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ABSTRACT

There have been several recently presented works on find-
ing information-geometric embeddings using the properties
of statistical manifolds. These methods have generally fo-
cused on embedding probability density functions into an open
Euclidean space. In this paper we propose adding an addi-
tional constraint by embedding onto the surface of the sphere
in an unsupervised manner. This additional constraint is shown
to have superior performance for both manifold reconstruc-
tion and visualization when the true underlying statistical man-
ifold is that of a low-dimensional sphere. We call the pro-
posed method Spherical Laplacian Information Maps (SLIM),
and we illustrate its utilization as a proof-of-concept on both
real and synthetic data.

Index Terms— Information geometry, statistical mani-
fold, dimensionality reduction

1. INTRODUCTION

Recently presented methods of manifold learning and dimen-
sionality reduction [1, 2] focus on finding a low-dimensional
representation of the data which is restricted to lie on some
Riemannian submanifold of Euclidean space. These methods
are designed to optimally recreate such a manifold given only
a set of sample points which lie on said manifold. While each
method implements this optimization differently (i.e. locally,
globally, etc), all are designed to preserve some measure of
the L2 distance between sample points in a given data set.

Our recently developed algorithm, called Fisher Informa-
tion Nonparametric Embedding (FINE) [3], has extended these
principles towards the problem of reconstructing statistical
manifolds, or manifolds of probability density functions (PDFs).
With FINE, we found an embedding into an open Euclidean
space in Rd, for which the L2-norm is an appropriate and
accurate distance metric, directly related to the Fisher infor-
mation distance on the original statistical manifold. This is

∗Acknowledgement: This research was partially supported by the AFRL
ATR Center through a Signal Innovations Group subcontract, grant number
SIG FA8650-07-D-1221-TO1.

useful when the manifold structure is unknown, as the em-
bedding space is relatively unconstrained.

Let us now suppose, that there exists a priori knowledge
that the statistical manifold is a portion of a hyper-sphere. An
example of such a situation would involve mapping the nodes
of a global network. In such situations, it may be beneficial
to constrain the low-dimensional embedding to the surface
of a sphere, which will enable the usage of the great-circle
distance, the natural measure of a geodesic on a sphere. This
additional constraint would better preserve the geometric rela-
tionships between PDFs and enable a lower-dimensional rep-
resentation than would be available in a standard – open –
Euclidean embedding.

In this paper we present an unsupervised method of di-
mensionality reduction called Spherical Laplacian Informa-
tion Maps (SLIM), which reconstructs a statistical manifold
with the constraint that all of the embedded points (PDFs)
must lie on the surface of a sphere. SLIM may be interpreted
as a more specific extension of FINE, and we will show it pro-
vides a more beneficial embedding for certain applications.

The remainder of the paper proceeds as follows: In Sec-
tion 2 we give a brief background on measuring distances
on statistical manifolds. Section 3 presents the novel algo-
rithm of Spherical Laplacian Information Maps, while proof-
of-concept simulation results are illustrated in Section 4. Con-
clusions and areas for future work are discussed in Section 5.

2. BACKGROUND

2.1. Fisher Information Distance

For a parametric family of probability distributions on a sta-
tistical manifold, it is possible to define a Riemannian metric
using the Fisher information matrix [I(θ)], which measures
the amount of information a random variable contains in ref-
erence to an unknown parameter θ. The Fisher information
distance between two distributions p(x; θ1) and p(x; θ2) is:

DF (θ1, θ2) = min
θ(·):

θ(0)=θ1

θ(1)=θ2

∫ 1

0

√(dθ

dt

)T [I(θ)]
(dθ

dt

)
dt, (1)



where θ = θ(t) is the parameter path along the manifold
[4, 5]. Note that the coordinate system of a statistical man-
ifold is the same as the parameterization of the PDFs (i.e. θ).
Essentially, (1) amounts to finding the length of the geodesic
on M connecting coordinates θ1 and θ2.

While the Fisher information distance cannot be exactly
computed without a priori knowledge about the geometry (i.e. pa-
rameterization) of the manifold, the distance between PDFs
p1 and p2 may be approximated with the Hellinger distance,

DH(p1, p2) =

√∫ (√
p1(x)−

√
p2(x)

)2

dx, (2)

which converges to the Fisher information distance,

2DH(p, q) → DF (p, q)

as p1 → p2 [4]. This measure, among others, allows for the
approximation of the information distance in the absence of
the geometry of the statistical manifold on which the PDFs
lie. For additional measures of probabilistic distance, some
of which approximate the Fisher information distance, and
a means of calculating them between data sets, we refer the
reader to [6, 7].

3. SPHERICAL EMBEDDING CONSTRAINTS

Given points on the unit sphere parameterized with spherical
coordinates θ = [φ, ψ]T , −π

2 ≤ φ ≤ π
2 and 0 ≤ ψ ≤ 2π, the

distance between θi and θj is defined as

DS2(θi, θj) = arccos (cos(φi) cos(φj) cos(ψi − ψj)+
sin(φi) sin(φj)) , (3)

which is known as the great-circle distance.
We may utilize the Laplacian Eigenmaps (LEM) [1] frame-

work towards an information-geometric embedding by modi-
fying the choice of distance measure to that of the great-circle
distance. Specifically, we can solve the optimization:

Θ = arg min
{θi}

∑

i

∑

j

WijDS2(θi, θj), (4)

under similarly appropriate constraints and weightings, where
Θ = [θ1, . . . , θN ]. While using spherical MDS [8] may be
also be appropriate, optimizing (4) adds a sense of locality
that better preserves the local neighborhood structure of the
manifold.

Notice that under no additional constraints, the trivial so-
lution to (4) is to collapse all samples to the same embedded
point. To prevent this, we add a constraint designed to regu-
late the spread of the embedded points on the sphere. Specif-
ically, let us solve (4) such that we maximize

∑

i

∑

j

DS2(θi, θj)γ , (5)

where 0 < γ < 2 is a power-weighting constant which regu-
lates the spread on the sphere. One may view this constraint
as maximizing the length of the graph formed when each em-
bedded point represents a node and the length of the edge be-
tween nodes is the great-circle distance between points, raised
to the power γ. By using (4) in conjunction with maximizing
(5), we obtain the final objective function

Θ = arg max
{θi}

∑

i

∑

j

DS2(θi, θj)γ −WijDS2(θi, θj), (6)

which ensures that close PDFs will be represented by close
points in the embedding space, but the trivial solution is avoided.

One may also view our spread constraint (5) as having a
relationship to controlling the entropy of the data. As detailed
in [9], the data entropy may be estimated as a function of the
length of the minimal spanning tree (MST)

L̂γ(X) = min
T∈T

∑

e∈T

D(e)γ , (7)

where T is the set of spanning trees over X , e is an edge
between sample points, and D(e) is the length of that edge
(i.e. the distance between sample points). Larger values of
L̂γ(X) are related to larger entropy values of the data X . We
essentially measure the length of the maximal spanning tree
(i.e. all nodes connected by an edge), which is indeed an ele-
ment in T . Hence, while our cost was designed to regulate the
spread of embedded points to prevent trivial solutions, there
is also a direct relationship to the entropy of the data. This
result is also intuitive, as entropy is minimized with the trivial
point solution, while maximized over a uniform distribution.

Unlike LEM, there is no closed form eigenvalue solution
to this optimization, as the distance measure is highly non-
linear. Hence, we solve the optimization with gradient ascent
methods. Letting our objective function be measured as

J =
∑

i

∑

j

DS2(θi, θj)γ −WijDS2(θi, θj),

we may iteratively determine the optimal embedding Θ through
the process

Θl+1 = Θl + µ
∂

∂Θl
J,

where µ is the step size and ∂
∂ΘJ is the direction of the gradi-

ent of the objective. The complete derivation of this gradient
is available in [7].

We refer to this framework as Spherical Laplacian Infor-
mation Maps (SLIM), as we find an information-geometric
embedding of a statistical manifold, constrained to the sur-
face of an intrinsically 2-dimensional sphere. The weights
Wij are calculated in a similar way to LEM, using the Fisher
information distance (or approximation thereof) rather than
Euclidean distance,

Wij = exp(−G(pi, pj ;P)/t),

if nodes i and j are connected, with t being some constant.



Algorithm 1 Spherical Laplacian Information Maps
Input: Collection of data sets X = {X1, . . . , XN}; power-

weighting constant γ; step size µ
for i = 1 to N do

Calculate p̂i(x), the density estimate of Xi

end for
Calculate the pairwise weight matrix [W ]ij
l = 1
while |Jl − Jl−1| > ε do

Calculate ∂
∂Θl

J

Θl+1 = Θl + µ ∂
∂Θl

J

J =
∑

i

∑
j DS2(θi, θj)γ −WijDS2(θi, θj)

l = l + 1
end while

Output: Embedding of X , constrained to the sphere Θ =
[θ1, . . . , θN ]

3.1. SLIM Algorithm

We now present the full algorithm for SLIM, which embeds
PDFs onto a 2-dimensional spherical subspace. The resul-
tant embedding is parameterized through spherical coordi-
nates θ = [φ, ψ]T , which maps to a 3-dimensional Euclidean
subspace, constrained to lie on the surface of a sphere. The
user-defined constant γ determines how large a portion of the
sphere the embedding should occupy.

The full description of the SLIM algorithm is available
in Algorithm 1. Empirical testing suggests that a value of
0.1 < γ < 1 yields desirable results, although we would sug-
gest users empirically determine an appropriate γ for the data
of interest. We note that although we restrict our SLIM em-
bedding to the 2-dimensional sphere in R3, it may be formu-
lated for embedding onto an arbitrary d-dimensional hyper-
sphere, although the implementation details are more diffi-
cult.

4. SIMULATIONS

4.1. Dimensionality Reduction

Let α(i) = [α(i)
1 , . . . , α

(i)
5 ]T be uniformly distributed as a 5-

dimensional vector satisfying the properties of a multinomial
distribution: α

(i)
j ≥ 0 and

∑
j α

(i)
j = 1. For each α(i), we

draw an i.i.d. realization Xi from a Dirichlet distribution

f
(
x1, . . . , x4;α

(i)
1 , . . . , α

(i)
5

)
=

1
B(α(i))

5∏

j=1

x
α

(i)
j −1

j ,

where x5 = 1−∑4
j xj and

B(α(i)) =

∏
j Γ(α(i)

j )

Γ
(∑

j α
(i)
j

)

Method Classification Rate (%)
Mean STD

SLIM 2-D 80.3 6.3
FINE 2-D 76.9 6.9
FINE 3-D 80.4 5.5

Table 1. Classification rates for dimensionality reduction on
Dirichlet distributions parameterized by multinomials.

is the multinomial beta function, expressed in terms of the
gamma function. Hence, we create a collection of data sets
X = {X1, . . . , XN} from a statistical manifold paramater-
ized by the simplex. Given that the simplex can be mapped to
a portion of the sphere by the square root, this may be a good
scenario for SLIM.

Let us further add a classification aspect to the problem,
by defining class labels such that those data sets generated
with parameters α

(i)
1 + α

(i)
2 > 0.4 belong to class 1, while

all other sets belong to class 2. Essentially, this measures
whether or not more than 40% of the probability mass was
covered in the first 40% (2 out of 5) of the variates of the
parameterization.

Using N = 100 data sets, we perform leave-one-out cross
validation over 20 classification trials, i.i.d. in {α(i)}. We
compare the k-NN classification performance of SLIM to that
of FINE, embedded in both 2 and 3 dimensions, and illus-
trate the best performance results (optimized over k) in Table
4.1. We believe that SLIM shows superior performance to
FINE in 2-D, and comparable to FINE in 3-D, due to the fact
that the original PDFs could be easily parameterized by the
non-negative portion of the hyper-sphere. When using SLIM
for dimensionality reduction, we maintain the spherical con-
straint while the mapping allows for negativity, essentially
yielding an additional degree of freedom. This explains the
similar results to the 3-dimensional embedding with FINE.

Note that we are not implying that SLIM is in general
a superior algorithm to FINE. In fact the spherical constraint
forces significant limitations on SLIM’s usage. However, when
a priori knowledge states that the manifold is indeed a sphere,
or portion thereof, the constraint is appropriate and yields po-
tentially significant gains for the final embedding.

4.2. Object Orientation Angle Identification

Object recognition from single images is an area that has seen
much research. One of the difficulties in recognizing objects
is that the orientation angle of the object in the frame must
be fairly consistent in order for algorithms to properly work.
Hence, the identification of this orientation angle could be of
great assistance to recognition algorithms. Given that orienta-
tion is constrained to changes in pitch and yaw, one can model
the manifold of angles as that of a 2-dimensional sphere.

The data for this analysis was collected at Tech-edge build-
ing, in the Air Force Research Laboratory. The experiment



Fig. 1. Sample images of rotated LCD monitor.
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Fig. 2. Embeddings of rotated images with SLIM and PCA.

was performed by positioning an LCD monitor on a swivel-
ing desk, with a stationary camera (Canon VB-50iR) located
above and to the left side of the object. The desk was then
spun and the camera captured still frames of the object at 15
fps with a 640 × 480 resolution, for roughly 10 seconds. An
illustration of the retrieved data set may be found in Fig. 1.

We proceed by sampling a portion of the image trajectory,
corresponding to one complete rotation in yaw (36 images
total). Each rasterized image Ii is characterized as a multino-
mial distribution over the entire pixel space, such that

pi(I) =

[
Ii(1)∑
j Ii(j)

, . . . ,
Ii(m)∑
j Ii(m)

]T

,

where m is the length of Ii (m = 307200 in this case). Given
these multinomial PDFs, we calculate the pairwise Hellinger
distances and implement SLIM with γ = 0.75. Results are il-
lustrated in Fig. 2(a), where we see the clear trajectory which
governs the images. Colors are applied sequentially to the
points so one can view the order for which the path takes
(starting at blue and ending at red).

Note that when we perform the embedding using principal
component analysis (PCA) on the set of images, we see that a
trajectory is still formed. While PCA discerns the order of the
change in angle, it does not properly identify the shape of the
trajectory (i.e. circular). This would become a crucial flaw
if the camera were to change in pitch as well as yaw angle.
SLIM is able to identify the constant pitch and simply define
the trajectory by change in yaw.

5. CONCLUSIONS

In this paper we have presented a novel approach to dimen-
sionality reduction, referred to as Spherical Laplacian Infor-

mation Maps. This information-geometric method of dimen-
sionality reduction embeds probability density functions into
a common low-dimensional space, constrained to lie on the
surface of the sphere. While this additional constraint restricts
the usages of SLIM as compared to FINE, we have shown that
if the underlying manifold is indeed that of a low-dimensional
sphere, the additional constraint yields superior performance.

In future work we plan to apply SLIM towards orientation
angle identification with capture changes in both pitch and
yaw, and compare performance on actual recognition. We
also intend to use SLIM towards mapping global networks,
in which we know the sensor locations lie on an intrinsically
2-dimensional sphere.
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