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Abstract—This paper studies a fully Bayesian algorithm for end-
member extraction and abundance estimation for hyperspectral
imagery. Each pixel of the hyperspectral image is decomposed as a
linear combination of pure endmember spectra following the linear
mixing model. The estimation of the unknown endmember spectra
is conducted in a unified manner by generating the posterior distri-
bution of abundances and endmember parameters under a hierar-
chical Bayesian model. This model assumes conjugate prior distri-
butions for these parameters, accounts for nonnegativity and full-
additivity constraints, and exploits the fact that the endmember
proportions lie on a lower dimensional simplex. A Gibbs sampler
is proposed to overcome the complexity of evaluating the resulting
posterior distribution. This sampler generates samples distributed
according to the posterior distribution and estimates the unknown
parameters using these generated samples. The accuracy of the
joint Bayesian estimator is illustrated by simulations conducted on
synthetic and real AVIRIS images.

Index Terms—Bayesian inference, endmember extraction, hy-
perspectral imagery, linear spectral unmixing, MCMC methods.

I. INTRODUCTION

VER the last several decades, much research has been

devoted to the spectral unmixing problem. Spectral un-
mixing is an efficient way to solve standard problems encoun-
tered in hyperspectral imagery. These problems include pixel
classification [1], material quantification [2] and subpixel de-
tection [3]. Spectral unmixing consists of decomposing a pixel
spectrum into a collection of material spectra, usually referred to
as endmembers, and estimating the corresponding proportions
or abundances [4]. To describe the mixture, the most frequently
encountered model is the macroscopic model which gives a
good approximation in the reflective spectral domain ranging
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from 0.4 pm to 2.5 um [5]. The linearization of the nonlinear
intimate model proposed by Hapke in [6] results in this macro-
scopic model [7]. The macroscopic model assumes that the ob-
served pixel spectrum is a weighted linear combination of the
endmember spectra.

As reported in [4], linear spectral mixture analysis (LSMA)
has often been handled as a two-step procedure: the endmember
extraction step and the inversion step, respectively. In the first
step of analysis, the macroscopic materials that are present in
the observed scene are identified by using an endmember extrac-
tion algorithm (EEA). The most popular EEAs include pixel pu-
rity index (PPI) [8] and N-FINDR [9], that apply a linear model
for the observations with nonnegativity and full-additivity! con-
straints. This model results in endmember spectra located on the
vertices of a lower dimensional simplex. PPI and N-FINDR es-
timate this simplex by identifying the largest simplex contained
in the data. Another popular alternative, called vertex compo-
nent analysis (VCA) has been proposed in [10]. A common as-
sumption in VCA, PPI and N-FINDR is that they require pure
pixels to be present in the observed scene, where pure pixels are
pixels composed of a single endmember. Alternatively, Craig
[11] and Bowles [12] have proposed minimum volume trans-
forms (MVT) to find the smallest simplex that contains all the
pixels [11]. However, these MVT-based methods are not fully
automated techniques: they provide results that strongly depend
on i) the algorithm initialization, ii) some ad hoc parameters that
have to be selected by the user. More recently, a new MVT algo-
rithm has been introduced in [13]. This minimum volume sim-
plex analysis provides a suboptimal solution of the nonconvex
optimization problem. More generally, the MVT approaches
avoids the difficult problem of direct parameter estimation on
the simplex. Furthermore, as mentioned in [13], the minimum
volume simplex analysis (MVSA) provides a suboptimal solu-
tion of the nonconvex optimization problem. Note also that the
performance of these approaches may be negatively affected by
the presence of outliers and noise. The interested reader is in-
vited to consult [14] and [15] for a recent performance compar-
ison of some standard EEAs. The second step in LSMA, called
the inversion step, consists of estimating the proportions of the
materials identified by EEA [16]. The inversion step can use var-
ious strategies such as least square estimation [17], maximum
likelihood estimation [18] and Bayesian estimation [19].

The central premise of this paper is to propose an algorithm
that estimates the endmember spectra and their respective abun-
dances jointly in a single step. This approach casts LSMA as a

IThe full-additivity constraint, that will be detailed in the following section,
refers to a unit £ -norm.
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blind source separation (BSS) problem [20]. In numerous fields,
independent component analysis (ICA) [21] has been a main-
stay approach to solve BSS problems. In hyperspectral imagery,
ICA has also been envisaged [22]. However, as illustrated in [16]
and [23], ICA may perform poorly for LSMA due to the strong
dependence between the different abundances [24]. Inspired by
ICA, dependent component analysis has been introduced in [25]
to exploit this dependence. However, this approach assumes
that the hyperspectral observations are noise-free. Alternatively,
nonnegative matrix factorization (NMF) [26] can also be used
to solve BSS problem under nonnegativity constraints. In [27],
an NMF algorithm that consists of alternately updating the sig-
nature and abundance matrices has been successfully applied to
identify constituent in chemical shift imaging. In this work, the
additivity constraint has not been taken into account. Basic sim-
ulations conducted on synthetic images show that such MNF
strategies lead to weak estimation performances. In [28], an it-
erative algorithm called ICE (iterated constrained endmembers)
is proposed to minimize a penalized criterion. As noted in [25],
results provided by ICE strongly depend on the choice of the
algorithm parameters. More recently, Miao et al. have proposed
in [29] another iterated optimization scheme performing NMF
with an additivity penalty on the abundance coefficients. How-
ever, as this is not a hard constraint, it is not necessarily ensured.
In addition the performance of the algorithm in [29] degrades
significantly when the noise level increases.

The Bayesian model studied in this paper uses a Gibbs sam-
pling algorithm to efficiently solve the constrained spectral un-
mixing problem without requiring the presence of pure pixels in
the hyperspectral image. In many works, Bayesian estimation
approaches have been adopted to solve BSS problems (see for
example [30]) like LSMA. The Bayesian formulation allows one
to directly incorporate constraints into the model. These con-
straints include sparsity [31]; nonnegativity [32]; full additivity
(sum-to-one constraint) [33]. In this paper, prior distributions
are proposed for the abundances and endmember spectra to en-
force the constraints inherent to the hyperspectral mixing model.
These constraints include nonnegativity and full-additivity of
the abundance coefficients (as in [19] and [34]) and nonnega-
tivity of the endmember spectra. To our knowledge, this is the
first time that nonnegativity constraints for endmember spectra
as well as additivity and nonnegativity constraints for the abun-
dances are jointly considered in a Bayesian model for hyper-
spectral imagery. In [34], Parra et al. propose a Bayesian for-
mulation of the endmember and abundance estimation problem.
However, this approach relies on an ad hoc autoregressive model
of the endmember spectra, which does not necessarily ensure the
required positivity constraints. In addition, the MAP estimator
proposed in [34] requires an optimization scheme whose con-
vergence is difficult to assess.

Moreover, the proposed joint LSMA approach is able to
solve the endmember spectrum estimation problem directly
on a lower dimensional space within a Bayesian framework.
We believe that this is one of the principal factors leading to
performance improvements that we show on simulated and real
data in Sections V and VI. By estimating the parameters on the
lower dimensional space we effectively reduce the number of
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degrees of freedom of the parameters relative to other methods
(e.g., [32], [34], and [35]), translating into lower estimator bias
and variance. The problem of hyperparameter selection in our
Bayesian model is circumvented by adopting the hierarchical
Bayesian approach of [19] that produces a parameter-inde-
pendent Bayesian posterior distribution for the endmember
spectra and abundances. To overcome the complexity of the
full posterior distribution, a Gibbs sampling strategy is derived
to approximate standard Bayesian estimators, e.g., the min-
imum mean squared error (MMSE) estimator. Moreover, as
the full posterior distribution of all the unknown parameters is
available, confidence intervals can be easily computed. These
measures allow one to quantify the accuracy of the different
estimates.

The paper is organized as follows. The observation model is
described in Section II. The different quantities necessary for the
Bayesian formulation are enumerated in Section III. Section IV
presents the proposed Gibbs sampler for joint abundance and
endmember estimation. Simulation results obtained with syn-
thetic and real AVIRIS data are reported in Sections V and VI
respectively. Section VII concludes the paper. An appendix pro-
vides details on our parameterization of the simplex and se-
lecting relevant and tractable priors.

II. LINEAR MIXING MODEL AND PROBLEM STATEMENT

Consider P pixels of an hyperspectral image acquired
in L spectral bands. According to the linear mixing model
(LMM), described for instance in [4], the L-spectrum
Yo = [Yp1,---,ypr]? of the pth pixel (p = 1,...,P) is
assumed to be a linear combination of R spectra m,. corrupted
by an additive Gaussian noise

R
Yp =Y ma,, +n, e
r=1
where m, = [my1,...,m,, £]T denotes the spectrum of the

rth material, a, , is the fraction of the rth material in the pth
observation, R is the number of materials, L is the number of
available spectral bands and P is the number of observations
(pixels). Moreover, in (1), n, = [n,1,...,n,]" is an ad-
ditive noise sequence which is assumed to be an independent
and identically distributed (i.i.d.) zero-mean Gaussian sequence
with covariance matrix X,, = %I, where I, is the identity
matrix of dimension L X L, i.e.,

n, ~ N (02, %y). @

The proposed model in (2) does not account for any possible
correlation in the noise sequences but has been widely adopted
in [35]-[37]. However, simulation results reported in paragraph
V-D will show that the proposed algorithm is robust to the vio-
lation of the i.i.d. noise assumption. Note finally that the model
in (1) can be easily modified (see [38]) to handle more com-
plicated noise models with different variances in each spectral
band as in [39], or by taking into account correlations between
spectral bands as in [19].
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Fig. 1. Range of admissible solution for two endmember spectra: construction
concrete (left) and red brick (right). The actual endmember (red lines) are mixed
according (1) under the constraints in (3) with random proportions to obtain
P = 2500 pixels. 50 admissible solutions (blue lines) of the BSS problems in
(6) are generated using [42].

Due to physical considerations, described in [3], [19] or [40],
the fraction vectors a, = [ap1,...,a, )T in (1) satisfy the
following nonnegativity and full-additivity (or sum-to-one) con-

straints
{apﬂ,ZO, Vr=1,...,R, 3)
R
21 Opr =1
In other words, the p abundance vectors belong to the space
A={a:|a||; =1and a > 0} )

where ||-||; is the /1 norm defined as ||x||; = >, |z;|,anda > 0
stands for the set of inequalities {a, > 0},_; . Moreover,
the endmember spectra component m,.; must satisfy the fol-
lowing nonnegativity constraints

my; >0, Vr=1,...,R, Vi=1,...,L. )

Considering all pixels, standard matrix notation yields

Y =MA+N (6)
where
Y = [YIa"'ayp]7
M= [m17"'7mR]7
A= [alv"'vaP]7
N:[n17"'7nP]' @)

In this work, we propose to estimate A and M from the noisy
observations Y under the constraints in (3) and (5). Note
that the unconstrained BSS problem for estimating M and A
from Y is ill-posed: if {Y, A} is an admissible estimate then
{YH7 HTA} is also admissible for any unitary matrix H. In
the LSMA problem, this nonuniqueness can be partially circum-
vented by additional constraints such as full-additivity, which
enables one to handle the scale indeterminacy. Consequently,
these unit £;-norm constraints on the abundance vectors avoid
using more complex strategies for direct estimation of the scale
[41]. Despite the constraints in (3) and (5), uniqueness of the
couple {M, A} solution of the LSMA (6) is not systematically
ensured. To illustrate this problem, 50 admissible solutions?

2Admissible solutions refer to couples {M, A} that satisfy (3) and (5) and
that follow the model (1) in the noise-free case.
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have been depicted in Fig. 1 for R = 2 endmembers involved in
the mixing of P = 2500 pixels [42]. In the following section,
the Bayesian model used for the LSMA is presented.

III. BAYESIAN MODEL

A. Likelihood

The linear mixing model defined in (1) and the statistical
properties in (2) of the noise vector n,, result in a conditionally
Gaussian distribution for the observation of the pth pixel: y, | M,
a,, 02 ~ N (Map, O'2IL). Therefore, the likelihood function
of y, can be expressed as

L/2 3 5

2mo? 202
where [[x|| = (x7x) 2 55 the {5 norm. Assuming indepen-
dence between the noise sequences n, (p = 1, ..., P), the like-

lihood function of all the observations Y is

P
fF(Y|M,A,0%) = H f (yp|M,a,,07). 9)

p=1

B. Prior Model for the Endmember Spectra

1) Dimensionality Reduction: Itis interesting to note that the
unobserved matrix X = MA =Y — N is rank deficient under
the linear model (1). More precisely, the set

R R
Sm = {x € RE; X:Z)\Tm,n, ZAT =1, ,\,,zo} (10)

r=1 r=1

is a (R — 1)-dimensional convex polytope of RZ whose vertices
are the R endmember spectra m,. (r = 1,..., R) to be recov-
ered. Consequently, in the noise-free case, X can be represented
in a suitable lower-dimensional subset Vi of RE (R-1X<
K < L) without loss of information. To illustrate this property,
P = 1000 pixels resulting from a noise-free mixture of R = 3
endmembers are represented in Fig. 2. As noted in [4], dimen-
sionality reduction is a common step of the LSMA, adopted by
numerous EEAs, such as N-FINDR [9] or PPI [8]. Similarly, we
propose to estimate the projection t,. (r = 1,..., R) of the end-
member spectra m,. in the subspace V. The identification of
this subspace can be achieved via a standard dimension reduc-
tion procedure. In the sequel, we propose to define Vi as the
subspace spanned by K orthogonal axes vi, ..., vk identified
by a principal component analysis (PCA) on the observations Y
[43]

Vi =span (vi,...,Vk). (11)
The first two principal axes are identified in Fig. 2 for the syn-
thetic hyperspectral data. In the following paragraph, PCA is
described. While we do not give details here, this PCA-based
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Fig. 2. Example of hyperspectral data observed in 3 spectral bands. The mixed
pixels (blue points) belong to the R-dimensional convex polytope Sy (red
lines) whose vertices are the endmembers spectramy, . .., mg (red stars). The
first two principal axes estimated by a PCA appear in dashed lines and define
the projection subset Vi .

dimension reduction step can be easily replaced by other pro-
jection techniques, such as the maximum noise fraction (MNF)
transform [44] that has been considered in paragraph V-D.

2) PCA Projection: The L x L empirical covariance matrix
Y of the data Y is given by

P
1 _ _\T
TZ;é(yp—y)(yp—Y) (12)
where y is the empirical mean
1 L
V=529 (13)
p=1
Let
D = diag (A, ..., AK),
: 14
{ V= [v17 7VK]T ( )

denote, respectively, the diagonal matrix of the K highest eigen-
values and the corresponding eigenvector matrix of Y. The PCA
projection t, € R¥ of the endmember spectrum m,. € R” is
obtained as follows:

t, =P (m, —y) (15)
with P = D~'/2V. Equivalently

with U = VD2, Note that in the subspace Vr_; obtained
for K = R — 1, the vectors {t,},_; 5 form a simplex
that standard EEAs such as N-FINDR [9], MVT [11] and
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ICE [28] try to recover. In this paper, we estimate the ver-
tices t,. (r = 1,...,R) of this simplex using a Bayesian
approach. The Bayesian prior distributions for the projections
t. (r=1,..., R) are introduced in the following paragraph.

3) Prior Distribution for the Projected Spectra: All the el-
ements of the subspace Vi may not be appropriate projected
spectra according to (15). Indeed, the K x 1 vector t,. has to en-
sure nonnegativity constraints (5) of the corresponding recon-
structed L X 1 spectra m,.. For each endmember m,., straight-
forward computations establish that forany r = 1,..., R

{m, >0, Vi=1,...,L} & {t, €T} 17)

where the set 7, C Vi is defined by the following L inequali-
ties:

K
T, = {tr;yz + Y uinte, 20,1 = 1L} (18)
k=1

with y = [71,-.- ,gjL]T and U = [u;x]. A conjugate’ multi-
variate Gaussian distribution (MGD) N, (er7 szIK) truncated
on the set 7, is chosen as prior distribution for t,.. The prob-
ability density function (pdf) ¢z (-) of this truncated MGD is
defined by

o1, (trler, s7Ik) o ¢ (tr|en, s201k) 17, (t,)  (19)
where o stands for “proportional to”, ¢ (-|u, W) is the pdf of
the standard MGD N (u, W) with mean vector u and covari-

ance matrix W, and 17, () is the indicator function on the set
T.

ifx e 7,;

overwise. (20)

17 0= { §

The normalizing constant K7, (er, S%IK) in (19) is defined as
follows:

K, (e,,s k) = / ¢ (x|er, s2Ik) dx. (21)

r

This paper proposes to select the mean vectors e, (r =
1,...,R) in (19) as the projected spectra of pure components
previously identified by EEA, e.g., N-FINDR. The variances
s2 (r =1,..., R) reflect the degree of confidence given to this
prior information. When no additional knowledge is available,
these variances are fixed to large values (53 = - -
in our simulations).

By assuming a priori independence of the vectors t,. (r =
1,..., R), the prior distribution for the projected endmember

— 2 _r
- =8y =050

matrix T = [t1,...,tg] is
R
F(TIE,s®) = [] ¢z (tr|er, s71k) (22)
r=1
where E = [eq,...,er] and s? = [s%,...,sé].

3For the main motivations of choosing conjugate priors, see for instance [45,
Ch. 3].
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C. Abundance Prior

For each observed pixel p, with the full additivity constraint
in (3), the abundance vectors a, (p = 1, ..., P) can be rewritten
as

Up,1

c .
a, = [apr] with ¢, =

ap,R—1
and app = 1 — Zf:ll ap,r. Following the model in [19], the
priors chosen for ¢, (p = 1,..., P) are uniform distributions

on the simplex S defined by

S = {cp; llepll; £ land ¢, = 0}. (23)
Choosing this prior distribution for ¢, (p =1, ..., P) is equiv-
alent to electing a Dirichlet distribution D (1,...,1), i.e., a uni-

form distribution on A defined in (4), as prior distribution for
the full abundance vector a, [45, Appendix A]. However, the
proposed reparametrization will prove to be well adapted to the
Gibbs sampling strategy introduced in Section IV. Under the
assumption of statistical independence between the abundance
vectors ¢, (p = 1,..., P), the full prior distribution for partial

. T .
abundance matrix C = [cy,...,cp]” can be written

P
F(C) o [] 15 (cp) - (24)
p=1

As noted in [19], the uniform prior distribution reflects a lack
of a priori knowledge about the abundance vector. As men-
tioned in [25], it might be interesting to consider nonuniform
priors for the abundances when considering images in which
there are not spectral vectors in some or in all the simplex facets.
For instance, following the approach in [25], Dirichlet distribu-
tions D (41, ...,6r) could be proposed as priors for the abun-
dance vectors. However, as direct estimation of the hyperparam-
eters 41, ...,0p remains difficult, this modification might sig-
nificantly increase the complexity of the Bayesian model and
the computational cost of the algorithm. Moreover, for the BSS
problem addressed in this work, the uniform prior in (24) im-
poses a strong constraint on the size of the simplex to be re-
covered. As demonstrated in the Appendix, among two a priori
equiprobable solutions of the BSS problem, the uniform prior al-
lows one to favor a posteriori the solution corresponding to the
polytope in the projection subset Vg having smallest volume.
This property has also been exploited in [11].

D. Noise Variance Prior

A conjugate prior is chosen for o>

2 vy
vy ~16 (3. 3) 5)
where ZG (v/2,v/2) denotes the inverse-gamma distribution
with parameters v/2 and /2. As in previous works [46], [47],
the hyperparameter v will be fixed to v = 2. On the other hand,
~ will be a random and adjustable hyperparameter, whose prior
distribution is defined below.

4359

E. Prior Distribution for Hyperparameter

The prior for y is a noninformative Jeffreys’ prior [48] which
reflects the lack of knowledge regarding this hyperparameter

1

f () ;1R+ (7)- (26)

F. Posterior Distribution

The posterior distribution of the unknown parameter vector
0= {C7 T, 02} can be computed from marginalization using
the following hierarchical structure:

1(61Y) = / F(6,4Y)dy o / F(Y18)£(81) f()dy 27)

where f (Y|6) and f (v) are defined in (9) and (26), respec-
tively. Moreover, under the assumption of a priori independence
between C, T and o2, the following result can be obtained:

f(07) =F(C)f(TIE,s?) f (0% |v,7)

where f (C), f (T | E, 52) and f (02 | v, fy) have been defined
in (24), (22) and (25), respectively. This hierarchical structure
allows one to integrate out the hyperparameter « from the joint
distribution f (0,~[Y), yielding

(28)

f(C.T,s|Y)
p

X H 1s (cp)
p=1
||tr_er||2
——— | 17 (t-
XHexpl b | 17 (&)

r=1
P L/2+1 —a T 2
1 — (UT+y1
xH[(ﬁ) exp(—“” il )]
(29)

p=1

where 1g = [1,...,1]7 € RE. Deriving the Bayesian esti-
mators (e.g., MMSE or MAP) from the posterior distribution in
(29) remains intractable. In such case, it is very common to use
Markov chain Monte Carlo (MCMC) methods to generate sam-
ples asymptotically distributed according to the posterior dis-
tribution. The Bayesian estimators can then be approximated
using these samples. The next section studies a Gibbs sampling
strategy allowing one to generate samples distributed according
to (29).

IV. GIBBS SAMPLER

Random samples (denoted by -(*) where ¢ is the iteration
index) can be drawn from f (C, T, 02 | Y) using a Gibbs sam-
pler [49]. This MCMC technique consists of generating samples
{Cc®, T® %"} distributed according to the conditional pos-
terior distributions of each parameter.
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A. Sampling From f (C|T,0%,Y)

Straightforward computations yield for each observation

f (Cp |T7U2~,yI))
(cp — UP)T 2;1 (cp —vp)

2

X exp [— ] 1s(c,) (30)

where

-1
B, = [(M g —mpth )" 57 (M= mtf )]

v, =5, [(M—R - leﬁfl)T 2;1 (yp — mR)}
(€29)
with X! = 1/02I1 and where M_p denotes the matrix M
whose Itth column has been removed. As a consequence, c,, | T,
o2, ¥ is distributed according to an MGD truncated on the sim-
plex S in (23)

¢, |T.0%yp ~Ns (v,,5,). (32)

Note that samples can be drawn from an MGD truncated on a
simplex using efficient Monte Carlo simulation strategies such
as described in [50].

B. Sampling From f (T|C,0?,Y)

Define T _, as the matrix T whose rth column has been re-
moved. Then the conditional posterior distribution of t, (r =
1,...,R) is

f (t’I’|T—’I‘7 Cr, UQvY)

X exp [_% (tr - TT)T A;l (tr - Tr):| ]'Tr (t'r‘) (33)

with
-1
_ P -1 1
Ar - I:szl a’zzn,rUTEn 8] + EIK} ’ (34)
T, = A, [Zle ap, UTX e, + éer}
and
€r =Yp — QprY — Z ap,;M;. (35)
j#r
Note that m; = Ut; + y. As a consequence, the posterior
distribution of t,. is the following truncated MGD
t, | T—r7cr70—27YNNTr (TT7AT)' (36)

Generating vectors distributed according to this distribution is
a difficult task, mainly due to the truncation on the subset 7,.
An alternative consists of generating each component ¢, , of
t.- conditionally upon the others t_r,. = {t;},_,. More pre-
cisely, by denoting U7 = {l;urx >0}, Uy = {l;u, <0}
and ep . = T + D4y, Ut,5tj,r, ONE can write

2 2
tk,r|t—k,r7 T_,,¢cr,0°, Y ~ N’[fk_ i (wk,w zkﬂ») (37
with
- ELk,r
b = MaAXg et~ 0y,
t+ _ . _ Elk,r (38)
fop = Ny - — S

and where wy, ,- and z,% ,- are the conditional mean and variance,
respectively, derived from the partitioned mean vector and co-
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variance matrix [51, p. 324] (see [50] for similar computations).
Generating samples distributed according to the two-sided trun-
cated Gaussian distribution in (37) can be easily achieved with
the algorithm described in [52].

C. Sampling From f (02|C, T, Y)

The conditional distribution of 0%|C, T, Y is the following
inverse Gamma distribution:

PL 1 &
2 2
o*|C,T,Y ~ IG (7 5;:1: ly, — May|| ) . (39)

Simulating according to this inverse Gamma distribution can be
achieved using a Gamma variate generator (see [53, Ch. 9] and
[45, Appendix A]).

To summarize, the hyperparameters that have to be fixed at
the beginning of the algorithm are chosen as follows: v = 2,
51 = --- = s = 50 and {e,},_, p are set to projected
spectra identified by a standard EEA (e.g., N-FINDR).

V. SIMULATIONS ON SYNTHETIC DATA

To illustrate the accuracy of the proposed algorithm, simula-
tions are conducted on a 100 x 100 synthetic image. This hyper-
spectral image is composed of three different regions with R =
3 pure materials representative of a suburban scene: construc-
tion concrete, green grass and red brick. The spectra of these
endmembers have been extracted from the spectral libraries dis-
tributed with the ENVI software [54] and are represented in
Fig. 3 (top, black lines). The reflectances are observed in L =
413 spectral bands ranging from 0.4 to 2.5 ym. These R = 3
components have been mixed with proportions that have been
randomly generated according to MGDs truncated on the sim-
plex & with means and variances reported in Table I. The gen-
erated abundance maps have been depicted in Fig. 4 (top) in
gray scale where a white (respectively, black) pixel stands for
the presence (resp. absence) of the material. The signal-to-noise
ratio has been tuned to SNR4p = 15 dB.

A. Endmember Spectrum Estimation

The resulting hyperspectral data have been unmixed by
the proposed algorithm. First, the space Vx in (11) has been
identified by PCA as discussed in Section III-B-2. The hidden
mean vectors e, (1 = 1,..., R) of the normal distributions in
(19) have been chosen as the PCA projections of endmembers
previously identified by N-FINDR. The hidden variances s>
have all been chosen equal to s = --- = s% = 50 to obtain
vague priors (i.e., large variances). The Gibbs sampler has been
run with Nyic = 1300 iterations, including Ny,; = 300 burn-in
iterations. The MMSE estimates of the abundance vectors
a, (p =1,...,P) and the projected spectrat, (r =1,..., R)

have been approximated by computing empirical averages over

the last computed outputs of the sampler {aﬁf) and
t=1,..., Ny
{ ,(nt)} , following the MMSE principle
t=1,...,Nuc
XMMsE =E [X|Y]
1 Nuc
~_ - Z () (40)
R x\.
Nuvie = Noi 4~
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Fig. 3. Actual endmembers (black lines), endmembers estimated by N-FINDR (blue lines), endmembers estimated by VCA (green lines) and endmembers esti-

mated by proposed approach (red lines).

TABLE I
ABUNDANCE MEANS AND VARIANCES OF EACH ENDMEMBER IN EACH REGION
OF THE 100 x 100 HYPERSPECTRAL IMAGE

Endm. Region #1 Region #2 Region #3
mean | var. | mean | var. | mean var.
#1 0.60 | 0.01 | 0.25 | 0.01 | 0.25 0.02
#2 0.20 | 0.02 | 0.50 | 0.01 | 0.15 | 0.005
#3 0.20 | 0.01 | 0.25 | 0.02 | 0.60 0.02

The corresponding endmember spectra estimated by the pro-
posed algorithm are depicted in Fig. 3 (top, red lines). The pro-
posed algorithm clearly outperforms N-FINDR and VCA, as
shown in Fig. 3. The scatter plot in Fig. 5 provides additional
insight. The N-FINDR and VCA algorithms assume the pres-
ence of pure pixels in the data. However, as none of these pixels
are pure, N-FINDR and VCA provide poorer results than the
proposed joint Bayesian algorithm. To illustrate this point, the
performances of the different algorithms have been compared
via two criteria. First, the mean square errors (MSEs)

MSE? = |jm, - m,|*, r=1,....R D)
are good quality indicators for the estimates. In addition, an-
other metric frequently encountered in hyperspectral imagery
literature, known as the spectral angle distance (SAD), has been
considered. The SAD measures the angle between the actual and

the corresponding estimated spectrum

SAD, = arccos <<{n“—mr>>
(|, || [|m, |

where (-, -) stands for the scalar product. These performance cri-
teria computed for the endmember spectra estimated by the dif-
ferent algorithm are reported in Table II. They show that the

(42)

Abundance of green grass Abundance of red brick

20 40 60 80 100 60 80 100

Abundance of construction concrete Abundance of green grass Abundance of red brick

20 40 60 80 100 20 40 60 8 100 60 80 100

Fig. 4. Top: actual endmember abundance maps. Bottom: estimated end-
member abundance maps.

proposed method performs significantly better than the others.
The computation times required by each of these algorithms
are reported in Table III for an unoptimized MATLAB 2007b
32-bit implementation on a 2.2-GHz Intel Core 2. Obviously,
the complexity of the VCA and N-FINDR methods are lower
than the proposed approach. Note however that, unlike to the
joint Bayesian procedure, these standard EEA must be coupled
with an abundance estimation algorithm. Moreover they only
provide point estimates of the endmember spectra. Note finally
that the computational complexity of N-FINDR, because it is
combinatorial, increases drastically with the number of pixels
and endmembers.
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TABLE II
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD: MSE? AND SAD (x10~!) BETWEEN THE ACTUAL
AND THE ESTIMATED ENDMEMBER SPECTRA

End. Bayesian VCA N-FINDR cNMF MVC-NMF
MSE? | SAD | MSE2 | SAD | MSE2 | SAD | MSE? | SAD | MSE? | SAD
#1 170 | 0.63 | 1029 | 1.36 | 269 | 0.75 | 16.78 | 1.59 | 16.61 | 1.63
] 4 656 | 1.49 | 7.37 | 151 | 10.87 | 1.80 | 5.15 | 1.29 | 30.97 | 1.10
g #3 270 | 059 | 294 | 060 | 2.94 | 060 | 490 | 0.78 | 5.80 | 0.73
“IT #1 070 | 001 | 972 | 1.48 | 632 | 1.21 | 1482 | 1.86 | N/A | NA
| o #2 1.05 | 0.49 | 1246 | 1.73 | 7.44 | 1.05 | 1048 | 1.79 | NA | NA
Z I 1.04 | 049 | 726 | 1.17 | 1.05 | 561 | 2551 | 2.00 | NA | NA
ol 1.05 | 0.49 | 6.76 | 0.90 | 6.76 | 0.90 | 25.10 | 1.71 | N/A | N/A
#5 1.04 | 049 | 232 | 0.60 | 10.26 | 0.70 | 10.67 | 1.13 | NA | NA
#1 010 | 015 | 1.29 | 048 | 054 | 0.33 | 16.77 | 1.58 | 8.03 | 1.27
I 4 268 | 092 | 518 | 127 | 519 | 126 | 515 | 1.28 | 243 | 0.49
§ #3 016 | 012 | 057 | 022 | 057 | 022 | 490 | 0.78 | 26.01 | 0.94
= #1 015 | 018 | 261 | 078 | 463 | 1.04 | 1.83 | 0.64 | 73.07 | 4.27
% w | #2 055 | 040 | 762 | 1.36 | 7.62 | 1.36 | 5.01 | 0.93 | 140.12 | 3.77
a1 031 | 022 | 223 | 054 | 232 | 054 | 6.65 | 1.02 | 27.72 | 2.03
~ #4 039 | 015 | 581 | 0.74 | 5.81 | 0.74 | 10.56 | 0.73 | 129.61 | 3.58
#5 062 | 025 | 08 | 030 | 652 | 077 | 2.76 | 0.58 | 50.47 | 2.73
- | # 005 | 009 | 1.14 | 052 | 1.14 [ 052 | 1.75 | 052 | 17.94 | 1.98
] # 219 | 083 | 565 | 1.33 | 565 | 1.33 | 2.88 | 095 | 7.98 | 1.38
§ il 017 | 014 | 066 | 022 | 0.66 | 022 | 0.82 | 0.34 | 30.91 | 1.04
CI\I] #1 042 | 029 | 070 | 040 | 0.70 | 0.40 | 1.74 | 0.59 | 98.49 | 4.10
g | w #2 037 | 034 | 11.34 | 1.44 | 11.11 | 1.80 | 3.86 | 0.77 | 11.34 | 1.44
Gl 046 | 029 | 1.44 | 048 | 1.44 | 047 | 16.25 | 1.71 | 10.93 | 1.36
a #4 007 | 009 | 236 | 044 | 568 | 052 | 6.86 | 0.62 | 74.02 | 2.84
#5 035 | 020 | 154 | 042 | 292 | 059 | 1.34 | 0.46 | 97.27 | 3.73

TABLE III i

COMPUTATIONAL TIMES OF VCA, N-FINDR AND THE PROPOSED BAYESIAN
METHOD FOR UNMIXING P = 32 x 32 PIXELS WITH R = 3 ENDMEMBERS

Bayesian | VCA | N-FINDR
1511 1 23

| Times (s)

B. Abundance Estimation

The MMSE estimates of the abundance vectors for the
P = 10* pixels of the image have been computed following
the MMSE principle in (40)

Nuc
1
A _ (t)
8 = -2 ) (43)
NI\/TC - Nbl = Npi+1

The corresponding estimated abundance maps are depicted in
Fig. 4 (bottom) and are clearly in good agreement with the sim-
ulated maps (top).

Note that the proposed Bayesian estimation provides the
joint posterior distribution of the unknown parameters. Specifi-
cally, these posteriors allow one to derive confidence intervals
regarding the parameters of interest. For instance, the posterior
distributions of the abundance coefficients are depicted in Fig. 6
for pixel number 100. Note that these estimated posteriors are
in good agreement with the actual values of ajgo depicted in
red dotted lines.

Band #2

Fig. 5. Scatter plot in the lower-dimensional space V> : projected dataset
(black points), actual endmembers (black circles), endmembers estimated

by N-FINDR (blue stars), endmembers estimated by VCA (green stars) and
endmembers estimated by proposed approach (red stars). All pixel spectra do
not lie inside ground truth simplex due to simulated measurement noise.

These results have been compared with estimates provided
by the N-FINDR or VCA algorithms, coupled with an abun-
dance estimation procedure based on the fully constrained least-
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Fig. 6. Posterior distributions of @, - (r = 1,...,3). The actual values are
depicted in red dotted lines.
TABLE IV
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE
PROPOSED BAYESIAN METHOD: GMSE? BETWEEN THE
ACTUAL AND THE ESTIMATED ABUNDANCE MAPS
Bayesian | VCA | N-FINDR
Endm. #1 25.68 57.43 30.66
Endm. #2 29.97 74.48 46.45
Endm. #3 3.19 83.02 11.22
TABLE V
PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND
THE PROPOSED BAYESIAN METHOD IN PRESENCE OF GAUSSIAN
SHAPED NOISE: MSE? AND SAD (x10~!) BETWEEN THE
ACTUAL AND THE ESTIMATED ENDMEMBER SPECTRA
Endm MNEF/Bayes | HySime/Bayes VCA N-FINDR
| MSE? SAD | MSE? SAD | MSE? SAD | MSE? SAD
#1 0.26 | 0.25 | 0.42 | 0.31 1.11 | 0.46 | 1.11 | 0.46
#2 1.99 | 0.79 | 4.35 | 1.16 5.78 | 1.33 | 5.78 | 1.33
#3 0.33 | 0.19 | 0.57 | 0.22 1.94 | 0.41 | 2.19 | 043

squares (FCLS) approach proposed by Heinz et al. [17]. The
global abundance MSEs have been computed as
P

GMSE; = (ap.r — ap.0)°

p=1

(44)

where @, is the estimated abundance coefficient of the ma-
terial #r in the pixel #p. These performance measures have
been reported in Table IV and confirm the accuracy of the pro-
posed Bayesian estimation method. Moreover, note that neither
N-FINDR nor VCA are able to provide confidence measures
such as those depicted in Fig. 6.

C. Other Simulation Scenarios

Simulations with different noise levels (SNRqg = 5 dB,
15 dB, 25 dB) and with other combinations of endmembers
(R = 3 and R = 5) are reported in Table II. First, VCA
and N-FINDR algorithms have been applied on these different
datasets, as well as the proposed approach. In addition, to com-
plete the performance comparison, a constrained version of a
nonnegative matrix factorization algorithm [27] (referred to as
cNMF) has been implemented and evaluated. Finally, the min-
imum volume transform (MVT) based strategy described in [29]
(referred to as MVC-NMF) has also been applied on the syn-
thetic hyperspectral images. Note that this MVC-NMF algo-
rithm has failed to unmix the pixels when using R = 5 end-
members for SNR = 5 dB. Consequently, as the results were
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Fig. 7. Real hyperspectral data: Moffett Field image acquired by AVIRIS in
1997 (left) and the region of interest (right) represented in synthetic colors.

not significant, they have not been reported in Table II. Estima-
tion performances expressed in terms of MSE and SAD show
that MVC-NMF and cNMF provided the worst results for these
examples. These results also corroborate the effectiveness of
our Bayesian estimation procedure, when compared with others
EEA approaches.

D. Robustness to Non-i.i.d. Noise Models

In this paragraph, we illustrate the robustness of the proposed
algorithm with respect to violation of the i.i.d. noise assumption.
More precisely, a so-called Gaussian shaped noise inspired by
[55] has been considered. The noise correlation matrix X, =

diag (a%, . ,U%) is designed such that its diagonal elements
o? (I = 1,...,L) follow a Gaussian shape centered at band
L/2
s e | ()
= - 45
o] = 0" exp o2 (45)

The parameter o2 can be tuned to choose the SNR whereas the
parameter 1 adjusts the shape width (n — oo corresponds to
i.i.d. noise). For this simulation, the parameters o2 and 7 have
been fixed to 1.0 x10? and 50 respectively, leading to a noise
level of SNRqp = 15 dB. When the noise is not i.i.d., dimen-
sionality reduction methods based on eigen-decomposition of
observed data correlation matrix Y introduced in (12) can be
inefficient. In this case, other hyperspectral subspace identifica-
tion methods have to be considered. Here, the PCA-based di-
mension reduction step introduced in paragraph III-B-2 was re-
placed by two techniques: the well-known MNF transform [44]
approach and the more recent HySime algorithm [55]. Both of
them require the estimation of the noise covariance matrix 3/},
which was implemented following [55]. The estimation perfor-
mances for the proposed Bayesian estimation procedure cou-
pled with MNF or HySime are reported in Table V and com-
pared with VCA and N-FINDR. These results show that the
proposed method i) can be easily used with other dimension re-
duction procedures, and ii) is quite robust to violation of i.i.d.
noise assumption, at least for independent but non identically
distributed noise.
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Fig. 8. Top: the R = 3 endmember spectra estimated by the algorithm in the Moffett Field scene. Bottom: the corresponding abundance maps (black (respectively,

white) means absence (respectively, presence) of the material).

VI. REAL AVIRIS DATA

A. Moffett Field

This section illustrates the proposed algorithm on a real hy-
perspectral dataset. The considered hyperspectral image was
acquired over Moffett Field (CA, USA) in 1997 by the JPL
spectro-imager AVIRIS [56]. This image has been used in many
works to illustrate and compare hyperspectral signal processing
algorithms [57], [58].

A 50 x 50 subimage depicted in Fig. 7 (right) has been un-
mixed using the proposed Bayesian approach. The number of
endmembers has been estimated as in [19]. More precisely, we
retain the first R — 1 eigenvalues identified by PCA that cap-
ture 95% of the energy contained into the dataset. As detailed
in Section III-B-1, we use also PCA to choose the subset Vr_1
defined in (11). After a short burn-in period NVy,; = 50, estimates
of the parameters of interest are computed following the MMSE
principle in (40) with IV, = 450. The R = 3 endmembers re-
covered by the proposed joint Bayesian LSMA algorithm are de-
picted in Fig. 8 (top). These endmember spectra are represented
in L = 189 spectral bands after removing the water absorption
bands.# These endmembers are characteristic of the coastal area
that appears in the image: vegetation, water, and soil. The cor-
responding abundance maps, shown in Fig. 8 (bottom), are in
agreement with the previous results presented in [19].

B. Cuprite

The proposed algorithm has also been evaluated on the “alu-
nite hill” that appears in the Cuprite scene, acquired by AVIRIS
over the Cuprite mining site, Nevada, in 1997. The geologic
characteristics of this area of interest, represented in Fig. 9,
have been investigated in [59], [60]. In this area, the endmem-
bers are dominated by three materials: muscovite, alunite, and

4The water vapor absorption bands are usually discarded to avoid poor SNR
in these intervals.

(@ (®)

Fig. 9. Real hyperspectral data: Cuprite image acquired by AVIRIS in 1997
(left) and the region of interest (right) represented in synthetic colors.

cuprite. The rescaled endmember spectra estimated by the pro-
posed Bayesian strategy have been depicted in Fig. 10 (top,
red lines) in 50 spectral bands of interest (as in [9], [60], and
[34]). The spectra estimated by the N-FINDR and VCA algo-
rithms are also shown in this figure (blue and green lines, re-
spectively), as well as the spectral signatures extracted from
the United States Geological Survey (USGS) Spectral Library
(black lines) [61]. Similarity measures between the estimated
spectra and the USGS signatures, expressed in terms of SAD
and MSE, are reported in Table VI. The MMSE estimates of the
abundance maps computed by the Bayesian unmixing algorithm
are depicted in Fig. 10 (bottom). In this figure, particularly in
the second map abundance, the alunite hill is clearly recovered.
These results confirm the superior performance of the proposed
strategy.

VII. CONCLUSION

This paper presented a Bayesian model as well as an MCMC
algorithm for unsupervised unmixing of hyperspectral images,
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Fig. 10. Top: the R = 3 endmember spectra estimated by the Bayesian (red lines), N-FINDR (blue lines) and VCA (green lines) algorithms in the Cuprite
scene, compared with the signatures extracted from the USGS spectral library (black lines). Bottom: the corresponding abundance maps estimated by the Bayesian
algorithm (black (respectively, white) means absence (respectively, presence) of the material).

TABLE VI
MSES AND SADS BETWEEN EXTRACTED ENDMEMBERS AND LABORATORY
REFLECTANCES FOR THE BAYESIAN, VCA, AND N-FINDR ALGORITHMS

Bayesian VCA N-FINDR
MSE? | SAD | MSE2 | SAD | MSE? | SAD
Muscovite | 0.35 | 0.39 | 0.31 | 0.37 | 0.33 | 0.38
Alunite 0.19 | 1.00 | 0.36 | 1.37 | 0.21 | 1.03
Kaolinite | 0.42 | 0.77 | 1.07 | 1.23 | 0.44 | 0.79

i.e., estimating the endmember spectra in the observed scene
and their respective abundances for each pixel. Appropriate
priors were chosen for the abundance vectors to ensure non-
negativity and sum-to-one constraints inherent to the linear
mixing model. Instead of estimating the endmember spectral
signatures in the observation space, we proposed to estimate
their projections onto a suitable subspace. In this subspace,
which can be identified by a standard dimension reduction
technique such as PCA, MNF, and HySime, these projections
were assigned priors that satisfy positivity constraints on the
reconstructed endmember spectra. Due to the complexity of the
posterior distribution, a Gibbs sampling scheme was proposed
to generate samples asymptotically distributed according to
this posterior. The available samples were then used to approx-
imate the Bayesian estimators for the different parameters of
interest. Results of simulations conducted on synthetic and real
hyperspectral images illustrated the accuracy of the proposed
Bayesian method when compared with other algorithms from
the literature. An interesting open question is whether one can
improve performance further by folding the intrinsic dimension
K of the projection subspace Vg into the Bayesian framework,
e.g., by applying Bayesian PCA or Bayesian latent variable
models. This question is a topic of current research. While
this paper introduced a Bayesian method in the context of
hyperspectral unmixing, the method can also be used for other

unmixing applications, such as blind source separation, that
satisfy positivity and sum-to-one constraints.

APPENDIX
ON THE CHOICE OF UNIFORM DISTRIBUTIONS AS PRIOR
DISTRIBUTIONS FOR a,. AND THE SIZE OF THE SIMPLEX
SOLUTION OF THE BSS PROBLEM

In this appendix, we show that choosing uniform distributions
as priors for the abundance vectors allows one to favor a poste-
riori, among two a priori equiprobable polytopes that are admis-
sible solutions of the BSS problem, the solution corresponding
to the smallest polytope.

Property: Let M) and M® be two R-dimensional
convex polytopes of RZ that are admissible solutions of the
BSS constrained problem, i.e.

T
JAM = [agv,...,agq c AR

T
JA® = [ag2>,...,a§§>] c AR (46)

suchas Y = MW A D = M@ A2 where A has been defined
in (4). Then

7 (MOY) > £ (M®)y)
<

vol (Spr) < vol (Syp) ) 47

where vol (Syp)) stands for the volume of the polytope

Syh C RZ introduced in (10) whose vertices are the columns
of M®,

Proof: First note that, in absence of noise, as y, = May,,

a, ~U(A) = yp|M~U(Sm) (48)

where U (-) stands for the uniform distribution.
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Consequently
1 PP
PO = | e [Ttoutn @)
which can be simplified by
1 P
PO = | | (50)

since, by definition, the observed pixels y, (p = 1,..., P) be-
long to the solution polytope Sng. Moreover, Bayes’ paradigm
allows one to state

£ (YM) £ (M)

FMIY) = S0

619

Since the two solutions M) and M(?) are a priori equiprob-
able, from (50), it yields

f(MO)Y) [vol (SM(2>)} P
f (M(2)|Y) vol (Spny) |

(52)

It follows (47). [ |
Note that the equiprobability assumption underlying the solu-
tions Spq(2) and Sp2) 1s not a too restrictive hypothesis. Indeed

if the variances s2 (r = 1,. .., R) had been chosen such that the
prior distribution in (22) is sufficiently flat, then
F (M<1>) ~ f (M(2>) . (53)

Note also that the projection of the polytope Sy onto the
subset Vp_1 C RE-1 is the simplex Sy whose vertices are
the columns of T,
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