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Correlation mining

Correlation mining and network discovery
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Correlation mining

Big Data aspects of correlation mining
correlation

gene correlation mutual correlation

The Internet Gene pathways School friendships
(Burch and Cheswick, 1998) (Huang, 2011) (Moody, 2001)

e "Big data” aspects
e Large number of unknowns (hubs, edges, subgraphs)
e Small number of samples for inference on unknowns
e Crucial need to manage uncertainty (false positives)

e Scalability of methods to exascale is desired
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Correlation mining

Misreporting of correlations is a real problem

d in r

large. In most

of the Dand group. Note
that none on five times
ID no. Pos.  Neg. No. of claims Treatmentys) Reference
1 0 1 3 Vit E, beta-carotene NEJIM 1994; 330: 1029-1035
2 0 3 4 Hormone Replacement Ther. JAMA 2003; 289: 2651-2662, 2663-2672, 2673-2684
3 0 1 2 Vit E, beta-carotene JNCT 2005; 97: 481-488
4 0 0 3 VitE JAMA 2005; 293: 1338-1347
5 0 0 3 Low Fat JAMA. 2006; 295: 655-666
& 0 0 3 Vit D, Calcium NEIM 2006; 354: 669-683
7 0 0 2 Folic acid, Vit B6, B12 NEJM 2006; 354; 2764-2772
8 0 0 2 Low Fat JAMA 2007; 298: 289-298
9 0 0 12 Vit C, Vit E, beta-carotene Arch Intern Med 2007; 167: 1610-1618
10 0 0 12 Vit C, Vit E JAMA 2008; 300: 2123-2133
1 0 0 3 Vit E, Selenium JAMA 2009; 301: 39-51
12 0 0 3 HRT + Vitamins JAMA 2002; 288: 2431-2440
Totals 0 5 52

Source: Young and Karr, Significance, Sept. 2011
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Correlation mining

Related work: estimation, selection, testing, screening
e Regularized ) or [r covariance estimation
e Banded covariance model: Bickel-Levina (2008) Sparse
eigendecomposition model: Johnstone-Lu (2007)
e Stein shrinkage estimator: Ledoit-Wolf (2005),
Chen-Weisel-Eldar-H (2010)

e Gaussian graphical model selection

o /; regularized GGM: Meinshausen-Biihimann (2006),
Wiesel-Eldar-H (2010).

e Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)

e Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani
(2010), Tsiligkaridis-Zhou-H (2012)

e Independence testing

o Sphericity test for multivariate Gaussian: Wilks (1935)
e Maximal correlation test: Moran (1980), Eagleson (1983),
Jiang (2004), Zhou (2007), Cai and Jiang (2011)

e Correlation screening (H, Rajaratnam 2011, 2012)

e Find variables having high correlation wrt other variables
e Find hubs of degree > k = test maximal k-NN.
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High dimensional analysis
Correlation matrix and its support set

e p x n: measurement matrix. X ~ N(u, Z®1,)

X11 ... Xin
X= Do = [X1,..., X4]

Xpl ... Xpn

¥ = E[(Xy — p)(X1 — p) "] is p x p sparse covariance matrix
e [ is p X p sparse correlation matrix

N = diag(X)"? £ diag(x)"/?

Adjacency matrix: A, = ho(I),

() = 5 (sen(fu] — ) + 1)

Connectivity support set: S, = st — I(sum(A,) > 1)
Hub degree > ¢ support set: si) — I(sum(A,) > 9)
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High dimensional analysis

Empirical estimation of correlation and support set

e p X p sample covariance matrix

P =X(1- 111T)XT
n n—1

e p X p sample correlation matrix

R = diag(X)"Y/? £ diag(%) "1/

Sample estimator of adjacency matrix at correlation level
p € [0,1]: i

Ao(p) = hy(R)
Sample estimator of connectivity support S,(p) at level
p € [0,1]:

So(p) = I(sun(A,(p)) > 9)
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High dimensional analysis

Estimation vs support recovery vs screening for dependency

0.2
= Threshold
o B0

-0.2

15

0.6 20|

5 10 15 20

e Correlation screening and detectioon: false positive error
Po(N, > 0)
N, = card{S,(p)} is number of discoveries above threshold p.
e Support recovery: support misclassification error
Pr(So(p) A So # 0)
e Covariance estimation: Frobenius norm error
(b
e Uncertainty quantification: estimation of estimator tail

probabilities
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High dimensional analysis

Asymptotic regimes (H-R 2011, 2012, 2014, 2015)

Asymptotic framework

Application setting

References

Classical for sample increasing)

“small data™

Fisher [25, 20], Rao [68, 69],
Neyman and Pearson [61], Wilks [84],
‘Wald [79, 80, 81, 82],

Cramér [16, 15], Le Cam [S1, 52],
Chernoff [13], Kiefer and Wolfowitz[46]
Buhadur [3], Efron [22]

Mixed asympotics

“medium sized” data

(megaor giga scales)

Doncho [20], Zhao and Yu [87]
Meinshausen and Bihlmann [58],
Candes and Tao [10], Bickel, Ritov, and Tsybakov[6]
Peng, Wang, Zhou, and Zhu [64], Wainwright [77, 78]
Khare, Oh, and Rajaratnam, [44 ]

Purely high dimensional

Terminology Sam ple size] Dimension
o 7’
small dimensional —— o fixed
high dimensional —s o —
very high dimensional | —— o= e
ultra high dimensional —e — e
purely high dimensional] — fixed — e

“Big Data™
(tera, peta and exascales)

Hero and Rajaratnam [35]
Hero and Rajaratnam [56]

Firouzi, Hero and Rajaratnam [25]

e Classical asymptotics: n — oo, p fixed ('small data")

e Mixed high D asymptotics: n — 0o, p — oo ("Medium data’)

e Purely high D asymptotics: n fixed, p — oo ('Big data’)

It is important to design the procedure for the prevailing sampling regime

o H and Rajaratnam, " Large scale correlation mining for biomolecular network discovery,” in Big data over

networks, Cambridge 2015.

e H and Rajaratnam, " Foundational principles for large scale inference,” IEEE Proceedings 2015.
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High dimensional analysis

Purely high D: phase transitions (H-R 2011, 2012, 2014)

n=101, p=100 n=25, p=100 n=10, p=100
200 200

200

150 150 150

100 100 100

50 50 50

0 0 0

0 1 1 0 1
Sarnple correlation valu Sample correlaﬁyz::a\ue Sample correlation \@{e‘:
= 10. p. = 1063 p. = 1089

Impossible to reliably detect small correlations with finite n

Possible to reliably detect large correlations even when n < p

Critical threshold p. on mean number of spurious discoveries

pe = \/1 — cp(p—1)~2/(n=4)

e ¢, = O(n=3/2) is only weakly dependent on X if block sparse
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High dimensional analysis

Purely high D convergence theorem (H-R 2012)

Asymptotics of hub screening!: (H and Rajaratnam 2012):
Assume that columns of X are i.i.d. with bounded elliptically
contoured density and row sparse covariance X.

Theorem
Let p and p = pp satisfy limp_.oe p2/°(p — 1)(1 — p2)("=2/2 = e, 5.
Then

1 —exp(—Asp,n/2), 0=1
P(Ns, > 0) — { 1—exp(=Aspn);, 0>1

dign = ("5 1) (Palp ) ()

1 n—4
Po(p. ) = 2B((n~2)/2.1/2) | (1) du
P

1Generalized to local screening in (Firouzi-H 2013) and complex valued screening in (Firouzi-W-H 2014) 15 | 20



High dimensional analysis

Critical threshold p. as function of n (H-Rajaratnam 2012)

PHASE TRANSITION THRESHOLD
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High dimensional analysis

Critical phase transition threshold in n and p (6 = 1)

9 PHASE TRANSITION THRESHOLD
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o H and Rajaratnam, " Foundational principles for large scale inference,” |IEEE Proceedings 2015.
o H and Rajaratnam, " Large scale correlation mining for biomolecular network discovery,” in Big data over

networks, Cambridge 2015.
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Sample complexity

Sample complexity regimes for different tasks

Task Screening | Detection | Support detection | Param. estimation | Perform. estimation

Risk P(N. > 0) | P(N. > 0) | P(card{SAS} =¢) | E[|©2— Q3] J El(fa(x) — f(x))?dx

Bound l—e " pe "¢ e P_ﬂlj: o n=2/(4p) g
: < logp , logp P plogp r
Regimes T F 00 - = £ oo EL s o L
Threshold pe—+1 pe—p* pe— 0 pe— 0 pe— 0

H and Rajaratnam, " Foundational principles for large scale inference,” |IEEE Proceedings 2015

e Unifying framework: value-of-information for specific tasks
e Sample complexity regime specified by # available samples
e Some of these regimes require knowledge of sparsity factor

e From L to R, regimes require progressively larger sample size
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Sample complexity

Sample complexity regimes for different tasks

100 94— Detection

= Support detection
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@ 80 == Performance
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H and Rajaratnam, " Foundational principles for large scale inference,” |IEEE Proceedings 2015

e There are niche regimes for reliable screening, detection, ...,
performance estimation

e Smallest amount of data needed to screen for high correlations

e Largest amount of data needed to quantify uncertainty
20| 3?2



Sample complexity

Implication: adapt inference task to sample size

SAMPLING REGIMES

ESTIMATION

suprorTrecovery (R

SCREENING

SAMPLE SIZE e
B UNRELIABLE m RELIABLE

Dichotomous sampling regimes has motivated (Firouzi-H-R 2014):
e Progressive correlation mining
= match the mining task to the available sample size.
e Multistage correlation mining for budget limited applications

= Screen small exploratory sample prior to big collection
211 3?2



SPARCS
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SPARCS

, Prediction and Adaptive Regression via Correlation Screening

Experiment: Stage 1 Experiment: Stage 2
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Sk ya
L e Stuffy nose 3
w1
EL‘
Al NATZ Q
4 Af nar2 09
Aq cd apa 13
M| ] coHz 04 —
N wr o1 Predictive
s % Correlation I
AQ N NaaLAD2 01 04
oo o - Screening x
P .
NGl e = 2 Xk

BN E ‘% [
PO H] HoACs 14
Pl Pl koacs. 02
84l pocosie o
H &d Bctaiio o
; i BCL2LLL 0
# ol coe. o Pooled OLS predictor:
R ES 05
L LN HCN. o . q k12
o oA argming [Y9 —AX"|

explUexp2

e Firouzi, H and Rajaratnam, " Two-stage sampling, prediction and adaptive regression via correlation screening

(SPARCS)," arxiv vol. 1502:06189, 2015.
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SPARCS

SPARCS recovery of support of active variables

Theorem (Firouzi, H, Rajaratnam, 2013, 2015)

Assume that the response Y satisfies the following noiseless
ground truth model:

Y = E),‘l)(,'1 =+ é),‘z)(,'2 4+ -+ a,-kX,-k

If n > ©(logp) then, with probability at least 1 — 1/p, PCS
recovers support of active variables .

e Analogous to condition for LASSO support recovery (Obozinski,
Wainright, Jordan 2008).
e The constant in ©(logp) is increasing in dynamic range
coefficient

7ol ™ Y e, ]

minjer, |a]

€ [1,00)

e Worst case: high dynamic range in active regression coefficients.
24 | 3?2



SPARCS

Optimal pre-screening allocation under budget u

Assume that: cost(acquisition of 1 sample of 1 variable)=1. Define

e Total budget for two-stage experiment: p.
e Number of selected variables k. Total number of samples t.

To meet budget t, n, k, p must satisfy:

np+(t—nk <p

Theorem

MSE optimal pre-screening allocation rule for two-stage predictor

. | Ollogt), c(p— k)logt + kt < pu
N 0, o.w.

When budget is tight skip stage 1 (n = 0).

275 | 39
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Application

Flu challenge experiment

Label Pre-challenge | post-challenge
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Zaas et al, Cell, Host and Microbe, 2009 Huang et al, PLoS Genetics, 2011
Chen et al, IEEE Trans. Biomedical Eng, 2010 Woods et al, PLoS One, 2012
Chen et al BMC Bioinformatics, 2011 Bazot et al, BMC Bioinformatics, 2013
Puig et al IEEE Trans. Signal Processing, 2011 Zaas et al, Science Translation Medicine, 2014
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Application

Critical threshold p. for H3N2 DEE2

Samples fall into 3 categories

e Pre-inoculation samples
e Number of Pre-inoc. samples: n = 34
e Critical threshold: p. = 0.70
e 107° FWER threshold: p = 0.92

e Post-inoculation symptomatic samples
e Number of Post-inoc. Sx samples: n =170
e Critical threshold: p. = 0.36
e 107° FWER threshold: p = 0.55

e Post-inoculation asymptomatic samples
e Number of Pre-inoc. samples: n = 152
e Critical threshold: p. = 0.37
e 107° FWER threshold: p = 0.57
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Application

Susceptibility: Correlation-mining the pre-inoc. samples

e Screen correlation at FWER 107: 1658 genes, 8718 edges
e Screen partial correlation at FWER 107°: 39 genes, 111 edges
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Application

Prediction: SPARCS comparisons to LASSO and SIS

§ Symptom RMSE: LASSO | RMSE: SIS | RMSE: SPARC
@ Runny Nose 0.7182 0.6896 0.6559
% Stuffy Nose 0.9242 0.7787 0.8383
% Sneezing 0.7453 0.6201 0.6037
3 Sore Throat 0.8235 0.7202 0.5965
é Earache 0.2896 0.3226 0.3226
§ Malaise 1.0009 0.7566 0.9125
é Cough 0.5879 0.7505 0.5564
% Shortness of Breath 0.4361 0.5206 0.4022
& Headache 0.7806 0.7500 0.6671
g Myalgia 0.6372 0.4610
150 200 250 SOg 350 400 450 500 Average for all symptoms 0.6016
Support recovery (simu) Prediction (real data)

e Firouzi, H and Rajaratnam, " Predictive correlation screening: Application to two-stage predictor design in high
dimension,” AISTATS 2013
e Firouzi, H and Rajaratnam, " Two-stage sampling, prediction and adaptive regression via correlation screening

(SPARCS)," arxiv vol. 1502:06189, 2015.
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Conclusions

Conclusions

What we covered
e Asymptotic correlation mining theory developed for “Purely
high” dimensional ("big data”) setting:
n fixed while p — oo

e Universal phase transition thresholds under block sparsity

e Phase transitions useful for properly sample-sizing experiments
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Conclusions

Conclusions

What we covered
e Asymptotic correlation mining theory developed for “Purely
high” dimensional ("big data”) setting:
n fixed while p — oo

e Universal phase transition thresholds under block sparsity
e Phase transitions useful for properly sample-sizing experiments

Not covered here

e Structured covariance: Kronecker, Toeplitz, low rank-+sparse,
etc (Tsiligkaridis and H 2013), (Greenewald and H 2014) ,,

e Non-linear correlation mining (Todros and H, 2011, 2012)

e Spectral correlation mining: bandpass measurements,
stationary time series (Firouzi and H, 2014)

e Quickest change detection and correlation mining (Banerjee
and H, 2015)
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