamics given by (1) and the cost functions of individual

PEV agents specified by (2), is in the framework of the NCE

principle. It follows that an infinite collection of charging

strategies {un; 1 ≤ n < ∞} is a Nash equilibrium, if un

is an optimal feedback charging strategy with respect to a

common u given by the average value of the other agents’

behaviours. In other words, u = avg(u−n) for all n.

For any finite population size N , however, the NCE

methodology gives the weaker result that {un; 1 ≤ n ≤ N}
is an ε-NE, for some positive ε. All the avg(u−n) are

only approximately equal in this case, because of the finite
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population size N . Nevertheless the value of the error ε tends

to zero as the population size N grows.

Implementation of the NCE-based decentralized control

is achieved through a charging negotiation procedure, which

takes place at some time prior to the actual charging interval:

(S1) The utility broadcasts the prediction of non-PEV base

demand d to all the PEV agents.

(S2) Each of the PEVs proposes a charging control min-

imizing its charging cost with respect to a common

aggregate PEV demand broadcast by the utility.

(S3) The utility collects all the individual optimal charging

strategies proposed in (S2), and updates the aggregate

PEV demand corresponding to the proposed charging

strategies. This updated aggregate PEV demand is re-

broadcast to all of the PEVs.

(S4) Repeat (S2) and (S3) until the optimal strategies pro-

posed by the agents no longer change.

At convergence, the collection of proposed individual charg-

ing strategies is an NE. Some time later, when the charging

start time T0 is reached, each PEV implements the optimal

strategy obtained from (S1)-(S4).

In the negotiation procedure (S1)-(S4), each of the PEV

agents independently updates its own optimal feedback

charging strategy with respect to the one-dimensional av-

erage value of all PEV agent strategies. The computational

complexity of the underlying decentralized control strategy

is therefore independent of the PEV population size N .

IV. PERFORMANCE INVESTIGATIONS

This section demonstrates, through a number of illustrative

examples, the convergence properties and social optimality

(or valley-filling) performance of the NCE-based decentral-

ized charging control process. A range of system conditions

are considered, with a particular focus on the tracking-cost

parameter δ. Rigorous proofs of convergence and optimality

are presented in [12]. This paper focuses on the concepts

rather than the details.

It is common to assume that the electricity retail price

p is strictly increasing with total demand. This assumption

is consistent with the aggregated marginal cost curve in a

deregulated electricity market. For example, the cloud of

green dots in Figure 1 shows the day-ahead marginal prices

for electricity during the summers of 2007 and 2008 for

the market managed by the Midwest Independent System

Operator (MISO). The blue curve provides an estimate of

marginal cost curve obtained through “kernel nonparametric

regression (NPR).” For simplicity, the following illustrative

examples make use of the smoothed electricity retail price

curve shown by the black curve in Figure 1. Note that this

curve is strictly increasing.

All the numerical examples assume the total generation

capacity in the MISO region is about 10.5×104 MW, which

corresponds to the maximum load supplied in the MISO

region during 2007 and 2008. A PEV population of 107 will

be used. That number of vehicles is roughly equivalent to

30% of all the vehicles in the MISO region. It is further

assumed that all PEVs have an initial SOC of 15%, and
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Fig. 1. Day-ahead electricity marginal prices in summer, 2007 and 2008
by quantity demanded in Midwest ISO, an associated “kernel nonparametric
regression (NPR) estimate” and a strictly increasing curve approximate to
NPR estimate marginal price.

identical charging efficiency α of 85%. We consider a 24-

hour charging interval during the summer of 2007, from noon

on August 6 to noon on August 7. Other parameters, such

as PEV battery size βn and the tracking-cost parameter δ,

will be specified for each of the examples.

The tracking-cost parameter δ plays a particularly impor-

tant role in the convergence behaviour of the NCE-based

control strategy. The following examples explore its impact.

Initially the tracking cost will be set to zero. This is achieved

by setting δ = 0, giving

Jn(u) =

T−1
∑

t=T0

ptu
n

t
, with pt ≡ p(dt + Navg(ut)).

Recall from Figure 1 that price is an increasing function

of total demand. Each PEV will seek to charge when the

price is low, which corresponds to forecast demand being

low. Accordingly, the maximum charging rate will occur

when total demand is at its minimum. Notice though that

PEV agents are only aware of forecast demand, and are

oblivious to each others actions. This results in all agents

acting in unison. Consequently, the iterative procedure (S1)-

(S4) oscillates indefinitely.

This behaviour is illustrated in Figure 2. The figure shows

the outcome for a homogeneous population of PEVs that all

have identical battery size of 10 kWh and maximum charging

rate of 3 kW. Based on the forecast non-PEV demand,

all agents choose the same optimal charging strategy. This

results in the demand spike shown by the central blue curve.

At the next iteration of the negotiation procedure (S1)-(S4),

all PEVs see the blue demand curve and respond accordingly.

The double peaks shown in green are the result. Subsequent

iterations of (S1)-(S4) oscillate between the blue and green

curves.

It may be concluded that by adopting a zero or small

tracking-cost parameter δ, all agents seek to utilize the cheap-

est electricity resources. Consequently, the cheap resources

during the off-peak period are over utilized, creating a new
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Fig. 2. Optimal charging strategy for homogeneous PEVs with zero
tracking cost, battery size 10 kWh, and maximum charging rate 3 kW.
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Non−PEV demand

1st optimal feedback charging

2nd optimal feedback charging

3rd optimal feedback charging

4th optimal feedback charging

Fig. 3. Converging to a Nash equilibrium (‘red curve’) for homogeneous
PEVs with zero initial average strategy and tracking-cost parameter δ =
0.007.

peak. That new peak is avoided at the next negotiation cycle.

Because of this cycling, the system cannot converge to a

Nash equilibrium.

By choosing a sufficiently large tracking-cost parameter δ,

however, the best charging strategy of every agent will take

into account the trade-off between the charging price and

the cost of deviating from the average charging strategy. As

a result, agents are less aggressive in pursuing the cheaper

electricity resources. Figure 3 displays the iterates of the

optimal charging strategies for a tracking-cost parameter

δ = 0.007. In this case, the charging system converges

in four negotiation cycles to the Nash equilibrium, which

corresponds to valley-filling.

In [12], we quantify a range for tracking-cost parameter δ

that ensures the negotiation procedure (S1)-(S4) converges

to the unique Nash equilibrium. Moreover, this range is

unrelated to the initial choice for the average charging

strategy. As an illustrative example, consider the unusual

initial average strategy shown by the solid black curve in

Figure 4. The sequence of curves in Figure 4 indicate that

the system converges, in a few negotiation cycles, to the same

‘valley-filling’ Nash equilibrium as displayed in Figure 3.
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non−PEV demand

initial average control

1st feedback average control

2nd feedback average control

3rd feedback average control

4th feedback average control

5th feedback average control

6th feedback average control

Fig. 4. Converging to a Nash equilibrium (‘blue curve’) for homogeneous
PEVs with non-zero initial average strategy and tracking-cost parameter
δ = 0.007.

TABLE II

SPECIFICATIONS FOR TWO CLASSES OF PEV POPULATIONS

PEV population 1 PEV population 2

Population size N1 = 0.5 × 107 N2 = 0.5 × 107

Battery size β1 = 10 β2 = 20

Up to now, the focus has been on homogeneous popula-

tions. However the convergence guarantee can be extended to

the more general case of heterogeneous populations. Figure 5

displays the converged Nash equilibrium for decentralized

charging of two classes of populations, whose specifications

are given in Table II. The tracking-cost parameter δ = 0.007
was again chosen. The associated Nash equilibrium, shown

by the solid red line in Figure 5, gives a charging strategy

that is almost valley filling.

In summary, this section has demonstrated that by in-

troducing a certain positive tracking cost, the decentralized

charging control scheme converges to a unique Nash equilib-

rium, in a finite number of negotiation cycles. The converged

solution is ‘valley-filling’ in the case of homogeneous PEV

populations, and nearly ‘valley-filling’ for heterogeneous

PEV populations. Furthermore, for homogeneous decen-

tralized charging control problems, the tracking costs are

transitional, occurring only during the negotiation procedure.

At the ‘valley-filling’ NE, the tracking cost equals zero, since

each agent’s charging strategy coincides with the average

over all strategies. For heterogeneous control problems, the

tracking cost at convergence is positive, since each agent’s

charging strategy is generally not the same as the average

across all strategies. Note though that the tracking cost is

small, since the tracking-cost parameter is much smaller than

the electricity price.

V. ADAPTING TO CHANGING SYSTEM CONDITIONS

The negotiation procedure (S1)-(S4) occurs ahead of the

actual charging interval, and is based on predictions of non-

PEV demand and of the PEV population to be charged.

Conditions invariably differ during the actual charging in-
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Optimal charging of PEV 2

Fig. 5. A converged Nash equilibrium for the two classes of PEV
populations specified in Table II, and with δ = 0.007

terval. The non-PEV demand will never exactly match the

prediction, and there will always be some mismatch between

the PEVs that participated in the prior negotiations and those

that actually charge. Also, major disturbances such as loss

of a large generator are always a possibility.

The decentralized control algorithm can be reformulated

to allow tracking of system variations. This tracking process

effectively becomes a form of model predictive control [13].

Real-time information is collected, and a revised prediction

of demand is broadcast to all PEV agents. Negotiations (S2)-

(S4) proceed to determine the optimal updated schedule for

each PEV. The PEVs then charge according to that new

schedule.

VI. CONCLUSIONS AND FUTURE RESEARCH

The paper introduces a novel decentralized charging con-

trol algorithm for large populations of PEVs. It describes

an application of the Nash certainty equivalence (NCE)

methodology, and provides an overview of the more rigorous

investigations reported in [12].

It is shown in the paper that if PEVs act to minimize their

cost, with no regard to other PEVs, the iterative scheduling

process is unlikely to be convergent. However, by penalizing

PEVs for deviating from the average behaviour of all other

PEVs, the scheduling process is guaranteed to converge

to a unique Nash equilibrium. If the PEV population is

homogeneous, the Nash equilibrium will optimally fill the

overnight demand valley. Furthermore, all PEVs will adopt

identical charging strategies, and the cost penalty associated

with deviating from the average will be zero. On the other

hand, if the PEV population is heterogeneous, PEV charging

strategies will be similar, but not identical, and the cost

penalty for deviating from average will be small but not zero.

Future research will explore a number of new directions.

Current work assumes that the non-PEV demand is deter-

ministic and predictable. We will generalize this work to

incorporate stochastic non-PEV demand forecasting models,

and will evaluate trade-offs between robustness and con-

servativeness. Large populations of PEVs are conceptually

similar to collections of distributed energy resources (DERs).

It is interesting to consider the extension of the PEV con-

trol scheme to incorporate high penetration of stochastic

renewable energy sources, such as wind and solar. Along

a similar line, PEVs may ultimately have “vehicle-to-grid”

(V2G) capability, whereby they could acts as loads at certain

times and sources at other times. These possibilities will

be incorporated into the NCE-based decentralized control

structure.

REFERENCES

[1] P. Denholm and W. Short, “An evaluation of utility system impacts
and benefits of optimally dispatched plug-in hybrid electric vehicles,”
National Renewable Energy Labortary, Technical Report NREL/TP-
620-40293, October 2006.

[2] S. Rahman and G. Shrestha, “An investigation into the impact of
electric vehicle load on the electric utility distribution system,” IEEE

Transactions on Power Delivery, vol. 8, no. 2, pp. 591–597, 1993.
[3] F. Koyanagi and Y. Uriu, “Modeling power consumption by electric

vehicles and its impact on power demand,” Electrical Engineering in

Japan, vol. 120, no. 4, pp. 40–47, 1997.
[4] F. Koyanagi, T. Inuzuka, Y. Uriu, and R. Yokoyama, “Monte Carlo

simulation on the demand impact by quick chargers for electric
vehicles,” in Proceedings of the IEEE Power Engineering Society

Summer Meeting, vol. 2, 18-22 July 1999, pp. 1031–1036.
[5] Z. Ma and D. Callaway, “Centralized optimal charging of large

population plug-in electric vehicles,” Technical Report, June 2010.
[6] M. Huang, P. Caines, and R. Malhamé, “Individual and mass behaviour
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