
  
Abstract-- This paper focuses on the systematic optimal tuning 

of a power system stabilizer (PSS), which can improve the system 
damping performance immediately following a large disturbance. 
As the PSS consists of both linear parameters, such as the gain 
and time constant, and non-smooth nonlinear parameters, such 
as saturation limits of the PSS, two methods are applied to 
achieve optimal tuning of all parameters. One is to use the 
optimization technique based on the Hessian matrix estimated by 
the feed-forward neural network (FFNN), which identifies the 
first-order derivatives obtained by the trajectory sensitivities, for 
the nonlinear parameters. The other is to use an eigenvalue 
analysis for the linear parameters. The performance of 
parameters optimized by the proposed method is evaluated by 
time-domain simulation in both a single-machine infinite bus 
(SMIB) system and a multi-machine power system (MMPS). 
 

Index Terms—Eigenvalue analysis, feed-forward neural 
network, Hessian matrix estimation, hybrid system, 
nonlinearities, parameter optimization, power system stabilizer, 
trajectory sensitivities. 
 

I.  INTRODUCTION 
N power systems, the power system stabilizer (PSS) used to 
mitigate system damping of low-frequency oscillations is an 

important control objective for optimization design. For the 
tuning of linear parameters of the PSS such as gain and time 
constants, the conventional tuning processes [1]-[4] based on 
the linear approaches such as the eigenvalue analysis have 
been used. However, by focusing only on small signal 
condition, the dynamic damping performance immediately 
following a large disturbance is often degraded. The PSS 
output limits can provide a solution to balance theses 
competing effects. In particular, these limit values attempt to 
prevent the machine terminal voltage from falling below the 
exciter reference level while the speed is also dropping, which 
means that it can improve the reduced transient recovery after 
a disturbance [4]. Non-smooth nonlinear parameters such as 
the saturation limits of the PSS cannot be tuned by the above 
linear approaches. On the other hand, the hybrid systems have 
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recently attracted considerable attention in design of physical 
systems, which exhibit a mix of continuous, discrete-time and 
discrete-event dynamics by interactions between linear and 
nonlinear properties [5], [6]. Especially, a set of the 
differential-algebraic-impulsive-switched (DAIS) structure [7] 
for the hybrid system modeling, explicitly provide an effective 
and insightful analysis of the non-smooth and nonlinear 
dynamics in power systems. Therefore, it makes possible to 
implement systematic optimal tuning of nonlinear parameters 
such as the saturation limit values of the PSS. 

In this study, the output limits of the PSS are determined by 
a nonlinear optimization technique based on the Hessian 
matrix estimated by the feed-forward neural network (FFNN), 
which identifies the first-order derivatives obtained by the 
trajectory sensitivities. The computation of trajectory 
sensitivities is available from the hybrid system modeling with 
the DAIS structure. In other words, the FFNN identifier 
embedded in the hybrid system modeling is used to estimate 
the second-order derivatives of an objective function J with 
respect to the nonlinear parameters. Thereafter, this Hessian 
information with the second-order derivatives is effectively 
applied for the optimal tuning of the saturation output limits. 
Also, the analysis of the linear parameters of the PSS gives a 
chance to evaluate the damping performance of low-frequency 
oscillations based on the small-signal stability. The DAIS 
based hybrid system modeling enables to form the overall 
system matrix, which can provide the information of the 
eigenvalues to decide the appropriate linear parameters. The 
performances of linear and nonlinear parameters of the PSS 
tuned by the proposed method are evaluated with case studies 
on both the SMIB system and the IEEE benchmark four-
machine two-area system. 

This paper is organized as follows: Section II presents a 
summary of the hybrid system model with the DAIS structure. 
Then, the FFNN estimator to approximate the Hessian matrix 
with the second-order derivatives is described in Section III. 
The implementation of the proposed method for the optimal 
tuning of the PSS is described in Section IV. And, the 
simulation results are given in Section V to evaluate the 
performance of the proposed method. Finally, conclusions are 
given in Section VI. 
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II.  HYBRID SYSTEM PRESENTATION 

A.  Modeling 
As mentioned in Section I, hybrid systems, which include 

power systems, are characterized by the following: 
• Continuous and discrete states. 
• Continuous dynamics. 
• Discrete events or triggers. 
• Mappings that define the evolution of discrete states at 

events. 
In other words, the hybrid system is a mathematical model 

of physical process consisting of an interacting continuous and 
discrete event system [7]. A formal presentation of the hybrid 
system is given in [8], where a general hybrid dynamical 
system is defined as H = [Q, ∑, A, G] and 

• Q is the set of discrete states; 
• ∑ = {∑q}q∈Q is the collection of dynamical systems ∑q = 

[Xq, Γq, fq] where each Xq is an arbitrary topological 
space forming the continuous state space of ∑q, Γq is a 
semi-group over which the states evolve, and fq generates 
the continuous state dynamics; 

• A = {Aq}q∈Q, Aq ⊂ Xq for each q∈Q, is the collection of 
autonomous jump sets, i.e., the conditions which trigger 
jumps; 

• G = {Gq}q∈Q, where Gq: Aq → S = Uq∈Q (Xq × {q}) is the 
autonomous jump transition map. The hybrid state-space 
of H is given by S. 

The above level of abstraction of the general hybrid system 
does not suit the implementation of the numerical optimization 
method carried out in this study, for which the trajectory 
sensitivities can be exploited efficiently. A hybrid model with 
the DAIS structure, which is more conducive to such analysis, 
can be presented without loss of generalities as follows. 

 ),( yxfx =  (1) 

 ),(0 yxg= , (2) 

 






=
>

<
= +

−
di

yyxg

yyxg

id
i

id
i

,,1
,0),(

,0),(
0

,
)(

,
)(

, (3) 

 },,1{,0),( , ejyyxhx jej ∈=−−=+ , (4) 

where: 

,,,,

,,
0
0,

plmn

jj

LZzYyXx

h
x

h
f

fz
x

x

ℜ⊆∈ℜ⊆∈ℜ⊆∈ℜ⊆∈
















=
















=
















=

λ

λλ  

and 
• x represents the continuous dynamic states, for example 

generator angles, speed, and fluxes in a power system. 
• z represents discrete dynamic states, such as transformer 

tap positions and protection relay logic states. 

• y represents algebraic states, e.g. load bus voltage 
magnitudes and angles. 

• λ represents parameters such as generator reactance, 
controller gains, switching times, and limit values. 

The differential equation f in (1) is correspondingly 

structured for ),,( yxfx = whilst z and λ remain constant away 
from events. Similarly, the reset equations jh  in (4) ensure 

that x and λ remain constant at reset events, but the dynamic 
states z are reset to new values according to +z  (The notation 

+x  denotes the value of x  just after the reset event, while −x  

and −y  refer the values of x and y just prior to the event). The 
algebraic function g in (2) is composed of g(0) together with 
appropriate choices of g(i-) or g(i+), depending on the signs of 
the corresponding elements of yd in (3). An event is triggered 
by an element of yd changing sign and/or an element of ye in 
(4) passing through zero. In other words, at an event, the 
composition of g changes and/or elements of z are reset. The 
system flows φ are defined accordingly as 
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A more detailed explanation and associated mathematical 
equations of the DAIS model (especially for the switching and 
impulse effects) are given in [7] along with comprehensive 
studies of the hybrid system.  

B.  Trajectory Sensitivities 
The flows φ in (5) of a system will generally vary with 

changes in parameters and/or initial conditions. Trajectory 
sensitivity provides a way of quantifying the changes in the 
flow that result from (small) changes to parameters and/or 
initial conditions. The development of these sensitivity 
concepts will be based on the DAIS model in (1)~(4). 
Trajectory sensitivities follow from the Taylor series 
expansion (neglecting higher order terms) of the flows 

yx φφ and in (5), which can be expressed as 

 00
0

0
0 )(

),(
),()(

0
xtx

x
tx

txtx x
x

x ∆≡∆
∂

∂
≈∆=∆ Γ

φ
φ  (6) 

 00
0

0
0 )(

),(
),()( xtx

x
tx

txty y
y

y ∆≡∆
∂

∂
≈∆=∆ Γ

φ
φ  (7) 

where nn
x

×ℜ∈
0

Γ  and nm
y

×ℜ∈Γ  are partial derivatives 
matrices of system flows and known as the trajectory 
sensitivities. Recall that 0x incorporates the parameters λ, 

therefore the sensitivities to initial conditions 0x include 
parameter sensitivities. The calculations in (6) and (7) require 
expensive computational efforts to some degree when the 
equations have high dimension for large systems. Fortunately, 
by using an implicit numerical integration technique such as 
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trapezoidal integration, the computational burden for obtaining 
the trajectory sensitivities can be reduced considerably.  

III.  FFNN ESTIMATOR EMBEDDED IN HYBRID SYSTEM  
In most physical dynamic systems, building the true 

Hessian is infeasible, as it involves the true second-order 
trajectory sensitivities, which are computationally expensive. 
The approximate Hessian can figure out the above problem 
and may provide an indication of coupling between design 
parameters, and hence allow physical insights that facilitate 
the design process. In this paper, the FFNN is applied to 
estimate the Hessian, which is used in optimization process. 

A.  Hessian Matrix Estimation by a FFNN 
The FFNN based estimator in Fig. 1 is designed to identify 

the full dynamics of the hybrid system, which are both the 
system flows in (5) and the trajectory sensitivities in (6) and 
(7). Thereafter, it validates the system model with its 
converged weights and estimates the second-order derivatives 
of a user-defined objective function J with respect to the 
nonlinear parameters to be optimized. The FFNN (with the 
multilayer perceptron structure [9]) consists of three-layers of 
neurons (input, hidden, and output layer) interconnected by 
the weight matrices Wl and WL (see the Fig. 2 in [9]), and it is 
first trained to identify the dynamics of the plant. Generally, 
because the FFNN starts with random initial values for its 
weights, and then computes a one-pass backpropagation 
algorithm at each time step k, which consists of a forward pass 
propagating the input vector through the network layer by 
layer, and a backward pass to update the weights with the 
error signal between [ iλ∂∂ /J , jλ∂∂ /J ] and [ iλ∂∂ /~J , jλ∂∂ /~J ] 
as shown in Fig. 1. 
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Fig. 1.   FFNN applied to the hybrid system. 

 
The objective function J in the optimization process can be 

normally defined as a positive and quadratic form, therefore, 
its derivative exists. With the identified gradient J~∇  in Fig. 1, 
the second-order derivatives J~2∇  can be estimated by the 
one-step backpropagation computation in (8). Also, its 
associated Hessian matrix H~  is expressed by (9). 
Implementation for the minimization of the objective function 
J and the trajectory sensitivities J∇  in the DAIS structure is 
explained in the Section IV. 
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where ml is the number of neurons in the hidden layer; p is the 
output of the activation function for a neuron; q is the 
regression vector as the activity of a neuron; W is the weight 
matrix; L and l denote the output and hidden layer, 
respectively; J~∇  is the trajectory sensitivities identified by 
FFNN ( ),(

~~
yxΓJ =∇ ); The function s in (8) is the sigmoidal 

function given as ( ){ }xxs −+= exp1/1)( . 
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B.  Example: Application to a Switched Hybrid System 
The system description [7] is xAx i= , 
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The index i changes from 1 to 2 when x2 = 2.75⋅x1 and from 
2 to 1 when x2 = 0.32⋅x1. Initially, x0 = [1 1]t and  i = 1. This 
model can be written in the DAIS form in (1) ~ (4) as 
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where ttzxx ]32.075.211010011[][ 000 −== λ  (x0 = 
[1  1]t,  z0 = [-100  10  1]t, λ=[2.75  0.32] t) and y0 = −1.  
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Fig. 2.  Phase portraits for the hybrid system in the example. 
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The phase portrait is shown in Fig. 2. The change between 
A1 and A2 in the above example is achieved by resetting the 
matrix elements z1 and z2 whenever a switching surface is 
encountered. This example gives a good illustration for the 
fact that the two unstable sub-systems (the eigenvalues of both 
A1 and A2 are equal to λ=1±jω0 where 10000 =ω ) can make 
the overall system stable through the proper switching action 
by the hybrid system modeling, independently of the initial 
states (which means that this hybrid system is guaranteed to be 
asymptotically stable).  

Assume that the FFNN estimator is designed to identify the 
objective function )4( 21

3
2

4
1 xxxx ++=J  and its partial 

derivatives with respect to states x1 and x2, which are 
)44(/ 2

3
11 xxx +=∂∂J  and ).43(/ 1

2
22 xxx +=∂∂J  After taking 

the necessary steps (training→testing→fixed weights), the 
good identification performance of the first-order derivatives 
by the FFNN with sufficient accuracy (even when the on-line 
training is stopped) is shown in Fig. 3. Thereafter, it estimates 
the second-order derivatives, which are 2

1
2
1

2 12/ xx =∂∂ J  and 

2
2
2

2 6/ xx =∂∂ J  by using (8). The results are shown in Fig. 4. 
The FFNN approximates the second-order partial derivatives 
of this hybrid system with acceptable accuracy, which can be 
used to apply the numerical optimization technique. 
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Fig. 3.  Identification performance of the FFNN. 
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Fig. 4.  Estimation of the second-order partial derivatives by the FFNN. 

IV.  IMPLEMENTATION OF OPTIMAL TUNING FOR LINEAR AND 
NONLINEAR PARAMETERS OF PSS 

A.  Modeling and Implementation Procedure 
Figure 5 shows the control block diagram of generator’s 

excitation system with the PSS and automatic voltage 
regulator (AVR)/Exciter. The modeling by the DAIS structure 
for the PSS output limits and AVR anti-windup limits in Fig. 5 
is given in (10) and (11), respectively. More detailed 
explanations for the hybrid system modeling of a SMIB 
system including the generator are given in [10]. 
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Fig. 5.  PSS/AVR block representation. 
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For the optimal tuning of the PSS in Fig. 5, the steps in Fig. 
6 are taken to implement both the linear and nonlinear 
parameters optimization. Firstly, the nonlinear parameters 
(Vmax and Vmin in Fig.5, which are the saturation upper and 
lower limits) of the PSS are determined by applying the 
numerical optimization technique with the estimated Hessian 
matrix in (9). Then, the linear parameters (Kpss, Tw, T1 and T2 
in Fig. 5) of the PSS are properly selected by the eigenvalue 
analysis of the system matrix A built from the DAIS modeling. 
Therefore, the PSS tuned optimally for all parameters can 
provide the overall robustness for the large and small 
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disturbances to the system. The detailed descriptions for their 
implementation are given in the next sub-sections.  
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matrix by the FFNN

Apply to numerical 
optimization process

Update nonlinear saturation 
limits values

Satisfy convergence?

Select the optimal 
nonlinear parameters

Compute the eigenvalues
 from the matrix A

Build the system matrix A
 from the DAIS modeling

Select the appropriate 
linear parameters

YES

NO

Complete the optimization 
process

Hybrid system modeling with 
DAIS structure

Nonlinear parameters optimization

Linear parameters optimization

 
Fig. 6.  Procedure to implement the parameter optimization of the PSS. 

 

B.  Nonlinear Parameter Optimization by FFNN Identifier 
Many practical optimization problems can be formulated 

by using a Bolza form of the objective function J  
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In (13), λ represents the optimized parameters (output 
limits of the PSS in Fig. 5), which are adjusted to minimize 
the value of objective function J, and tf is the final time. Also, 
ϕ  is the cost or penalty associated with the error in the 
terminal state at time tf, and ψ is the cost function associated 
with transient state errors. The PSS is used to mitigate system 
damping and force the system to recover to the post-
disturbance stable operating point as quickly as possible. The 
speed deviation (∆ω ) and terminal voltage deviation (∆Vt) of 
the generator in a power system are considered to be good 
assessments of the damping and recovery [1]. Therefore, the 
objective function J in (13) can be re-formulated for the 
optimal tuning of the PSS with specific final time tf as the 
follows 
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where V is the diagonal matrix with weighting factors.  

The s
t

s Vandω  are the post-fault steady state values of 

,and tVω respectively. Minimization of the value of J in 
(14) is straightforward even though the cost is obtained by 
integrating over the system flows (trajectories). The simplest 
way of obtaining J is to introduce a new state variable costx , 

with costx equal to the integrand of (14). Thereafter, 
.)(cost J=ftx  The trajectory sensitivities with respect to λ 

directly provide the gradient by 

 ).(
cost fx tΓJ =∇  (15) 

While identifying the ∇J in (15) by the FFNN, the Hessian 
matrix H~  is estimated by the computation in (8) and (9). Then, 
during the optimization process, these nonlinear parameters λ 
are updated by using (16) at each iteration k until its 
convergence is satisfied. 

 )()(~ 1
1 λλαλλ JH ∇⋅⋅+= −

+ kk  (16) 

where α is the step-length to ensure that the optimal path 
(search) is the descent direction vector.  

C.  Linear Parameter Optimization by Eigenvalue Analysis 
Small-signal stability is the ability of the power system to 

maintain synchronism when subjected to small disturbances 
[4]. The use of linear techniques for the small-signal stability 
provides the valuable information about the inherent dynamic 
characteristics of the system and assists in the proper selection 
of linear parameters. In this study, the PSS linear parameters 
(Kpss, Tw, T1 and T2 in Fig. 5) are determined by the 
eigenvalue analysis. 

As mentioned before, the trajectory sensitivity, which are 
the partial derivatives of f and g with respect to the total 
dynamic and algebraic variables ( x  and y), can be accurately 
computed based on the DAIS structure in (1)~(7). Thereafter, 
the eigenvalues of the overall system can be obtained from the 
system matrix A with the reduced order in (17).  

 

xxggff

xxggy

ygxg

yfxfx

xyyx

xy

yx

yx

∆⋅=∆⋅⋅⋅−=

∆∆⋅⋅−=∆

∆⋅+∆⋅=

∆⋅+∆⋅=∆

−

−

A)(

,

0

,

1

1

 (17) 

V.  CASE STUDIES 

A.  Test in SMIB System 
The SMIB system is shown in Fig. 7. The excitation system 

in Fig. 5 is connected to the generator (G) of the SMIB system. 
The generator (G) is accurately represented by a six-order 
machine model, viz., a two-axis (d-q) model with two damper 
windings in each axis [11]. 
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Fig. 7.  Single-machine infinite bus (SMIB) system. 

 
With the values of ∇J in (15), the FFNN estimator consists 

of the 7 inputs (threshold input of 1, ∆ω , ∆Vt, Vmax, Vmin, 
∂J/∂Vmax, ∂J/∂Vmin) and the 10 neurons in the hidden layer. As 
shown in Fig. 1, the FFNN outputs the minmax V/~andV/~ ∂∂∂∂ JJ , 
which identifies the true trajectory sensitivities. Thereafter, it 
computes the estimated Hessian H~  by using (8) and (9), 
which are the approximate second-order derivatives with 
respect to the nonlinear parameters λ, with its converged 
weights. 

To evaluate the performance of the PSS tuned by the 
proposed method, the SMIB system in Fig. 7 is now disturbed 
by applying a 200 ms three-phase short circuit fault with the 
fault-impedance of 0.05 pu to the generator terminal bus at 0.1 
s. The convergence performances during the optimization 
process by (16) are shown in Figs. 8 and 9 with comparison of 
those by the well-known steepest descent algorithm [12] in 
(18) for the value of J and maximum relative gradient fr-gradient 
in (19). For the fair comparison, the same value of the fixed 
step-length α (= 0.22) is used in (16) and (18). 

 )(1 λαλλ J∇⋅+=+ kk  (18) 
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Fig. 8.  Minimization of the objective function J. 
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Fig. 9.  Maximum relative gradient variations. 

 
It is clearly shown from the results that the proposed 

method by the estimated Hessian improves the convergence 
speed very effectively. In other words, the values of both J 
and fr-gradient almost converge after only 5 iterations when the 
optimization process is implemented by the proposed method. 
The value of Vmax has been changed a litter from 0.1 to 0.1109, 
but the value of Vmin has moved significantly from –0.1 to –
0.3317 at 5 iterations.  

Thereafter, the linear parameters are selected to give more 
damping to the system by the eigenvalue analysis with the 
system matrix A obtained from (17). Note that the optimized 
nonlinear parameters λ are fixed when the linear parameters 
are considered. The results are given in Table I. The 
eigenvalue given in Table I corresponds to the speed deviation 
(∆ω) mode of the generator, which assesses the system 
damping of low-frequency oscillation. The real part of the 
eigenvalue has been changed from -1.67 to -5.17, which 
means that the value of damping ratio by the optimal 
parameters is three times greater than that by the initial linear 
parameters. Therefore, it is expected that the optimal 
parameters can improve the system damping performance 
more effectively than the initial ones. 

The rotor angle and speed deviation responses are shown in 
Figs. 10 and 11, respectively. The effect of optimal tuning for 
nonlinear saturation limits is rather dramatic and quite evident 
for a large disturbance (such as a three-phase short circuit 
applied to a power system. Also, the linear parameters provide 
the effective damping and fast recovery after the second swing, 
which is relatively more stable condition when compared to 
the first swing. 
 

TABLE I 
INITIAL VS. OPTIMAL LINEAR AND NONLINEAR VALUES OF PSS IN SMIB 

Nonlinear Linear Values 
of PSS Vmax Vmin Kpss Tw T1 T2 

Eigen-
values 

Initial 0.1 -0.1 2 10 5 0.05 -1.69±  
J8.28 

Optimal 0.1109 -0.3317 5.5 10.2 3.5 0.005 -5.17±  
j9.66 
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Fig. 10.  Generator rotor angle response [rad]. 
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Fig. 11.  Speed deviation response [rad/s] in generator. 

 

B.  Test in Multi-Machine Power System 
The IEEE benchmark four-machines, two-area test system 

is shown in Fig. 12. The data of this system are given in [4]. 
Each machine has been represented by the fourth-order 
nonlinear model [11]. All generators (G1~G4) are equipped 
with the excitation system shown in Fig. 5.  

 

G1

AREA 1 AREA 2

LOAD 1 LOAD 2

Qcap 1 Qcap 2

G2

G3

G4

1 2 5 6 4 3

 
Fig. 12.  IEEE benchmark four-machine two-area test system. 

 
The effect of the optimal linear and nonlinear parameter 

values of the multi-PSSs on the MMPS in Fig. 12 with respect 
to the damping performance is investigated. Firstly, for the 
optimal tuning of the nonlinear parameters, the objective 
function J in (14) is re-defined for the application to the 
MMPS as 
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where the subscript i is the generator number in Fig. 12. While 
minimizing the single value of J in (20), the FFNN estimators 
are applied to determine the optimal saturation limits of the 
separate PSS in each generator, which are affected by the 
interactions of each other on the MMPS. For each FFNN 
estimator, the all 7 inputs and 10 neurons are used in the input 
and hidden layers, respectively. Then, this separate FFNNs 
estimate the four different Hessian matrices H~  (of 2 × 2 size), 
which are positive definite, during the optimization process. 

Similarly to case study on the SMIB system, the MMPS in 
Fig. 12 is disturbed by applying a 200 ms three-phase short 
circuit fault with the fault-impedance of 0.003 pu at bus 6 at 
0.1 s. the successfully minimized variations of the function J, 
which corresponded to the nonlinear parameters updated by 
(16), are shown in Fig. 13. 
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Fig. 13.  Variation of the objective function J: test on the MMPS. 

 
Subsequently, the total 16 linear parameters of all the PSSs 

are determined by checking out the eigenvalues, which 
correspond to the relative speed oscillation modes (∆ω1-∆ω2 in 
AREA 1and ∆ω3-∆ω4 in AREA 2 in Fig.12), with the system 
matrix A built by (17). The initial and optimal values of the 
linear parameters are given in Tables II and III, respectively, 
including those of the nonlinear parameters determined after 
the tenth iteration. 

  
TABLE Ⅱ 

INITIAL LINEAR AND NONLINEAR VALUES OF PSSS IN MMPS 

Nonlinear Linear Initial 
values Vmax Vmin Kpss Tw T1 T2 

Eigen-
values 

PSS-G1 0.05 -0.05 1 12 2.5 0.05 

PSS-G2 0.05 -0.05 1 12 2.5 0.05 

-2.03±   
j3.92 

(AREA 1) 

PSS-G3 0.1 -0.1 1 12 4.5 0.05 

PSS-G4 0.1 -0.1 1 12 2.5 0.05 

-1.23±   
j3.72 

(AREA 
2) 
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TABLE Ⅲ 
OPTIMAL LINEAR AND NONLINEAR VALUES OF PSSS IN MMPS 

Nonlinear Linear Optimal 
values Vmax Vmin Kpss Tw T1 T2 

Eigen-
values 

PSS-G1 0.0825 -0.1078 1.2 22.2 4.4 0.029 

PSS-G2 0.0503 -0.0490 1.2 20.1 5.1 0.024 

-10.46±   
j3.15 

(AREA 1) 

PSS-G3 0.2319 -0.2300 1.3 16.8 4.2 0.032 

PSS-G4 0.2457 -0.2466 1.5 17.7 3.7 0.045 

-2.54±   
j4.96 

(AREA 
2) 

 
The responses of relative speed oscillations (∆ω1-∆ω2 and 

∆ω3-∆ω4) in AREA 1 and 2 are shown in Figs. 14 and 15, 
respectively. The dynamic damping performance is effectively 
improved by the optimized nonlinear parameters of the PSSs. 
Note that the optimal saturation limits of the PSSs in AREA 2 
have a remarkable effect on damping improvement when 
compare to those of the PSSs in AREA 1. Correspondingly, 
the nonlinear parameter variations in AREA 2 are higher than 
those in AREA 1 (see Tables II and III). 

Also, the optimal linear parameters give the additional 
damping to the power system effectively after the first swing. 
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Fig. 14.  Relative speed oscillations (∆ω1-∆ω2) in AREA 1 [rad/s]. 
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Fig. 15.  Relative speed oscillations (∆ω3-∆ω4) in AREA 2 [rad/s]. 

 
 
 

VI.  CONCLUSIONS 
In this paper, the linear and nonlinear parameters of the 

power system stabilizers (PSSs) in power systems were 
considered as parameters to be optimized by using the hybrid 
system model with the differential-algebraic-impulsive-
switched (DAIS) structure. For optimal tuning for those 
parameters, two methods were applied. To implement 
nonlinear parameter optimization, the feedforward neural 
network (FFNN) was applied to estimate the second-order 
derivatives of the objective function J with respect to the 
saturation limits with the gradients obtained by the trajectory 
sensitivities. To select proper linear parameters such as the 
gain and time constants of the PSS, the eigenvalue analysis 
was used by the overall system matrix A, which can be easily 
formed with the DAIS structure. Consequently, the damping 
performances of low-frequency oscillations were effectively 
improved with those parameters optimized by applying above 
linear and nonlinear techniques. 
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