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ABSTRACT

Decomposition models for understanding mean and covariance structures from high-dimensional
data have attracted a lot of attention in recent years. This thesis visits selected machine learning
problems with applications in topic modeling, neuroimaging, and experimental designs and tackles
challenges in these applications by incorporating decomposable structures.

The first part of the thesis looks into the statistical learning problems for the applications with
decomposable mean structures, namely topic modeling and multi-spectral imaging. The goal of
topic modeling and multi-spectral unmixing is to decompose the spectrum for each document (or
pixel) in the corpus (or the image of a scene) to find latent topics (or spectra of materials present
in multi-spectral images). In topic modeling applications, the number of latent variables is a lot
less than the ambient dimension. This allows us to estimate the topic simplex with the geometric
approach by minimizing the volume of the topic polytope. In our second application, we aim to
trace neurons present in multi-spectral images, called Brainbow images, which capture individual
neurons in the brain and allow researchers to distinguish different neurons based on unique com-
binations of fluorescent colors. Brainbow images, however, have an over-defined problem as the
number of unique neuron color combinations is greater than the number of spectral channels. Thus,
we reformulate the neuron tracing problem as a hidden Markov model with underlying neuronal
processes as latent variables to decompose the observed Brainbow images into individual neurons.

The second part of the thesis studies the decomposition of covariance models for tensor-variate
data to introduce a scalable and interpretable structure. In the tensor-variate analysis, the observed
data often exhibit spatio-temporal structure, and it is desirable to simultaneously learn partial cor-
relation for each mode of the tensor data. However, estimating the unstructured covariance model
for tensor-variate data scales quadratically in terms of the product of all dimensions of the tensor.
Instead, we introduce a Kronecker sum model for the square root factor of the precision matrix.
This model assumption results in a decomposable covariance matrix motivated by a well-known
Sylvester equation.

For the last part of the thesis, we visit the linear contextual bandit problem with missing val-
ues to understand the effect of missing probabilities on the cumulative regret, showing that the
regret degrades due to missingness by at most the square of minimum sampling probability. By

separating the missing values from the context vectors in the covariance model, we can estimate



the linear parameter over time without explicitly imputing the missing values. Our method is ap-
plied to the experimental design for collecting gene expression data by sequentially selecting class

discriminating DNA probes.
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CHAPTER 1

Introduction

With the recent technical and scientific advancements, the abundance of data provided a window
of opportunity for researchers to tackle new challenges in statistical machine learning problems.
As part of this effort, researchers introduced algorithms based on decomposable structures that
are both interpretable and scalable for high-dimensional data. The main advantage of this ap-
proach is that decompositions in real-life applications provide a simpler and more intuitive view
of an unknown system that can be hard to understand due to the large scale and complexity of the
underlying population.

In this thesis, we look into methods that are developed with a probabilistic decomposition point
of view in mind. Chapter 2 and 3 look into the application where the observed data can be viewed
as a mixture of latent signals. We assume that the observed data has a decomposable mean structure
and aim to recover the latent signals that generated the data in topic modeling and Brainbow im-
ages. In both of these applications, the linear mixing process is assumed to generate the observed
data.

The methods in Chapter 4 and 5 are motivated by decomposing the covariance structure for
tensor-variate data and sequential data. Chapter 4 presents a new tensor covariance models by
imposing decomposable structures based on the Sylvester equation for interpretable and scalable
estimation. Chapter 5 studies the linear contextual bandit problem with missing values by separat-

ing out the missing signals from the true context variables in the covariance matrix.

1.1 Decomposition of Mean

Topic modeling and multi-spectral images have a common underlying structure that allows re-
searchers to gain intuition about the given data despite their high dimensionality. Both of these
data have a linear mixing structure with non-negative components. That is, we observe a set of
points z; € R for 1 < j < n that are generated by K latent variables. The linear mixture struc-

ture is generated through basis elements 3, € R? for 1 < k£ < K such that the observed data is



a noisy version of the linear combination of the basis 3),’s with mixing components 6; € A for
1 < j < n, where A¥ is a K-dimensional simplex.
In other words, the data we consider is a convex combination of the basis vector ;s for 1 <

k< K:
K

T R Z Bi0;i, for a mixing vector ¢ € AE (1.1)
k=1

In the matrix form, we can rewrite the data generation process as a familiar matrix decomposition
form, i.e. X ~ ©3 € R™*?, where © € R"*¥ is the abundance matrix and 3 € R**? is the basis
matrix. As we will see in the following subsections, this linear structure appears in topic modeling
and Brainbow images.

In topic modeling applications, each document z; for ¢ = 1, ..., n is observed as a distribution
of words that can be seen as a linear combination of underlying topic distributions. The number
of latent variables (or topics) is assumed to be less than the number of the ambient dimension
(K < p). Similarly, multi-spectral images from Brainbow models each pixel x; fori =1,...,n
as a spectrum over different wavelengths (or color spectra), which is a mixture of neurons present
in the image. In Brainbow application, however, the number of latent variables (or neuron spectra)
is larger than the number of color spectra (K > p).

The main difference between these two applications is the degree of mixing that can be rep-
resented by the support of the corresponding mixing proportion §; € AX The degree of mixing
in these applications determines the difficulty of inference of the parameters 5. Thus, while the
method in Chapter 2 estimates the mixing parameters in a latent variable mixture model by unmix-
ing signals based on 3, such unmixing approach is not necessary for the application in Chapter 3.
In fact, there is virtually no overlap between the color spectra in Brainbow images as the underlying

neurons can be represented with a unique combination of fluorescent dyes.

1.1.1 Topic Modeling

Topic modeling was first introduced in Pritchard et al. [2000] and Blei et al. [2003] to understand
text and genetic data. In topic modeling, we have an additional constraint that 5, € AP for
1 < k < K as the observed text data is on a p-dimensional simplex. Mathematically, we observe

a document x; € AP such that
K
1% ) Bl (1.2)
k=1

where 8, € AP is a distribution over words and 6; € AX is the distribution of topics in the j-th
document with K < p. The goal of topic modeling algorithms is to estimate [ and © given a set

of documents, each of which is a distribution of words.



One of the popular approaches to recovering the topic vectors relies on the low-rank matrix
approximation [Anandkumar et al., 2012, Arora et al., 2013, Fu et al., 2018]. While topic modeling
was initially motivated by a generative model in Blei et al. [2003], the connection with matrix
factorization literature helped researchers to understand the geometry of the proposed models. Out
of many low-rank models, we focus on the non-negative matrix factorization (NMF) with text
and image applications. In Chapter 2, we motivate our method by showing that the likelihood
of the topic modeling problem is asymptotically equivalent to the log determinant topic simplex.
Therefore, we introduce a new method to estimate the topic structures by minimizing the volume

of the topic simplex in the latent space.

1.1.2 Brainbow Image

Brainbow is an imaging process that captures neurons in the brain, each of which can be distin-
guished from adjacent neurons based on unique combinations of fluorescent proteins. Specifically,
by randomly expressing different ratios of available fluorescent dyes in the given organism, each
neuron is observed with a distinctive color. In this application, we observe pixels x; € RP for
1 <5 < n such that

K
v =Y Bibjk (1.3)
k=1

where 3 € R% is a spectrum of a k-th dye over p spectrum and 6; € A¥ is the mixture component
of the j-th pixel. Therefore, the support of 6; represents the presence of latent neuron signals,
expressed in the j-th pixel. However, as the number of distinct colors in the Brainbow images is
a lot higher than the number of dyes (K > p), the traditional matrix factorization methods from
topic modeling are not applicable in tracing individual neurons.

While the tracing problem can be formulated as an unmixing problem of the pixels x;, Brainbow
images have an over-defined problem (KX > p) that leads to the identifiability problem. Further-
more, due to the process of mixed expressions of fluorescent dyes, each color in the observed
image does not necessarily map to unique neurons present in the image. Instead, there have been
numerous efforts in bioinformatics literature where they trace the neighboring fragments of the
neuronal process to trace individual neurons [Athey et al., 2021]. We adopt the simple formula-
tion of the hidden Markov model with the neuronal process as a latent feature to trace neurons in
Chapter 3. While tracing and segmentation approaches for Brainbow images is at an early stage of
development relative to hyperspectral remote sensing, our method in Chapter 3 provides a proof of

concept for future works to perform volumetric segmentation of the whole brain.



1.2 Decomposition of Covariance

In addition to understanding the mean structures of high-dimensional data, estimating the precision
matrices for high-dimensional data has attracted a lot of attention in the past couple of decades as
well. While the sample covariance matrix for the low dimensional data has attractive properties,
the consistency results can be violated in the high-dimensional data where the number of covariates
is a lot higher than the number of observations (n < p). In this regime, it can be shown that the
sample covariance matrix contains zero eigenvalues with high probability.

In order to estimate the precision matrix with provable guarantees and provide the interpretabil-
ity of the final precision matrix, researchers adopted the ¢;-penalized likelihood approach, known
as graphical lasso [Meinshausen and Buhlmann, 2006, Yuan and Lin, 2007, Rothman et al., 2008,
Friedman et al., 2008a, Banerjee et al., 2008]. The sparsity-inducing penalties have been addition-
ally introduced with a minimum concave penalty (MCP) and smoothly clipped absolute deviation
penalty (SCAD) in regression problems [Fan and Li, 2001, Zhang et al., 2010, Zhang and Zhang,
2012, Breheny and Huang, 2011]. MCP and SCAD resemble the ¢;-penalty function around the
centers, but they penalize the large coefficients of the regression parameters equally to avoid the
bias that is present in /;-penalized methods. The statistical and optimization behaviors of these
non-convex penalties were analyzed in Loh and Wainwright [2015b, 2017] to understand the gen-
eral M-estimators from the additive and/or multiplicative noise, including the variants of the sparse
covariance estimation problem.

Following this line of work for the sparse precision matrix estimation for the multi-variate data,
there have been interests in precision matrix estimation for matrix- and tensor-variate data. Such
methods have been on-demand as spatio-temporal data are often collected in matrix- or tensor-

values.

1.2.1 Kronecker Models

The covariance models for tensor-variate data can be naively estimated by vectorizing the data and
calculating the sample covariance. Dawid [1981] introduced the first generalization of multivariate
analysis for tensor-variate data by vectorizing the matrix variate data (two-dimensional tensor) to
model the dependency among both rows and columns. In this model, the tensor samples X &
R™ %Mk are described with the covariance matrix X = E(vec(X)vec(X)T) € R™™, where
m = Hle m;. Even for a matrix-variate case (¢ = 2), the computational complexity and the
sample complexity are prohibitive as the number of parameters grows quadratically with m?. In
order to circumvent this problem, recent work imposed the Kronecker structure on the covariance
matrix instead of directly estimating the unstructured covariance matrix 3.

As a part of the first attempt to introduce the Kronecker structure, Tsiligkaridis et al. [2013]

4



and Zhou [2014] imposed a sparse Kronecker product (KP) structure on the matrix-variate model
by modeling ¥ = ¥; ® --- ® W;. Due to the properties of the Kronecker product, the models
introduced by Tsiligkaridis et al. [2013] and Zhou [2014] preserve the Kronecker product structure
in both 3 and X!, As an alternative, Kalaitzis et al. [2013] introduced Bigraphical Lasso that
imposes the precision matrix to have a Kronecker sum (KS) structure, i.e. 7' = ¥, & ¥, =
(¥1®1,,)+ (I, ®¥,). Greenewald et al. [2017] extended the Bigraphical lasso for tensor-variate
data. Neither of these structures, however, has a generative model that gives an understanding of
how these models can be used. In Chapter 4, we formally introduce our new model (Sylvester

graphical lasso) that is motivated by the well-known Sylvester equation.

1.2.2 High-dimensional bandit and Experimental design

Multi-armed bandit (MAB) problems have attracted a lot of attention in recent years, as they found
applications in clinical trials, recommendation systems, and empirical designs. In the simplest
form, the learner is faced with k-arms to pull in each round, and a noisy reward for the pulled
arm is given to the learner. The goal of the learner is to develop a policy for pulling arms at each
round to maximize the cumulative rewards by appropriately balancing between exploration and
exploitation.

The addition of contextual vectors for each arm in MAB problems lead researchers to study
the theoretical behavior of contextual bandit problems, where each arm a is associated with the
corresponding context vector x, € RP. In this problem, the reward is modeled as a function of
the contextual vector of the chosen arm. Linear bandits are one of the first functional approach to
the contextual bandit problems [Abe et al., 2003, Dani et al., 2008, Auer, 2002, Chu et al., 2011].
As a natural extension, researchers started to explore the high-dimensional feature space in the
sequential setting to learn  over time by imposing a sparsity constraint on the linear parameter
[Abbasi-Yadkori et al., 2012, Gilton and Willett, 2017, Bastani and Bayati, 2020, Wang et al.,
2018, Kim and Paik, 2019, Oh et al., 2021]. Similar to the sparse regression problem, only a small
subset of the context features are correlated with the reward. However, current research in the
linear contextual bandit problems assumes noiseless context variables, which are not necessarily
true in experimental design and mobile health.

In Chapter 5, we introduce the modification to the sparse-agnostic lasso bandit [Oh et al., 2021]
to incorporate the missing values of the covariates. We decompose the covariance matrix into a
missing structure and the underlying covariance matrix for the context variables. This approach
allows us to successfully recover the linear parameter without imputing the missing values in the
context variables. We demonstrate the performance of our model in a DNA probe selection prob-

lem, where the learner is faced with k-probes with gene expression measurements. The goal of this



empirical design problem is for the learner to choose the DNA probes that lead to discriminative

gene expressions to classify different types of microbiomes.

1.3 Main problems and publications

The thesis contains four main chapters. The first two chapters (Chapter 2 and Chapter 3) focus on
the decomposition of mean structures in topic modeling and Brainbow images. The last two chap-
ters (Chapter 4 and Chapter 5) focus on the theoretical properties of the convergence of covariances

in tensor-variate data and sequential data.

* Chapter 2 studies the geometric approach to topic modeling [Jang and Hero, 2019], which
was published in the International Conference on Artificial Intelligence and Statistics. In this
chapter, the topic modeling problem is formulated as finding the high-dimensional simplex

by minimizing the volume contained by the topic vectors.

* Chapter 3 analyzes the Brainbow data to trace individual neurons in multi-spectral images.
While the data generation process can be viewed as an unmixing problem, the tracing prob-

lem is tackled with a simple hidden Markov model.

* Chapter 4 introduces a new covariance model for tensor-variate data, called Sylvester Graph-
ical Lasso. The generative model is motivated by the well-known Sylvester equations. We
present the consistency results for the proposed model and demonstrate the flexibility of the
model via empirical data and EEG data. This is based on a joint work with Yu Wang [Wang
et al., 2020] and was published in the International Conference on Artificial Intelligence and

Statistics.

» Chapter 5 introduces a new modification to the high-dimensional linear bandit problems to
cope with missing values in the context variables. The model is applied to the experimen-
tal design problem to select the most discriminative DNA probes in microbiology studies.
This chapter is submitted to the International Workshop on Machine Learning for Signal

Processing.



CHAPTER 2
Minimum Volume Topic Modeling

We propose a new topic modeling procedure that takes advantage of the fact that the Latent Dirich-
let Allocation (LDA) log-likelihood function is asymptotically equivalent to the logarithm of the
volume of the topic simplex. This allows topic modeling to be reformulated as finding the prob-
ability simplex that minimizes its volume and encloses the documents that are represented as dis-
tributions over words. A convex relaxation of the minimum volume topic model optimization is
proposed, and it is shown that the relaxed problem has the same global minimum as the original
problem under the separability assumption and the sufficiently scattered assumption introduced by
Arora et al. [2013] and Huang et al. [2016]. A locally convergent alternating direction method of
multipliers (ADMM) approach is introduced for solving the relaxed minimum volume problem.
Numerical experiments illustrate the benefits of our approach in terms of computation time and

topic recovery performance.

2.1 Introduction

Since the introduction by Blei et al. [2003] and Pritchard et al. [2000], the Latent Dirichlet Al-
location (LDA) model has remained an important tool to explore and organize large corpora of
texts and images. The goal of topic modeling can be summarized as finding a set of topics that
summarizes the observed corpora, where each document is a combination of topics lying on the
topic simplex.

There are many extensions of LDA, including a nonparametric extension based on the Dirichlet
process called Hierarchical Dirichlet Process [Teh et al., 2005], a correlated topic extension based
on the logistic normal prior on the topic proportions [Lafferty and Blei, 2006], and a time-varying
topic modeling extension [Blei and Lafferty, 2006]. There are two main approaches for estimation
of the parameters of probabilistic topic models: the variational approximation popularized by Blei
et al. [2003] and the sampling-based approach studied by Pritchard et al. [2000]. These inference

algorithms either approximate or sample from the posterior distributions of the latent variable rep-



resenting the topic labels. Therefore, the estimates do not necessarily have a meaningful geometric
interpretation in terms of the topic simplex - complicating the assessment of goodness of fit to
the model. In order to address this problem, Yurochkin and Nguyen [2016] introduced Geometric
Dirichlet Mean (GDM), a novel geometric approach to topic modeling. It is based on a geomet-
ric loss function that is surrogate to the LDA’s likelihood and builds upon a weighted k-means
clustering algorithm, introducing a bias correction. It avoids excessive redundancy of the latent
topic label variables and thus improves computation speed and learning accuracy. This geometric
viewpoint was extended to a nonparametric setting [ Yurochkin et al., 2017].

LDA-type models also arise in the hyperspectral unmixing problem. Similar to the documents in
topic modeling, hyperspectral image pixels are assumed to be mixtures of a few spectral signatures,
called endmembers (equivalent to topics). Unmixing procedures aim to identify the number of
endmembers, their spectral signatures, and their abundances at each pixel (equivalent to topic
proportions). One difference between topic modeling and unmixing is that hyperspectral spectra
are not normalized. Nonetheless, algorithms for hyperspectral unmixing are similar to topic model
algorithms, and similar models have been applied to both problems. Geometric approaches in
the hyperspectral unmixing literature take advantage of the fact that linearly mixed vectors also
lie in a simplex set or a positive cone. One of the early geometric approaches to unmixing was
introduced in Nascimento and Dias [2005] and Bioucas-Dias [2009], which aim to first identify the
K-dimensional subspace of the data and then estimate the endmembers that minimize the volume
of the simplex spanned by these endmembers. Bioucas-Dias [2009] estimates the endmembers by
minimizing the log determinant of the endmember matrix, as the log-determinant is proportional
to the volume of the simplex defined by the endmembers. This idea of minimizing the simplex
volume motivated the algorithm proposed in this paper for topic modeling. In Bioucas-Dias [2009],
however, the authors experience an optimization issue as their formulation is highly non-convex.
It was found that the local minima of the objective in Bioucas-Dias [2009] may be unstable.

The topic modeling problem also has similarities to matrix factorization. In particular, nonneg-
ative matrix factorization, while it does not enforce a sum-to-one constraint, is directly applicable
to topic modeling [Deerwester et al., 1990, Xu et al., 2003, Anandkumar et al., 2012, Arora et al.,
2013, Fu et al., 2018]. Recover KL, recently introduced by Arora et al. [2013], provides a fast
algorithm that identifies the model under a separability assumption, which is the assumption that
the sample set includes the vertices of the true topic model (pure endmembers). As the separabil-
ity assumption is often not satisfied in practice, Fu et al. [2018] introduced a weaker assumption
called the sufficiently scattered assumption. We provide a theoretical justification of our geometric

minimum value method under this weaker assumption.



2.1.1 Contribution

We propose a new geometric inference method for LDA that is formulated as minimizing the vol-
ume of the topic simplex. The estimator is shown to be identifiable under the separability assump-
tion and the sufficiently scattered assumption. Compared to Bioucas-Dias [2009], our geometric
objective involves log det 337 instead of log | det 3|, making our objective function convex. At the
same time, the log det 337 term remains proportional to the volume enclosed by the topic matrix 3
and simplifies the optimization. In particular, we propose a convex relaxation of the minimization
problem whose global minimization is equivalent to the original problem. This relaxed objective
function is minimized using an iterative augmented Lagrangian approach, implemented using the

alternating direction method of multipliers (ADMM), which is shown to be locally convergent.

2.1.2 Notation

We use the following notations. We are given a corpus W € DM*V with M documents, K topics,
vocabulary size V' and N,,, words in document m for m = 1,--- , M. Let D"*? be the space of
n X p row-stochastic matrices. Then, our goal is to decompose W as W = 03, where § € DM*E
is the matrix of topic proportions, and 3 € D¥*V is the topic-term matrix. Finally, A? represents
the d-dimensional simplex. It is assumed that the documents in the corpus obey the following
generative LDA model.

1. For each topic g; fori =1,--- | K

(a) Draw a topic distribution S;

2. For j-th document w?) € RY in the corpus W forj = 1,--- , M
(a) Choose the topic proportion 0, ~ Dir(«)
(b) For each word 6,, in the document w'/)

i. Choose a topic z, ~ Mult(0)

ii. Choose a word 6,, ~ f3,,

2.2 Proposed Approach

We assume that the number K of topics is known in advance and is much smaller than the size of
the vocabulary, i.e. K < V. Furthermore, since LDA models the document as being inside the
topic simplex, it is advantageous to represent the documents on a /{-dimensional subspace basis.
Let Ex = [e1,- -, ex| be amatrix of dimension V' x K with K orthogonal directions spanning
the document subspace. Specifically, we define Fx as the set of K eigenvectors of the sample

covariance matrix of the documents w®, i =1,..., M.
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Most of the paper focuses on working with @® = w® E, € RX, which corresponds to the
coordinates of w® in colspan(Ex). Note that we can recover the projected documents in the

original V'-dimensional space by

o® =w

where w is the sample average of the observed documents. Therefore,
W=08= (W —-05)Ex =0

where O belongs to the simplex AX. This K-dimensional probability simplex is defined by the
topic distributions, which are the rows of 3Ey € RE*X, For the rest of the paper, given w € RY,
we denote w as the corresponding coordinates in the projected subspace and @ as the projected

vector in the original V'-dimensional space.

2.2.1 Topic Estimation

Let v = (BExk)~!. Then, it follows that § = (W Ex)~y. We know that SE is invertible as we
assume that there are K distinct topics, and the rank of the topic matrix (3 is K. Then, as noted in

Nascimento and Bioucas-Dias [2012], the likelihood w.r.t. © can be written as

= log (p(0% = (W Ex)y|8, @) - | det(7)])
i=1 2.1

= Zlog (09 = (WD Ex)718, )
+ M log | det ()|

This formulation gives a nice geometric interpretation.

Geometric Interpretation of log likelihood: As we increase the number of documents M —
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00, the dominant term is log | det(3)|. That is,

lim argmax!{(6, 5|W)

M —o0 B
M

= lim argmax ) _ logp(Wilf, 5)
B i=1 2.2)

~ arg min log | det(SEx)|
B

= arg min — log | det |
v

Note that log | det(SE )| is proportional to the volume enclosed by the row vectors of SFEy, i.e.
the topic simplex in the projected subspace. In other words, the estimated topic matrix 5 that
minimizes its intrinsic volume is asymptotically equivalent to the asymptotic form of the log-
likelihood (2.1). This is the main motivation for our proposal to minimize the volume of the topic

simplex.

2.3 Minimum Volume Topic Modeling

In the remote sensing literature, Nascimento and Bioucas-Dias [2012] proposed to work with the
likelihood (2.1) by modeling # as a Dirichlet mixture. However, their endmembers are spectra and
do not necessarily satisfy the sum-to-one constraints on the endmember matrix; constraints which
are fundamental to topic modeling. These additional constraints on the endmember complicate the
minimization of (2.1). The first difficulty arises from the log | det 3| term, as [ is not a symmetric
matrix, which makes the log-likelihood (2.1) non-convex. Due to this non-convexity issue, Nasci-
mento and Bioucas-Dias [2012] propose using a second-order approximation to the log det (3 term.
Yet, no rigorous justification has been provided for their approach. In contrast, we propose using
log det 337 instead of log | det 3], prove identifiability under the sufficiently scattered assumption,
and derive an ADMM update.

As we are optimizing (SFEf )~ directly, we use the notation v = (8FEg) ! in the sequel. We

can then rewrite the objective (2.2) as follows
4 = arg min — log | det(yy%)|
’YERKXK
st. >0 01=1 0= (WEg)y (2.3)
>0 pl1=1

where 3 = w + (y~! — WEk)EL. The first set of constraints corresponds to the sum-to-one and
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non-negative constraint on the topic proportions § = (W Ex )7, and the second constraint imposes
the same conditions on 3. Thus, the problem (2.3) provides an exact solution to the asymptotic
estimation of (2.1). However, this is not a convenient formulation of the optimization problem,
as it involves the constraint on the inverse of . Note that as we assume 3 € RY intrinsically
lives in a K -dimensional subspace, there is a one-to-one mapping between 3 and v = (BEx)~ .
Throughout this paper, we will make use of this relationship between /3 and ~. Here, working with
a geometric interpretation of the second set of constraints we propose a relaxed version of (2.3).

Sum-to-one constraint on 5: Combined with the non-negativity constraint, the sum-to-one
constraint S1 = 1 forces the rows of J to lie in the K -dimensional topic simplex within the word
simplex. To be specific, 51 = 1 narrows our search space to be in an affine subspace, which is
accomplished with a projection of the documents onto this K -dimensional affine subspace. This
projection takes care of the sum-to-one constraint in the objective (2.3).

Non-negativity constraint on 5: We propose relaxing the non-negativity constraint to the
following

Omin ('7) > R

where 0,,;, () is the minimum singular value of 7. As illustrated in Figure 1, this is interpreted
as replacing the non-negativity constraint on the elements of the matrix 5 with a radius R ball
constraint on the rows of the matrix 5. As noted before, there is a mapping between v and 3
through 3 = w + (y~! — WEk)EL. Thus, if 4 is the current iterate of an iterative optimization
algorithm, to be specified below, then we can represent the corresponding ¢-th topic vector in the
projected space as bt = (v*)7![i,:] = (B Ex)]i, :]. It follows that

182 = tr((65) "0 Amin (") _ tr((b5) "0 ")
_ tr(bhgbh)T) frleie) _ po

Then, imposing 7, (v) > R~ results in ||b;||* < R. The first inequality in (2.4) comes from the
fact that A\, (A) tr(B) < tr(AB) < A\pnae(A) tr(B) for positive semidefinite matrices A and B.
The second equality in (2.4) comes from the definition that b; is the i-th row of (y*)~*

With this spectral relaxation of the non-negativity constraint, the relaxed version of the problem

(2.3) becomes

~ = arg min — log | det('y/VT”
Y

st. >0 01=1 0= (WEg)y (2.5)
O-mzn(’y) 2 R_l

Intuitively, as shown in Figure 2.1, the optimization problem (2.3) and (2.5) are equivalent to each
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other except that the ball relaxation has expanded the solution space beyond the feasible space.
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Figure 2.1: Visualization of the difference between the feasible space of (2.3) (blue triangle) and
that of (2.5) (pink circle).

The blue triangle represents the set of feasible points for problem (2.3), and the red circle

corresponds to the solution space in (2.5).

2.3.1 Identifiability

Here we establish the identifiability of the model obtained by solving problem (2.5). Identifiability
gained interests in the topic modeling literature (Arora et al. [2013] and Fu et al. [2018]). We show

the identifiability under the sufficiently scattered condition. We first state the following lemma.

Lemma 2.3.1. Let 7 be a solution to the problem (2.5). If rank(W) = K, we have that 7 € T,

where
F={yeR* . g=w+ (v —wEg)EL € DV

and 30 € DM X st. § = (WEg)v}
Intuitively, Lemma 2.3.1 tells us that we cannot have the solution outside of the blue triangle in
Figure 2.2. If there was a solution outside of the triangle (Figure 2.2a), we could find the projection

(Figure 2.2b) onto the word simplex (blue triangle) that still satisfies the constraint yet has a smaller

volume, which is a contradiction.

Proof. We prove this statement by contradiction. Suppose 7 & I'. Then, as 7 is an optimal solution
to the problem (2.5), we have that § = (W Ex )y € DM*E Furthermore, since W € AV and Ex
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(a) Simplex /3 (b) Simplex Proj v (3)

Figure 2.2: Visualization of the proof for Lemma 2.3.1. The set I' corresponds to the blue triangle,
which represents the feasible set of the problem (2.3). The red circle represents the feasible set
of the relaxed problem (2.5). Given a potential solution B for (2.5), we can always argue that the
projection of /3, namely Proj,v(/3), is a better solution to (2.5) as illustrated in Panel 2.2b.

1s obtained from PCA, we have that EIT(IV = 0. Thus, it follows that

Bly =wly + (37" —wWEK)EL1y,
1 — (77— WER)0y = 15

Therefore, the only constraint that 7 could possibly violate is non-negativity of B . Let Projav (B )
be the projection of B onto the simplex A" and let Yyro; = Projav (B)EK Then, 7 € I satisfies
all the constraints in the optimization problem (2.5), but we also have that

— log(det Fproj Tpre) < —log(det 777

since the volume of Proj v ( B) is smaller than that of B . This is a contradiction as 7 is the optimal
solution to the problem (2.5). Thus, it follows that 7 € T'. 0

We now state the sufficiently scattered assumption from Huang et al. [2016].

Assumption 1: (sufficiently scattered condition (Huang et al. [2016])) Let cone(5)* = {z :
Bz > 0} be the polyhedral cone of 3 and S = {z : ||z||» < 17z} be the second order cone. Matrix
B is called sufficiently scattered if it satisfies:

1) cone(B)* C S

2) cone(B)* Nbd(S) = {aex :a >0,k =1,---, K}, where bdS denotes the boundary of S.

The sufficiently scattered assumption can be interpreted as an assumption that we observe a

sufficient number of documents on the faces of the topic simplex. In real-world topic model appli-
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cations, such an assumption is not unreasonable since there are usually documents in the corpora

having sparse representations.

Proposition 2.3.1. Let vy, be the optimal solution to the problem (2.5) and 3, = w + (v, ' —
wEx)EL be the corresponding topic matrix. If the true topic matrix (3 is sufficiently scattered and

rank(W) = K, then 3, = P11, where 11 is a permutation matrix.

The proof structure is similar to the one in Huang et al. [2016], and we include it here for

completeness.

Proof. Given a corpus W € DM*K let 5 € DX*V be the true topic-word matrix. Suppose
rank(1W) = K and f is sufficiently scattered. Let 7, be the solution to the problem (2.5). Then, by
Lemma 2.3.1, we have that v, € I". Furthermore, since rank(1/') = K, we have that rank(f3,) = K
as W = 0p, where § = (W Eg)y.. It also follows that rank(3) = K due to the constraint
W = 6p3. Therefore,
trivial solution to (2.5) as the objective is bounded. As 3 and f3, are full row rank, there exists an
invertible matrix Z € R¥*X such that 8, = Zf. Also, as 7, € I, it follows that 3, = Z3 > 0 and

det 8] and | det (| are strictly positive. In other words, we cannot have a

By = Zply = 1k
= Ll =1k

The inequality constraint Z3 > 0 tells us that rows of Z are contained in cone(S3)*. As [ is

sufficiently scattered, it follows that
Z[kz,: } € cone(fB)" C S (2.6)

by the first condition of (A1). Then, by the definition of the second order cone S, it follows that

K
|det Z| = |det Z"| < [[IZ[K,: ]2

k=1

p (2.7)
<[[Z[F:]J1=1
k=1

The first inequality comes from the Hadamard inequality, which states that the equality holds if
and only if the vectors Z [k:, : } ’s are orthogonal to each other. The second inequality holds when
\Z1k,:||l2 = Z[k,:]1x Vk = 1--- K. In other words, when Z|k,:] € bd(S) Vk. Then, together
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with (2.6), it follows that
Z[k,:] € cone(8)" NbdS

(2.8)
=D A>0k=1,- K}

Thus, it follows that the | det Z| achieves its maximum at 1, when Z € cone(/3)* N bdS sums to
one and is an orthogonal matrix, i.e. when Z is a permutation matrix.
Furthermore, since v, = (8, Ex) ' = Z Y (BEx)™! = Z~'~, we have that

—det(1.)) = —det(Z 7" (Z271)T)
= —|det Z7 ! det(yyT)| det Z71|
= —|det Z| 2 det(yy")
> —|det(yy")|

where the equality holds when | det Z| = 1. In other words, the minimum is achieved when Z is a
permutation matrix. Therefore, our solution ~, to the problem (2.5) and the corresponding [, are

equal to the true topic-word matrix up to permutation. 0

Assumption 2 (Separability assumption from Arora et al. [2013]) There exists a set of indices
A = {iy,- - ,ix} such that 3(A,:) = Diag(c), where ¢ € RE.

The separability assumption, also known as the anchor-word assumption, states that every topic
k has a unique word wy, that only shows up in topic k. These words are also referred to as the
anchor words as introduced in Arora et al. [2013].

Remark: The identifiability statement in Proposition 2.3.1 holds true under the separability
assumption as well, as the sufficiently scattered assumption is a weaker version of the separability

assumption.

2.3.2 Augmented Lagrangian Formulation

With ¢ > 0, we work with the following augmented Lagrangian version of the constrained opti-

mization problem (2.5)

7 = arg min — log | det(y7")| + W1
y o (2.9)
st. Yl = (WIW) "Wy 0pin(y) > ¢

where W = WEg, ¢ = R, and | X||, = ;;max(—X;;,0) is a hinge loss that cap-

tures the non-negativity constraint on 6. Furthermore, the linear constraint is converted to

g = (/WV/TW)‘lelV, which is the same constraint as W'yl;{ = 1y. For simplicity, we
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definea = (WTW)"'WT1y,.

The Lagrangian objective function in (2.9) can be written as

F(7) = —log| det(v/7)| + ul[ W]
+ 1(omin(7) > ) s.t. 71 = a

(2.10)

Introducing the auxiliary optimization variables V; € R™** and V, € R¥**, we reformulate (2.5)

5 = argmin { ~ log | det 17" + ul[Vi -+
’YvVl)VQ

+ 1 (min(V2) > )} @11

s.t. ‘/1:va7 vy=V, ylgx=a

For a penalty parameter p > 0 and Lagrange multiplier matrix A € R"**, we consider the aug-

mented Lagrangian of this problem

E(%‘/l,VQyAlaAQ)
= —log|det 7| + pl|[Villn + L(omin(V2) > ()

— — (2.12
+ BTy = Vil + (A, Wy = W) :

+ 20y = Vallh + (Ao y — Vi) syl —a

This function can be minimized using an iterative ADMM update scheme on the arguments -, V7,
Vs, A1, and A,. The update for Vi and V5 can be accomplished by standard proximal operators
that implement soft-thresholding and a projection. Furthermore, the «y-update can be derived in a
closed-form by solving a quadratic equation in its singular values. The details of the ADMM up-
dates are included in the supplement. First, consider the y-subproblem without the linear constraint

v1 = a. Then, as derived in the supplement, the resulting update equation for -y is

7+ = argmin { —log|det 77| + £ C1/2(y - A)|13}
Y ERkxE 2 (2.13)
— UDWT

where D is defined in the supplement. Using ., we obtain a closed-form solution to the v sub-

problem in (2.12) as follows

Y = = (1—a)fcy T e
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This solution to the linear constrained problem can be easily derived as a stationary point of the

convex function that is minimized in (2.13). Note that, by construction, 7**'1 = a.

Algorithm 1: Minimum volume topic modeling
Input: W, Ex, 7% p >0, 1> 0
Output: 5 .
Initialize V) =~°, V; = WA%, A =0,A3=0;
Calculate C' = I + WTW ;
Calculate the projected documents IV ;
while not converged do

t+1 pWVt—i—Atl
Vi —PTOXH-Hh,u/p( >

t+1 _ . pyi AL
Vo — o, (2

P

Y = = (el -a)f et
where 7, is defined in (2.13)

A?ri — A]f + p(W’}/t'H _tv%tJrl)

Ay = A5+ p(yH =V

end

In the non-negative matrix factorization literature, Liu et al. [2017] used a large-cone penalty
that constrains either the volume or the pairwise angles of the simplex vertices. However, this
does not impose a sum-to-one constraint on the topics, and the optimization is performed over 5.
Furthermore, our formulation has an advantage over the problem in Liu et al. [2017] as we directly
work with the latent topic proportions 6. This is possible in our formulation as we decoupled

from 6 using the ADMM mechanism.

2.3.3 Convergence

The following proposition shows that Algorithm 1 converges to a stationary point of (2.10).

Proposition 2.3.2. For any limit point (v*, V{*, V5F, AT, A3) of Algorithm 1, ~v* is also a stationary
point of (2.10).

This follows by applying a standard convergence proof of the ADMM algorithm (Algorithm 1)
based on the KKT condition. The proposition states that our ADMM formulation converges to a
stationary point. However, while the unconstrained objective function in (2.10) is convex, the con-
straint on the minimum singular value makes the constrained optimization function non-convex.
Thus, our algorithm is only guaranteed to converge to a stationary point of (2.10).

Figure 2.3 demonstrates the convergence of our algorithm with synthetic data generated from
an LDA model with parameters o« = 0.1,7 = 0.1,V = 1200, K = 3, M = 1000, and N,,, = 1000.
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Figure 2.3: Experimental runs using Algorithm 1. The data was simulated from an LDA model
witha =0.1,7 = 0.1,V = 1200, K = 3, M = 1000, N,,, = 1000. The algorithm was initialized
with v equal to the identity matrix. The left panel shows the relative Frobenius error between the
iterates 7' and the true ~y. The right panel shows the convergence in terms of the objective values.

2.4 Performance Comparison

To demonstrate the performance of the proposed minimum volume topic model (MVTM) esti-
mation algorithm (Algorithm 1), we generate the LDA data with the parameters n = 0.1,V =
1200, K = 3, M = 1000, V,,, = 1000 with varying «, which is Dirichlet hyperparameter for the
topic proportion 6. For ease of visualization, the first two dimensions of the projected documents
and the estimated topics are used. The first scenario (ov = 0.1) in Figure 2.4 shows the performance
of our algorithm is comparable to the vertex-based method GDM (Yurochkin and Nguyen [2016]),
when there are plenty of observed documents around the vertices. While there is no anchor word in
the generated dataset, we observe enough documents around the vertices. In other words, the sep-
arability assumption is slightly violated. With higher values of «, however, Figure 2.5 shows the
advantages of our method, denoted as MVTM. Note that the higher values of « correspond to the
situation where the sufficiently scattered condition is satisfied, but the separability condition is vio-
lated. Thus, we can see the vertex-based method (GDM) starts to suffer in the oracle performance.
In contrast, with an appropriate choice of p for the hinge loss, our method recovers the correct
topics even for the well-mixed scenario where o = 5. Figure 2.5b shows that there is a kink in the
optimization path, where MVTM is finding the right orientation of the true simplex. Furthermore,
there is a lack of loops in the optimization path, illustrating the identifiability of MVTM.

Lastly, we explore the asymptotic behavior by varying document lengths N, with M = 1000,
K =5,V =1200,7 = 0.1, « = 0.1 and 100 held-out documents. MVTM is all initialized at the
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Figure 2.4: Visualization of Minimum Volume Topic Modeling (MVTM) with the observed docu-
ments in black, optimization path of MVTM in the gradient of red (dark red = beginning, light red
=end), and the final estimate in yellow. The ground-truth topic vertices are plotted in cyan. The
Dirichlet parameter for the topic proportion was set at « = 0.1, and MVTM was initialized at the
identity matrix.

identity matrix, and VEM had 10 restarts as the objective for the variational method is non-convex.

Figure 2.6 tells us that 1) Gibbs sampling and MVTM have comparable performance in terms of
perplexity, 2) MVTM and VEM both show the computational advantages over the Gibbs sampling
method, and 3) VEM suffers from the statistical performance due to the nature of the non-convex

objective function of VEM. Additional simulation results can be found in the supplement.

2.4.1 NIPS dataset

To illustrate the performance of MVTM on real-world data, we apply our algorithm to NeurIPS
dataset. We preprocess the raw data using a standard stop word list and filter the resulting data
through a stemmer. After preprocessing, words that appeared more than 25 times across the whole
corpus are retained. Then, we further remove the documents that have less than 10 words. The
final dataset contained 4492 unique words and 1491 documents with a mean document length of
1187. We compare our algorithm’s performance to GDM and Gibbs sampling at K=5, 10, 15,
and 20. The perplexity score is used to perform the comparison in Table 2.1. The additional time
comparison and top 10 words of top 10 learned topics for MVTM, GDM, and Gibbs sampling are

provided in the supplement.
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Figure 2.5: Visualization of the proposed MVTM algorithm with the observed documents in black,
optimization path of MVTM in the gradient of red (dark red = beginning, light red = end), and the
final estimate in yellow under different values of «. The ground-truth topic vertices are plotted in
cyan, and the final estimate of GDM is plotted in green for comparison. MVTM was initialized at
the identity matrix.

MVTM GDM RecoverKL Gibbs
K=5 1483 1602 1569 1336
K=10 1387 1441 1507 1192
K=15 1293 1344 1438 1109
K=20 1273 1294 1574 1068

Table 2.1: Perplexity score of the geometric algorithms and the Gibbs sampling for analyzing the
NIPS dataset. The proposed algorithm MVTM is performing better than the vertex methods (GDM
and RecoverKL) in terms of perplexity as it only requires the documents lie on the face of the topic
simplex. GDM provides a similar performance to MVTM.

2.5 Discussion

This paper presents a new estimation procedure for LDA topic modeling based on the minimiza-
tion of the volume of the topic simplex S. Such formulation can be thought of as an asymptotic
estimation of the LDA model. The proposed minimum volume topic model (MVTM) algorithm
differs from moment-based methods including RecoverKL and the vertex-based method such as
the GDM. We proved the identifiability of MVTM under the sufficiently scattered assumption in-
troduced in Huang et al. [2016]. When the sufficiently scattered assumption is satisfied and the
separability assumption is violated, MVTM continues to perform well with an appropriate choice

of the hinge loss parameter.

21



500

400 A

Perplexity

300 ~

200 \\g

0 1000 2000 3000
Nm

150 A

100 1

Time (s)

50 1

04 g
T

0 1000 2000 3000
Nm

method Gibbs =4~ MVTM VEM

Figure 2.6: Perplexity of the held-out data and the corresponding time complexity of each method
at varying values of the number words per document N,, with A/ = 1000, K = 5, V = 1200,
n=0.1and a=0.1

There are open questions on the statistical convergence of our estimator in terms of the doc-
ument length and the number of documents. Such relationships have been explored in the work
of Tang et al. [2014], and it would be interesting to see if these could be applied to the proposed
MVTM. The understanding of the statistical behavior of MVTM will provide us with theoretical
guidance on the choice of the hinge loss parameter. Besides the theoretical questions, MVTM also
has some potential modeling extensions. The immediate extension includes the nonparametric

setting, where one would also estimate the number of topics /.
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2.6 Appendix

2.6.1 Algorithm Analysis
2.6.1.1 ADMM update derivation

For completeness, we derive the ADMM steps of the problem in (2.12). Given current iterates
Vit and A,

Vit = argmin { |Vl + £1W4" = Va2
VleRnxk

+ (A, W = Vi) )

, 1 WAt + Al (2.14)
= argmin { 2Vl + 5[V - 2L
VeRnxK | P 2
WAt + At
— Soft-Threshold,,, <L+1>
p

where we soft-threshold the matrix with the regularization parameter %.

Vit = argmin { 2l = Valh + (Azy! = Vi)
Vo ERkXE

1
F 1 (1RY) 2 25}

t t
py A
—2|I% (2.15)

)

1
= arg min {§HVQ —

VQERka

=

where Gp = {X € R"¥|0,,in(X) > 1} and Proj,  is the projection onto the set G'.

1
R

A = argmin{ — log | det vy | + g”WV ~Vl%

,Ye]Rk Xk

0Ty = Vi) + Elly = Vel
+<Am_v2>} st. ylg=a (2.16)

— argmin { — log | det v77| + £[|CV2(y — A) 3}

,yekak

S.t. ’71[( =a

23



where we have that

A=C'BT =UD,VT

B = iy gy - (R QW

C=I+WTWw

We can derive the update for 4**1, as it is a convex problem with a linear constraint. First, con-
sider the (2.16) without the linear constraint Y1 = a. Then, we can rewrite the unconstrained

~-subproblem as

7 = argmin { —log(det 17" + ZJIC2(y — )12}

’YERka

= arg min { —log(det yy7) + gtr(vTCW)

’yERka
— ptr(vTCA)}
= arg min { — log(det yyT) + L tr(y" C)
y=UDVT 2
- ptr(vTCA)}
= argmin { — log(det D?) + L tr(UD*UTC)
y=UDVT 2
- ptr(UDADUTO)}

K
= arg min { — Z 2log |D;;| + L tr(ED?) — ptr(FD)}
y=UDVT ) 2

K
1=1

y=UDVT

where £ = UTCU and FF = UTCUD,. Then we can solve the above problem element by

element. Looking at the i-th entry, we can take the derivative and set it to zero. That is

d p
log | Dy| + L E,D? — FD) -
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leading to the following quadratic formula

F 2
" Ey pLEii
which has the solution
Fi; 2 8
1’5 _ Eu + ET“ + pE;;
[ 2

Then, using these diagonal elements Du‘, it follows that

74 = argmin { — log(det 177) + 2][CV2(y — A)|12}

’YERk Xk

= UDVT
We make the final adjustment to satisfy the linear constraint. Thus, the v update is

YD =, — (1 —a)@"C ') !
2.6.1.2 Proof of Proposition 2.3.2

Proof. The first order conditions of the updates in Algorithm 1 give us

0 € Ol-[lnn (Vi) = p(Wr' = V™) = A}
0€la, (V) —p( =V =4 o1
0€ =207 4 pW T (WAL — V) 4 WTAL+

P = VI 4+ AL+ 1 (V) sty 1 = a

Note that the first order condition for '™ is different as it is a equality constrained convex problem.
Also, by the definitions of A{** and AL

AT = AL+ (WY =V 018
Aé—i—l — A/\t2 4 p(,yt-i-l _ ‘/'Qt-i-l)
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Then, combining these two sets of equations, we have that

AT+ pW (v = 7)€ Ol [l (Vi)

AS 4 p(yf =) € Dlg, (V3 H)

2(7t+1)—T _ lK(Vt-H)T _ ’V[V/TAiH + AtQ—l—l 219
1 s .
AT A =TT v

1

_(Angl _ A;) — ,}/tJrl _ ‘/ZtJrl
P

Then, let us define (7%, Vi, VY, A} AL, be a sequence of iterates with a limit point
(v, Vi, V55, AT, AS). Then, by the last two equations of (2.19), we have that Wo* = WVQ* =V

Therefore, the first two equations give us that

A5 € Ol (Vi) = Ol (W)
A; S a]lGRG/Q*) - a]]‘GR(’y*)

Lastly, using the third equation in (2.19), it follows that

2(v) " — 1 (V)" =
WAL + A3 € Ol [l (W) + 0Lga (v)

Noting that the optimality condition for arg min,, — log | det(y77)| st. 1 =ais
—2(v) T +1x(*)" =0 andy'1=a
We have that

0=—-2(v)" + 1) +2(v)" = 15"
= 2(v) T+ 1 ()T + WIAS + AL € Of (1)

and we have that 7*1 = a by the formulation of our update for v*. This shows that 7* satisfies the
optimality condition of (2.10) and thus a stationary point for f. [

2.6.2 Simulations

We demonstrate the computational benefit as well as the accuracy of our model in terms of per-
plexity. The experiments are based on the simulated data from the LDA model, and we focus

26



on the comparison to the variational EM (VEM) and Gibbs sampling to illustrate the advantages
of our method. As part of the future work, we plan to compare the stochastic implementation of
MVTM with GDM [Yurochkin and Nguyen, 2016] and the improved implementations of the Gibbs
sampling presented in Li et al. [2014] and Yuan et al. [2015] at a much larger scale.
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Figure 2.7: Perplexity of the held-out data and the corresponding time complexity of each method
at varying values of the number of documents M with N,, = 1000, K = 5, V = 1200, n = 0.1
and o = 0.1

We first look at the behavior of the algorithms as M increases when N,,, = 1000 (Figure 2.8).
At N,, = 1000, we are working with the setting that is close to the asymptotic regime, and MVTM
has the computational speed comparable to VEM and the statistical performance similar to the

Gibbs sampling.
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Figure 2.8: Perplexity of the held-out data and the corresponding time complexity of each method
at varying values of the number of documents M with N,, = 100, K =5,V = 1200, n = 0.1 and
a=0.1

In a more challenging case with the shorter documents at N,,, = 100, MVTM continues to per-

form as well as the Gibbs sampling with a little additional computational cost. This performance
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comparison would be of interest to the researchers who are working with shorter documents present
in the modern application. As discussed in Tang et al. [2014] and Nguyen [2015], the limitation
of LDA comes from the document lengths. Our results show that MVTM does not suffer from the
short documents in terms of statistical performance when the regularization parameter s for the
hinge loss is appropriately chosen. The current batch implementation, however, suffers from the
number of documents present in the dataset, as it has to soft-threshold every document. This com-
putational limitation, however, can be alleviated by the stochastic implementation as demonstrated

in the stochastic implementation of the variational method in Hoffman et al. [2013].

2.6.3 NIPS dataset Topics
2.6.3.1 Computational Time

Figure 2.9 shows the time complexities of different algorithms on the NIPS dataset as we increase
the number of topics. Compared to GDM, the proposed MVTM improvement on performance
comes at a little computational cost. RecoverKL could achieve a similar computational speed if
the anchor words are provided. However, when we include the computational cost of finding the

anchor words, GDM and MVTM show computational advantages over RecoverKL.
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Figure 2.9: The computational performance of different algorithms as a function of the number of
topics. NIPS dataset includes 1491 documents and 4492 unique words.
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2.6.3.2 Top 10 topics

Topic1  Topic2 Topic 3 Topic 4  Topic 5 Topic 6  Topic 7 Topic 8  Topic 9 Topic 10
neuron  input training training  algorithm  unit model network function learning
network output  set error learning network data neural set system
input system  network set data input parameter ~ system  approximation control
model circuit  recognition data problem hidden  distribution problem result function
pattern  signal data cell weight weight  system training  linear action
neural neural algorithm  input method output  object control  bound algorithm
synaptic network vector network  function layer gaussian dynamic number task
learning chip learning classifier distribution learning likelihood  unit point reinforcement
cell weight  classifier weight vector pattern  cell result network error
spike analog  word test parameter  training mixture point threshold model
Table 2.2: Top 10 MVTM topic for NIPS dataset
Topic1  Topic2 Topic 3 Topic 4 Topic 5 Topic 6  Topic 7 Topic 8  Topic 9 Topic 10
neuron  circuit  recognition set model network function  image model learning
cell signal  speech training memory input algorithm  object data control
model system  word data representation  unit learning  images distribution system
input neural  system algorithm node weight  point field gaussian action
activity  analog  training error rules neural  vector map parameter ~ model
synaptic  chip hmm performance tree output  result visual mean dynamic
pattern output  character classifier structure learning case motion algorithm  policy
response current model classification level training problem  feature probability  algorithm
firing input network number graph layer parameter direction method reinforcement
cortex neuron context learning rule hidden equation features component problem
Table 2.3: Top 10 Gibbs topic for NIPS dataset
Topic1  Topic2 Topic 3 Topic4  Topic 5 Topic 6  Topic 7 Topic 8 Topic 9 Topic 10
neuron  input word data image network model cell learning learning
network output  speech set images unit data visual algorithm control
spike weight  recognition training  object neural parameter  motion function model
synaptic neural system error point weight  likelihood  direction  problem system
input network training function features hidden  mixture response action task
pattern  net character vector graph training  distribution orientation policy movement
firing chip hmm method  representation output  algorithm  neuron optimal controller
model layer speaker classifier feature input set model gradient motor
activity  analog  context kernel information error gaussian frequency convergence dynamic
neural bit network gaussian  recognition function variables field step reinforcement

Table 2.4: Top 10 GDM topic for NIPS dataset
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CHAPTER 3

Probabilistic Neuron Reconstruction for Brainbow
Images

The automatic segmentation and reconstruction (tracing) of neurons in microscopic images pose
many computational challenges. Traditional tracing algorithms rely on a set of seed points man-
ually selected by researchers and/or adopt graph-based algorithms. As a result, these semi-
supervised methods demand significant efforts from users and quickly become infeasible for large-
scale neuroimages such as transgenic multicolor Brainbow images. Instead, the proposed method
takes advantage of the fact that neurons have elongated curvilinear structures and thus strong geo-
metric characteristics. We formulate these geometric properties by lifting the 2D images to SF/(2),
1.e. the space of positions and orientations motivated by the geometry of the primal visual cortex
(V1) and contextual connections. We then impose a probabilistic model on the geometric image
and reformulate the neuron tracing problem as a hidden Markov model to connect superpixels of

neuronal processes.

3.1 Introduction

Developments of a transgenic, multicolor labeling strategy called Brainbow [Livet et al., 2007, Cai
et al., 2013] have led to fast advancement in exploring the anatomy of individual neurons. Prior to
the Brainbow technique, the classical approach to understanding how nerve systems work was re-
stricted by the lack of tools to effectively reconstruct large number of neurons, as mapping neuronal
structures requires a large imaging volume with high spatial resolution and the ability to differen-
tiate the intermingled neuronal processes. Recent advancements, such as Gouwens et al. [2019],
focus on a single cell characterization strategy to record morphological properties of neurons in
the mouse visual cortex. These methods, however, need a vast amount of time and resources, as
only one neuron can be imaged per subject. In order to overcome this disadvantage, the Brainbow

technique uses stochastically expressed fluorescent protein mixtures to provide differential spectral
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labeling in neighboring cells. Therefore, densely labeled neurons can be distinguished in the same
field of view (Figure 3.1).

Figure 3.1: An example 3600 x 2400 x 500 3D Brainbow image from a section of a transgenic
mouse brain, where several PV-expressing neurons and their respective synapses have been labeled

fluorescently. Samples were imaged using the miriEx expansion microscopy method Shen et al.
[2020].

In contrast to the technical developments in acquiring Brainbow images, the advancements
in quantitative analysis of Brainbow images have been relatively slow due to the computational
complexity of extracting the neuronal trees from large-scale Brainbow images. The available al-
gorithms for segmentation of neurons in Brainbow images often require manual annotation and
analysis of the neuronal tree by human experts [Wang et al., 2019, Roossien et al., 2019]. How-
ever, these algorithms become quickly infeasible due to the labor-intensive labeling of such images.
Furthermore, in order to accommodate terabytes of Brainbow images; a suitable algorithm has to
also be scalable while preserving the global structures of the neurons. For example, Figure 3.1
shows a fraction of a transgenic mouse brain. This 3600 x 2400 x 500 microscopy image is about
20GB in size, thus recent advancements in neural networks cannot be applied to the whole dataset
directly.

In order to implement our method for neuron tracing, we revisit the idea developed in Athey
et al. [2021] that adopts a probabilistic reconstruction method by incorporating a hidden Markov
state process with a random field appearance model based on neuron geometry. The method in
Athey et al. [2021], ViterBrain, inputs the start and endpoint of the neuron of interest and builds
the most probable neuron path. The geometric features in Viterbrain are estimated by fitting B-
spline to each fragment, or superpixels, to enhance the probability of connecting different neuronal
fragments. However, as Viterbrain by Athey et al. [2021] focuses on fluorescent images with a

single spectrum, it is not able to simultaneously track different neurites of a given neuronal process.
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Our method adopts the probabilistic viewpoint of Viterbrain but aims to integrate the informa-
tion from the theory of orientation scores [Duits et al., 2007b] and multi-spectral information from
Brainbow images. This additional information allows us to only require a single input from the
user to trace a neuronal process.

The theory of orientation scores was developed in Duits et al. [2007a] that is motivated by the
local and global laws to describe the properties of visual stimuli. The theory of orientation scores
serves as a bridge to mimicking the properties in the visual cortex by characterizing image features
in terms of location and orientation. In order to mathematically model this information, Bekkers
et al. [2014] proposed to effectively calculate the orientations/orientation scores of each pixel by
lifting the 2D images to the space of positions and orientations SE(2) = R? x S*, which is referred
to as the Special Euclidean group or the Euclidean motion group.

More recently, Favali et al. [2016] proposed a framework to analyze vessel connectivities in
retinal images by incorporating orientation scores into spectral clustering. Their method applies
spectral clustering on data in S E(2), by constructing the similarity matrix and performing eigen-
decomposition to solve the clustering problem. As well established in the spectral clustering lit-
erature, such eigendecomposition-based methods experience significant disadvantages in terms of
computation. In fact, Abbasi-Sureshjani et al. [2017] and Favali et al. [2016] have limited demon-

stration of their methods due to the construction of the affinity matrix.

3.1.1 Related Works

Theory of orientation scores: Based on the cortical orientation columns in the primary visual
cortex introduced in Hubel and Wiesel [1959], Duits et al. [2007a] developed a mathematical
framework to lift 2D images into the Euclidean motion group SF(2). The space of positions and
orientations mathematically formulate the perceptual organization of orientation in the visual cor-
tex. By adding a third dimension with the orientation score transformation, curvilinear structures
in 2D images are disentangled into different orientation planes according to their local orientations.
A practical approach to efficiently calculating orientations for medical images was developed in
Bekkers et al. [2014], while a framework to enhance elongated structures in the domain of an ori-
entation score by developing a rotating frame on S FE/(2) was developed in Zhang et al. [2016]. For
a detailed description of these methods, refer to Zhang et al. [2016] and references therein.
Neuron Tracing: As a part of an effort to automatically reconstruct neuron morphology, re-
searchers in various fields developed algorithms for tracing neurons in fluorescent images. Previ-
ous works focused on single-spectral images where the algorithm is faced with spatial and intensity
information. Early works focused on graph-based methods using shortest path computation based

on pre-defined seed points [Peng et al., 2010, Wang et al., 2011, Turetken et al., 2013]. More recent
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work used Bayesian estimation [Radojevi¢ and Meijering, 2017] and deep learning methods [Li
et al., 2017, Zhou et al., 2018, Friedmann et al., 2020].

3.1.2 Notation

We define the function f : R? — R? as a 2D image with d spectral information, and U; as a
lifted image that has additional information about the orientation score constructed from image
f. SE(2) = R? x S! refers to the Euclidean motion group of planar rotations and translations
with g = (x,0) its group elements for S' the 1-sphere. Furthermore, SF(2) can be identified
as SE(2) = R? x SO(2), for SO(2) the special orthogonal group with elements Ry € R?*2,
These elements are the counter-clockwise rotations matrix over the corresponding angle 6. The
tuple {0,,0,} corresponds to a global horizontal and vertical frame, and {0, 0,, 0y} is a left-
invariant rotating derivative frame of reference. We denote 1 as an anisotropic wavelet kernel used

to calculate Uy.

3.2 Preliminaries

Previous works in tracing curvilinear structures for images with light microscopy focused on work-
ing in Euclidean space with spectral information. However, as shown in Bekkers et al. [2014],
spatial information is not sufficient to separate bifurcation and overlapping regions. Based on the
theory of orientation scores, developed in Duits [2005], we lift the observed Brainbow image to a
Euclidean motion group and perform tracing in the lifted space.

As first introduced in Duits et al. [2007a], we consider the orientation score as a square-
integrable function; with is the Euclidean motion group as its domain, i.e. U € Ly(SE(2)).
The Euclidean motion group SF(2) is the group of all rotations and translations, whose elements
g = (x,0) are composed of 1) the position z = (z,y) € R? in the domain of the image f and
2) the orientation angle # mod 27 which captures the orientation of the structures in image f. For
the rest of this paper, we use both the short notation g and the explicit notation (x, #) for the group
elements.

We obtain an orientation score U, from an image f € L(R?) based on convolution with cake
wavelets from Duits et al. [2007a], where LLo(R?) is the space of square integrable functions on
R2. The additional orientation dimension encodes information on local orientations in the image.

We define Uy for the grey-scale image below.

Definition 3.2.1. Consider a 2D image of f as a function f : R? — R with compact support on
the image domain Q2 = [0, X] x [0, Y], where X,Y € Z are the image dimensions. For a square
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integrable f, the orientation score Uy : SE(2) — C

Us(@,0) = | 0(R,'G ) - f(&) di

R2

cosf) —sinf
sinf cosf |

where 1) is an anisotropic wavelet with orientation f = 0 and Ry = [

(a) Brainbow Image (b) Cake Wavelet

(c) Orientation Scores with a vertical wavelet (d) Orientation Scores with a horizontal wavelet

Figure 3.2: Example of the orientation score calculation for Brainbow. Given the observed Brain-
bow image (a), orientation scores based on cake wavelet is able to recover spectral information
aligned with a vertical wavelet in (c) and a horizontal wavelet in (d).

In other words, Uy is obtained by convolving the image with a rotating anisotropic convolution

kernel i) and measures the alignment of the rotated images with the vertical axis in the 2D space.
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For some choices of ¢, including the cake wavelets and Gabor wavelets, there exists a stable
inverse transformation obtained by f = fo% U(x, 8)d0 [Duits, 2005].

Thus, given the input images, we assign the orientation for each pixel x; by

0; = argmax Re(Us(x,0)). 3.1

0€[0,n]

3.3 Methods

Our method focuses on minimizing the input from users to segment and trace neurons present in
Brainbow images. Based on the theory of orientation scores described in the previous section, we
calculate the orientation information for each pixel and perform segmentation based on the derived
geometric information. Then, we adopt the hidden Markov model framework from Athey et al.

[2021] to trace neurons from a single input.

3.3.1 Geometric Segmentation based on Left Invariant Derivatives (LID)

Based on the OS calculation, the geometric features of 2D images can be extracted and further
developed to enhance the curvilinear structures of the neuron. The enhancement of the neurites
in Brainbow images allows us to segment the neurons from the background by thresholding the
geometric features.

We adjust the horizontal and vertical axes by incorporating the orientation information. A
rotating frame, called Left invariant derivatives (LID), defined by {0, 0,, 0y} allows us to work
with translations over x and rotations over 6 [Zhang et al., 2016]. Intuitively, the adjusted axis
0(C is aligned with the direction of the image at 6, and the magnitude 8? shows the magnitude of
spectral expression in the direction of 6.

Based on the LID-based filters developed in Zhang et al. [2016], the second-order operator
77 (Uy) = 0G0, o, * Uy is used as LID filter for neuron enhancement, where * is a convolution
operator. Here, o, and o, correspond to the spatial and orientation standard deviation for the
Gaussian derivative Gy, ,,. The final image enhancement from multi-scale filtered orientation

scores is obtained through

I'(f)(x) = max {Z 77 (Uy) (2, 92)} (3.2)

o€z {1,.- . No} gy

where N, is the number of orientation and .S is the spatial scaling.
By applying the LID filter directly to orientation scores, the responses on neuronal processes

are enhanced in each orientation layer. As the elongated structures (neurites) are disentangled
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into different orientation layers separately, the LID filter from Zhang et al. [2016] is capable of
enhancing and preserving complex crossings of different neurites.

After applying the LID filter to the orientation scores of a Brainbow image, the neuronal pro-
cesses will be enhanced with high filter responses and the background will be suppressed with
low responses. By rescaling the enhanced image between 0 and 1, the final segmented image is

obtained with a suitable threshold value.

(a) Brainbow Image (b) The enhancement of the Brain-(c) Segmented Brainbow image af-
bow image based on LID filter.  ter the LID filter is applied

Figure 3.3: The segmented result based on the LID filter.

3.3.2 Neuron Tracing

The neurons are modeled as connected curves in R? as a function of arclength as introduced in
Athey et al. [2021]. That is, the neurons are denoted as c(-) := {c(¢), ¢ > 0} over the pixel lattice
D =Uiczm
et al. [2021], the image is modeled as a random field {I,,, Ay; € D} with the probability

2 Ay; C R? where y; € Ay; is the center of the pixel. Following the notations of Athey

P(Iy|e(6), £ > 0) = ey p(Z,|c(0), £ > 0). (3.3)

In other words, the elements of the observed image are conditionally independent given the un-
derlying neuronal process. As the number of pixels in Brainbow images is prohibitive for any
computational methods, each pixel is clustered into superpixels based on the linear spectral clus-
tering [Chen et al., 2017].
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3.3.3 Hidden Markov Model

In order to describe the hidden Markov model, we need to define a state for each superpixel. The
state of a given superpixel includes spatial, spectral, and orientation information. That is, for a
superpixel v;, the corresponding state is defined as s; = (x, 0, p), where € R? is the spatial
information, 6 € [0, 7]? is the orientation calculated from orientation scores, and p € RP is the
average spectral information of the superpixel v;, where p is the number of spectral channels for
the given Brainbow image.

The collection of states S is the finite space of the HMM, and the tracing problem can be
reformulated as estimating the state sequence (sq, ..., s,) that corresponds to a given neuronal
process. In order to simplify the probabilistic model on the observed image I, we 1) assume the
first order Markov property (p(s;|$;_1, S1.i—2) = p(s;|s;—1)) and 2) model the transition probability

as a Boltzmann distribution with energy U is imposed

e~ U(si-1,si)

p(Sz“Sz‘—ﬂ = m

where Z(s;_1) = Y., cge” V-1 and
Ulsi-1,5:) = aallzi — @i |5 + aol|; — 01l + |l pi — picall3

These are simple assumptions on the probabilistic model that was used in Athey et al. [2021] for
analyzing neurons. Compared to the B-spline fitting for orientation calculations in Athey et al.
[2021], we use orientation scores for calculating the orientation of the superpixel. More impor-
tantly, the multi-spectral information from the Brainbow images allows us to incorporate the spec-
tral difference and trace out the entire neuron from a single input.

Based on this information, we have the following joint probability for the observed image

n

plsia, In) =T | T »(silsi) | p(s1,In) (3.4)

1=2 \ jENe(si)

where N, (s;) is the set of adjacent superpixel of v;.
As shown in Athey et al. [2021], taking the log of the probability (3.4) leads to a sequentially

additive cost function that can be solved with a breath-first search with edge weights given by

e(si—1,5;) = —logp(silsi—1)-
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Figure 3.4: Tracing results of the Brainbow image. There are two neuronal processes of interest
that have the strongest signals in the image. Each of the neuron is traced based on the region of
interest (white labelled superpixel) from the user on shown on the left column.

3.4 Results

Figure 3.4 shows the traced neurons based on a single input with individual neurites from the initial
input. Compared to the existing algorithm, where the traced neuron is based on tree structures, we
are able to estimate the volumetric segmentation of the neuron of interest. Furthermore, we are able
to automatically segment the neurons from the background without any pre-defined labels. Despite
the missing superpixel in the segmented image, we can impute the missing superpixel based on the

adjacency graph and the resulting sequencey by the convex combination of the adjacent states with

A

Fy = AF,+ (1 — \) iy for A € [0, 1).
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3.5 Discussion

Segmenting individual curvilinear structures in neuroimaging remains one of the biggest chal-
lenges for neuroscience. Existing methods either require a significant amount of inputs from the
user or rely on prohibitive computation to trace neurons in the entire brain. The proposed method
extended the tracing algorithms from Athey et al. [2021] by using the theory of orientation scores
to borrow information from the underlying geometric structure of the latent neuronal process.

This work serves as a building block for parallelizing the tracing problem in Brainbow images.
As we use the graphical relationships among superpixels in the tracing step, we can incorporate
conditionally independent assumptions of Brainbow image sections and incorporate the decom-
posable adjacency matrix from Wiesel and Hero [2009]. While Wiesel and Hero [2009] focused
on decomposing the adjacency graph for principal component analysis, we can use their decom-
posable structure to parallelize the breadth-first search algorithm to estimate the global sequence
of superpixel that corresponds to a specific input. Additionally, one could calculate the curvature
for each of the neuronal superpixels by using the locally adaptive frame (LAD) filter from Zhang
et al. [2016].

Extension to 3D tracing can be easily done with the additional spatial information in our frame-
work. However, the orientation score used in our method is limited to 2D orientations. It would be
interesting to compare the tracing results with 3D orientation scores from Janssen et al. [2018] to
understand the tradeoff between the computational burden and the additional orientational infor-
mation when tracing 3D objects.

Lastly, multi-spectral Brainbow images have similar characteristics as the application in hyper-
spectral satellite images. However, as the number of latent variables (or neurons) is larger than the
color spectra in Brainbow images, the spectral unmixing algorithms are not yet applicable in our
problem. The need for spectral unmixing algorithms from hyperspectral imaging literature will

come into play as the number of fluorescent dyes in Brainbow images increases in the future.

39



CHAPTER 4

Kronecker Sum Structures in Covariance and

Precision Matrices

This paper introduces the Sylvester graphical lasso (SyGlasso) that captures multiway dependen-
cies present in tensor-valued data. The model is based on the Sylvester equation that defines a
generative model. The proposed model complements the tensor graphical lasso [Greenewald et al.,
2019] that imposes a Kronecker sum model for the inverse covariance matrix by providing an alter-
native Kronecker sum model that is generative and interpretable. A nodewise regression approach
is adopted for estimating the conditional independence relationships among variables. The statis-
tical convergence of the method is established, and empirical studies are provided to demonstrate
the recovery of meaningful conditional dependency graphs. We apply the SyGlasso to an elec-
troencephalography (EEG) study to compare the brain connectivity of alcoholic and nonalcoholic
subjects. We demonstrate that our model can simultaneously estimate both brain connectivity and

its temporal dependencies.

4.1 Introduction

Estimating conditional independence patterns of multivariate data has long been a topic of interest
for statisticians. In the past decade, researchers have focused on imposing sparsity on the precision
matrix (inverse covariance matrix) to develop efficient estimators in the high-dimensional statistics
regime where n < p. The success of the ¢;-penalized method for estimating multivariate depen-
dencies was demonstrated in Meinshausen and Biihlmann [2006] and Friedman et al. [2008b] for
the multivariate setting. This has naturally led researchers to generalize these methods to multiway
tensor-valued data. Such generalizations are of benefit for many applications. Examples of appli-
cations include the estimation of brain connectivity in neuroscience, reconstruction of molecular
networks, and detecting anomalies in social networks over time.

The first generalizations of multivariate analysis to the tensor-variate settings were presented

by Dawid [1981], where the matrix-variate (a.k.a. two-dimensional tensor) distribution was first
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introduced to model the dependency structures among both rows and columns. Dawid [1981]
extended the multivariate setting by rewriting the tensor-variate data as a vectorized (vec) rep-
resentation of the tensor samples X € R™ > *™ and analyzing the overall precision matrix
Q = E(vec(X)vec(X)T) € R™*™, where m = Hk;K:1 my. Even for a two-dimensional tensor
X e R™>™2 the computation complexity and sample complexity is high since the number of
parameters in the precision matrix grows quadratically as Hszl mj. Therefore, in the regime of
tensor-variate data, unstructured precision matrix estimation has posed challenges due to the large
number of samples needed for accurate structure recovery.

To address the sample complexity challenges, sparsity can be imposed on the precision matrix
(2 by using a sparse Kronecker product (KP) or Kronecker sum (KS) decompositions of 2. The
earliest and most popular form of sparse structured precision matrix estimation represents {2 as
the Kronecker product of smaller precision matrices. Tsiligkaridis et al. [2013] and Zhou [2014]
proposed to model the precision matrix as a sparse Kronecker product of the covariance matrices
along each mode of the tensor in the form 2 = ¥; ® - - - ® W . The KP structure on the precision
matrix has the nice property that the corresponding covariance matrix is also a KP. Zhou [2014]
provides a theoretical framework for estimating the €2 under KP structure and showed that the
precision matrices can be estimated from a single instance under the matrix-variate normal distri-
bution. Recently, Lyu et al. [2019] extended the KP structured model to tensor-valued data and
studied its theoretical properties. An alternative, called the Bigraphical Lasso, was proposed by
Kalaitzis et al. [2013] to model conditional dependency structures of precision matrices by using a
Kronecker sum representation Q = ¥, @ ¥y = (¥; ® I) + (I® ¥,). Recently, Greenewald et al.
[2019] generalized the Kronecker sum (KS) structure to the multiway tensor valued data, called
the TeralLasso. As shown in Greenewald et al. [2019], compared to the KP model, KS structure on
the precision matrix leads to a non-separable covariance matrix that provides a richer model than
the KP structure.

KP vs KS: The Kronecker structures can be characterized by the product graphs of the indi-
vidual components [Greenewald et al., 2019]. The KP method admits a simple stochastic repre-
sentation as vec (X) = (¥, ® W,)Y/2Z, where Z is a vector of i.i.d. Gaussian A(0,1) and A'/?
denotes the square root matrix of A. Kalaitzis et al. [2013] first motivated the KS structure on
the precision matrix by relating the Kronecker sum (¥, & - - - @ W) to the associated Cartesian
product graph. Thus, the overall structure of €2 naturally leads to an interpretable model that brings
the individual components together. The Kronecker product, however, corresponds to the direct
tensor product of the individual components ¥, and leads to a denser dependency structure in the
precision matrix. In related work, Rudelson and Zhou [2017] and Park et al. [2017] studied the
Kronecker sum structure on the covariance matrix ¥ = ~! = A @& B which corresponds to an

errors-in-variables model. Unlike the KP model, the KS model does not have a simple stochastic
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representation.

The Sylvester Graphical Lasso (SyGlasso): We propose a Sylvester structured graphical
model to estimate precision matrices associated with tensor data. Similar to the KP- and KS-
structured graphical models, we simultaneously learn /' graphs along each mode of the tensor
data. However, instead of a Kronecker sum model for the precision matrix, as used in KS models,
the Sylvester structured graphical model uses a Kronecker sum model for the square root factor
of the precision matrix. The model is estimated by joint sparse regression models that impose
sparsity of the individual sparse components Wy, for k£ = 1,..., K. The Sylvester model reduces
to a squared Kronecker sum representation for the precision matrix = (¥, @ - - - ® Wy )?, which

is motivated by a stochastic representation of multivariate data with such a precision matrix.

Notations

We adopt the notations used by Kolda and Bader [2009]. A K-th order tensor is denoted by
boldface Euler script letters, e.g, X € R"™ > *mx_ X reduces down to a vector for K = 1
and to a matrix for K = 2. The (iy,...,ix)-th element of X is denoted by X;, ., and
we define the vectorization of X to be vec(X) = (X1, 1,X21, .1, Xy 1..1. X121,
s Xy immy) T € R™ withm = [/, my.

There are several tensor algebra concepts that we recall. A fiber is the higher order analogue
of the row and column of matrices. It is obtained by fixing all but one of the indices of the tensor,
e.g., the mode-k fiber of X" is X';,

process of transforming a tensor into a matrix. The mode-£ matricization of a tensor X', denoted by

ik ins1,nix - Matricization, also known as unfolding, is the
X (1), arranges the mode-£ fibers to be the columns of the resulting matrix. It is possible to multiply
a tensor by a matrix — the k-mode product of a tensor X € R™**mx and a matrix A € R/*™*,
denoted as X X A, is of size my X + -+ X my_q1 X J X myq X ... my. Its entry is defined as (X x,
A)i it g i = ZZL X ixAji.. In addition, for a list of matrices {A,..., Ax}
with Ay € R™>™ k= 1,... K, wedefine X x {A;,...,Ax} = X X1 A} X3+ Xk Ak.
Lastly, we define the '-way Kronecker product as ®,§:1 U, =¥, ®: - -®@W¥g, and the equivalent
notation for the Kronecker sum as @le U, =¥, ¢ - ¥y = Zle L, @ Pr@1g,, .
where Ijg, | =15, ® - ® I,.

4.2 Sylvester Graphical Lasso

Let a random tensor X € R™1**™K be generated by the following representation:

XX1\1’1+"'+XXK\I’K:T, (41)
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where W, € R"™>*™ L = 1,..., K are sparse symmetric positive definite matrices and 7T is a
random tensor of the same order as X. Equation (4.1) is known as the Sylvester tensor equa-
tion. The equation often arises in finite difference discretization of linear partial equations in high
dimension [Bai et al., 2003] and discretization of separable PDEs [Kressner and Tobler, 2010,
Grasedyck, 2004]. When K = 2 it reduces to the Sylvester matrix equation ¥1 X + XW¥,” = T
which has wide application in control theory, signal processing and system identification (see, for
example Golub et al. [1979] and references therein).

It is not difficult to verify that the Sylvester representation (4.1) is equivalent to the following

system of linear equations:
K
(@ \Ilk> vec(X) = vee(T), 4.2)
k=1

If T is a random tensor such that vec(7") has zero mean and identity covariance, it follows from
(4.2) that any X generated from the stochastic relation (4.1) satisfies Evec(X) = 0 and 3 =

—2
Q! = Evec(X) vec(X)! = (@?:1 \I’k> . In particular, when vec(7") ~ N (0,1,,), we have

that vec(X) ~ N (0, (@szl \Ilk) _2).

This paper proposes a procedure for estimating €2 with N independent copies of the tensor
data {X'}N, that are generated from (4.1). For the rest of the paper, we assume that the last
mode of the data tensor corresponds to the observations mode. For example, when K = 2, X €
R™1xm2xN jq the matrix-variate data with N observations. Our goal is to estimate the K precision

matrices {Wy } 5 each of which describes the conditional independence of k-th data dimension.

2
The resulting precision matrix is {2 = (@,{;1 \Ilk> . By rewriting (4.2) element-wise, we first

K
<Z(‘Ilk)lk,lk> Xiu:K]
k=1

K
= E E (\Ilk)ik»jkXi[l:k]vjk’i[k+1:K] + Ti[l:K]'

k=1 jr#ix

observe that

4.3)

Note that the left-hand side of (4.3) involves only the summation of the diagonals of the ¥’s and the
right-hand side is composed of columns of W’s that exclude the diagonal terms. Equation (4.3) can
be interpreted as an autogregressive model relating the (i1, ..., ix )-th element of the data tensor
(scaled by the sum of diagonals) to other elements in the fibers of the data tensor. The columns
of W's act as regression coefficients. The formulation in (4.3) naturally leads us to consider a
pseudolikelihood-based estimation procedure [Besag, 1977] for estimating €2. Specifically, we

define the sparse estimate of the underlying precision matrices along each axis of the data as the
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solution to the following convex optimization problem:

min —N Z log Wi, 1,

‘I’k;ERmk ka

k=1,.. K RESRLIS
. K 4.4)
+3 DD+ UDIE+ D P (%)
(AN 57 k=1
where Py, (-) is a penalty function indexed by the tuning parameter \; and
(]> = Wi[l;K] Xi[l;K]
K
(II> - Z Z (\I’k)ik,jkxi[lck] Ikt [k+1:K]
k=1 jr#ix
with Wy, ., = S (1), i,. Here we focus on the ¢;-norm penalty, ie., Py, (¥;) =

Akl Wk 1ot
The optimization problem (4.4) can be put into the following matrix form:

N . .
min  — — log |(diag(¥,) @ - - - ® diag(¥x))?|

N
+ 5 tr(S(W @ @ W)?)
K

where diag(W¥,) € R™*™* is a matrix of the diagonal entries of ¥ and S € R™*"™ is the sample
covariance matrix, i.e., S = 3 vec(X)” vec(X). Note that the pseudolikelihood (4.5) approxi-
mates the ¢;-penalized Gaussian negative loglikelihood in the log-determinant term by including
only the Kronecker sum of the diagonal matrices instead of the Kronecker sum of the full matrices.
Further discussion of pseudolikelihood- and likelihood-based approaches for (inverse) covariance
estimations can be found in Khare et al. [2015].

We also note that when K = 1 the objective (4.4) reduces to the objective of the CONCORD
estimator [Khare et al., 2015], and is similar to those of SPACE [Peng et al., 2009] and Symmetric
lasso [Friedman et al., 2010]. Our framework is a generalization of these methods to higher-order

tensor-valued data, when the Sylvester representation (4.1) holds.

Remark: In our formulation Q = (@~ ¥;)? does not uniquely determine { W}/ | due to the

trace ambiguity: scaled identity factors can be added to/subtracted from the ¥} s without changing
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the matrix €2. To address this non-identifiability, we rewrite the overall precision matrix {2 as

K 2 K K 2
Q= (@ \pk> = ( \I'sz—l—@diag(\lfk)) : (4.5)
k=1 k=1

k=1

where U9 = W, — diag(¥},), and estimate the off-diagonal entries W and @~ _, diag(®, ). This

allows us to reconstruct the overall precision matrix £ when W9 is penalized with an ¢, penalty.

4.2.1 Estimation of the graphical model

Let Qn (W, {®9T}E ) denote the objective function in (4.4), where W = @~ diag(¥;). We
adopt an alternating minimization approach that cycles between optimizing ¥, and VWV while fixing

other parameters. In particular, for 1 < k£ < K, 1 <4 < jip < my, define

T, (TOT) = ~argmin QvW, { &)
(‘I’l)m,n:(\l’l)mﬂl
V(lm,n)#£(k,ik,jk) (4.6)
T(W) = argmin Qv W, { ¥ T}L).
\Ilsz:\II%ff
vk

For each (k,ik,jx), Tj;. (P9T) updates the (ig,jx)-th entry with the minimizer of
Qn (W, {®}E ) with respect to (¥},)°. holding all other variables constant. Similarly, 7'(W)

ik Jk
updates W;, ., with the solution of min Qn (W, {W1K ) with respect to Wi, «, holding all other

variables constant. The closed form updates 7T}, ;, (¥$") and T'(W) are detailed in Appendix 4.7.
Tuning parameter: The penalty parameters found in Meinshausen and Biihlmann [2006] and

Friedman et al. [2008b] are equivalent to py := /\Nk For comparison, theoretical results in Mein-

o' (1—(a/2p%))
VN

for standardized data, where &' is the standard Gaussian cumulative distribution function and
a € [0.01,0.05] controls the false discovery rate. Peng et al. [2009] and Khare et al. [2015]

— 2 0-(a/2p%)
have the same rate for the penalty parameter p(a) = C} N for C1 > 0 and further

cross-validate p(«) based on BIC-type criteria. Extending these results, Algorithm 2 works with

2 (1-(a/IIL, m2))
VN Izemi

Peng et al. [2009] and Khare et al. [2015] for multivariate setting.

shausen and Biihlmann [2006] calculate the regularization parameter to be p(«) =

Pr = )‘—A’; = () for some constant C'; > 0, which is equivalent to the results in

4.3 Large Sample Properties

We show that under suitable conditions, the Sylvester graphical lasso (SyGlasso) estimator (Algo-

rithm 2) achieves both model selection consistency and estimation consistency. As in other studies,
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Algorithm 2: Nodewise SyGlasso
Input: Standardized data X, penalty parameter A

. . -\ 2
Output: {W;}/,, Q = (@szl ‘I’k)
. . . 2
Initialize {1}, O = (D, ¥}
while not converged do
# Update off-diagonal elements;
fork < 1,...,Kdo
fori, < 1,...,my — 1do
for j, < i +1,...,m; do
(‘Ilgﬂ)) — (Tilmjk (‘I’g)))

ik, Jk Uk,Jk

from (4.10) in Appendix 4.7.1
end

end

end

# Update diagonal elements;
A (t+])

W« T(WWY) from (4.11) in Appendix 4.7.2
end

we make standard assumptions that the diagonal of €2 is known. We analyze the theoretical prop-
erties of the SyGlasso under the assumption that WV is given. In practice, we can estimate W
using Algorithm 2, and if the diagonals of each individual W are desired, we can incorporate any
available prior knowledge of the variation along each data dimension.

We estimate {915 by solving the following ¢; penalized problem:
K
min Ly (W.8.2) + 3 MWl o )
k=1

where Ly (W, 3, x) =Ll L(W, 3, Xs>, with

L(W,ﬁ,)c's) =—-N Z log Wi,

i[1:K]
+3 Y (D +Uny

(4.8)
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where

(1) =Wy, X

[1:K]

([1) = Z Z (l]:lk)ikvjkXi[l:kfl]vjk’i[kvtl:K]

k=1 jp#ix

B= (T2, (T1)13 - (T 1mrs o (k) 1my)"

and (3 denotes the off-diagonal entries of all W) s.

We first state the regularity conditions needed for establishing convergence of the SyGlasso
estimator. Let Ay, := {(4,7) : (¥r)i; # 0,1 # j} and gy := |Anyg| for k = 1,..., K be the
true edge set and the number of edges, respectively. Let Ay = UleA Nk-

(A1 - Subgaussianity) The data X 1, o, X N are i.i.d subgaussian random tensors, that is,
vec(X Z) ~ x, where x is a subgaussian random vector in RP, i.e., there exist a constant ¢ > 0,
such that for every a € RP?, Eea' @ < eC"‘TEa, and there exist p; > 0 such that Eet*s < K whenever
[t] < p;,forl < j <np.
(A2 - Bounded eigenvalues) There exist constants 0 < A, < Apax < 00, such that the minimum
and maximum eigenvalues of € are bounded with \;,(Q) = (Zle Amax ()2 > A, and
Amasc(2) = (42; Amin (P£)) 72 < Ao
(A3 - Incoherence condition) There exists a constant 6 < 1 such that for £ = 1,..., K and all
(i,7) € Anp

L, W B)[LL (W, B)) sign(Bay, )| < 6.

where foreachkand 1 <1 < j < my, 1 < k <l < my,

Lo (erwerx)
LV, B) = Ew.s (a(\lfk)i,ja(m)k,l wwsep |

Note that conditions analogous to (A3) have been used in Meinshausen and Biihlmann [2006]
and Peng et al. [2009] to establish high-dimensional model selection consistency of the nodewise
graphical lasso in the case of K = 1. Zhao and Yu [2006] show that such a condition is almost
necessary and sufficient for model selection consistency in lasso regression, and they provide some
examples of when this condition is satisfied.

Inspired by Meinshausen and Biihlmann [2006] and Peng et al. [2009] we prove the following
properties:

1. Theorem 3.1 establishes estimation consistency and sign consistency for the nodewise Sy-

Glasso restricted to the true support, i.e., 845, = 0,

2. Theorem 3.2 shows that no wrong edge is selected with probability tending to one,
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3. Theorem 3.3 establishes the consistency result of the nodewise SyGlasso.

Theorem 4.3.1. Suppose that conditions (A1-A2) are satisfied. Suppose further that qnj =

o(v/N/logN), Ani/N/log N — oo, \/qnirlog N/N = o(Ang), and \/qneAng = o(1) as

N — oo, for all k. Then there exists a constant C'(3), such that for any n > 0, the following hold
with probability at least 1 — O(N~"):

* There exists a global minimizer B Ay Of the restricted SyGlasso problem:
K
min Ly(W, 8, 2) + > Ml Wil (4.9)
B:Bag, =0 el

* (Estimation consistency) Any solution B 4y Of (4.9) satisfies:
||/éAN - IBAN||2 < C(B)\/Emkax vV QN,k:)\N,k'

* (Sign consistency) If further a minimal signal strength: mingjecay, |(Pr)ij| >
2C(B)V K maxy, \/gn s\ k is assumed for each k, then sign(BAN’k)=sign(BAN,k).

Theorem 4.3.2. Suppose that conditions (A1-A3) are satisfied. Suppose further that p = O(N")

for some k > 0, qn i = o(\/N/1log N), Anx\/N/log N — 00, \/qnilog N/N = o(An ), and

VINeANg = 0(1) as N — oo, for all k. Then for n > 0, for N sufficiently large, the solution of
(4.9) satisfies:

PW’B((i,j)Héa}%k |L§V,ij(wa By X)| < )\N,k)
>1—-0O(N™
for each k, where L’N,ij = OLN/O(P});j.

Theorem 4.3.3. Assume the conditions of Theorem 3.2. Then there exists a constant C(3) > 0
such that for any n > 0 the following events hold with probability at least 1 — O(N~"):

» There exists a global minimizer B to problem (4.4).

 (Estimation consistency) Any minimizer ,@ of (4.4) satisfies:

18— B2 < C(B)\/?mgx VAN EAN -

* (Sign consistency) If ming jicay, [(®r)ij| > 2C(8) maxy \/qnrAnk for each k, then
sign(B3)=sign(p3).
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Proofs of the above theorems are given in Appendix 4.8.

4.4 Numerical Illustrations

We evaluate the proposed SyGlasso estimator (Algorithm 2) in terms of optimization and graph
recovery accuracy. We also compare the graph recovery performance with other models recently
proposed for matrix- and tensor-variate precision matrices. We first illustrate the differences among
these models by investigating {2 with KX = 3 modes and m;, = 4. For simplicity, we generate Wy,
for k = 1,2, 3 as identical 4 x 4 precision matrices that follow a one dimensional autoregressive-1
(AR1) process. We recall the KP and KS models:

4
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(a) W (b) KP (c)KS Q (d) SyGlasso €2

Figure 4.1: Comparison of SyGlasso to Kronecker sum (KS) and product (KP) structures. All
models are composed of the same components ¥, for £ = 1,2, 3 generated as an AR(1) model
with m; = 4 as shown in (a). The AR(1) components are brought together to create the final
64 x 64 precision matrix €2 following (b) the KP structure with 2 = ®i:1 W, (c) the KS structure

with Q = @izl W, and (d) the proposed Sylvester model with 2 = (@2:1 \I’k)2. The KP
does not capture nested structures as it simply replicates the individual component with different
multiplicative scales. The SyGlasso model admits a precision matrix structure that strikes a balance
between KS and KP.

Kronecker Product (KP): The matrix-variate model under the sparse Kronecker product was
introduced in Tsiligkaridis et al. [2013] and Zhou [2014]. The theoretical properties of KP models
for the tensor-valued data were further analyzed in Lyu et al. [2019]. The precision matrices are
decomposed as {2 = ®sz1 V.. The KP model restricts the precision matrix to be separable across
the K data dimensions and suffers from a multiplicative explosion in the number of edges. As they
are separable models and the constructed €2 corresponds to the direct product of the K graphs, KP
is unable to capture more complex nested patterns captured by the KS and SyGlasso models as

shown in Figure 4.1 (¢) and (d).
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Kronecker Sum (KS): Kalaitzis et al. [2013] first proposed to impose the Kronecker sum
structure on the precision matrix for the matrix-variate data. Recently, Greenewald et al. [2019]
introduced the TeraLasso that extended this KS structure to tensor-valued data. The TeralLasso was
motivated by the relationship between the Kronecker sum of adjacency matrices and the Cartesian
product of the associated graphs. Moreover, the covariance matrix under the Kronecker sum pre-
cision matrix assumption is nonseparable across K data dimensions and has a maximum entropy
motivation. Contrary to the KP structure, the number of edges in the Kronecker sum structure
grows as the sum of the edges individual graphs. This growth allows the final precision matrix €2
to remain sparse.

We compare these methods under different model assumptions to explore the flexibility of the
proposed SyGlasso model under different model assumptions.

Synthetic data: To empirically assess the efficiency of the proposed model, we generate tensor-
valued data based on three different precision matrices. The W,’s are generated from one of
1) AR1(p), 2) Star-Block (SB), or 3) Erdos-Renyi (ER) random graph models described in Ap-
pendix 4.9.
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Figure 4.2: Performance of the SyGlasso estimator against the number of iterations under dif-
ferent topologies of Wj’s. The solid line shows the statistical error log(H\Il,(:) — Uil P\ ||| #)s

and the dotted line shows the optimization error log(||\il§:) — U\ || ¥4l 7). where ¥, is the fi-
nal SyGlasso estimator. The performances of ¥; and W, are represented by red and blue lines,
respectively.

We test SyGlasso for K = 2 under: 1) SB with p = 0.6 and sub-blocks of size 16 and
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AR1(p = 0.6); 2) SB with p = 0.6 and sub-blocks of size 16 and ER with 256 randomly se-
lected edges. In both scenarios we set m; = 128 and my = 256 with 10 samples. Figure 4.2 shows
the iterative optimization performance of Algorithm 2. All the plots for the various scenarios
exhibit iterative optimization approximation errors that quickly converge to below the statistical
errors. Note that these plots also suggest that our algorithm can attain linear convergence rates.
We also test our method for model selection accuracy over a range of penalty parameters (we set
A = A, VEk). Figure 4.3 displays the sum of false positive rate and false negative rate (FPR+FNR),
which suggests that the nodewise SyGlasso estimator is able to fully recover the graph structures

for each mode of the tensor data.
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Figure 4.3: The performance of model selection measured by FPR + FNR. The performances of
W, and W, are represented by red and blue lines, respectively. With an appropriate choice of A,
the SyGlasso recovers the dependency structures encoded in each Wy.

We compare the proposed SyGlasso to the TeralLasso estimator [Greenewald et al., 2019], and
to the Tlasso estimator proposed by Lyu et al. [2019] for KP, on data generated using precision
matrices (V) @& ¥y @ lIl3)2, W, ¥, Ps,and ¥; ® ¥y ® W3, where W’s are each 16 x 16
ER graphs with 16 nonzero edges. We use the Matthews correlation coefficient (MCC) to compare
model selection performances. The MCC is defined as [Matthews, 1975]

TP x TN — FP x FN

MCC = :
/(TP +FP)(TP + FN)(TN + FP)(TN + FN)

where we follow Greenewald et al. [2019] to consider each nonzero off-diagonal element of W, as
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a single edge.

The results shown in Figure 4.4 indicate that all three estimators perform well when N = 5,
even under model misspecification. In the single sample scenario, the graph recovery performance
of each estimator does well under each true underlying data generating process. Note that for data
generated using KP, the SyGlasso performs surprisingly well and is comparable to Tlasso. These
results seem to indicate that SyGlasso is very robust under model misspecification. The superior
performance of SyGlasso under KP model, even with one sample, suggests again that SyGlasso
structure has a flavor of both KS and KP structures, as seen in Figure 4.1. This follows from the
observation that (¥ @ ¥,)? =1, 2 + 021, + 20, @ U, = U p U2 4 20, @ U,.
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Figure 4.4: Performance of SyGlasso, TeraLasso (KS), and Tlasso (KP) measured by MCC under
model misspecification. MCC of 1 represents a perfect recovery of the sparsity pattern in €2, and
MCC of 0 corresponds to a random guess. From top to bottom, the synthetic data were generated
with the precision matrices from SyGlasso, KS, and KP models. The left column shows the results
for a single sample (/N = 1), and the right column shows the results for N = 5 observations.
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4.5 EEG Analysis

With the proposed SyGlasso, we revisit the alcoholism study conducted by Zhang et al. [1995] to
explore multiway relationships in EEG measurements of alcoholic and control subjects. Each of
77 alcoholic subjects and 45 control subjects was visually stimulated by either a single picture or
a pair of pictures on a computer monitor. Following the analyses of Zhu et al. [2016] and Qiao
et al. [2019], we focus on the o frequency band (8 - 13 Hz) that is known to be responsible for the
inhibitory control of the subjects (see Knyazev [2007] for more details). The EEG signals were
bandpass filtered with the cosine-tapered window to extract a-band signals. Previous Gaussian
graphical models applied to such o frequency band filtered EEG data could only estimate the
connectivity of the electrodes as they cannot be generalized to tensor valued data. The SyGlasso
reveals a similar dependency structure as reported in Zhu et al. [2016] and Qiao et al. [2019]
while recovering the chain structure of the temporal relationship. To show the benefit of multiway
dependency, we estimate 2-way dependencies based on SyGlasso. After the band-pass filter was
applied, we work with the tensor data X ,jconotic, X contror € R7medes XMtime XMrial corresponding to
an alcoholic subject and a control subject. We simultaneously estimate W40 € R"nede*"node
that encodes the dependency structure among electrodes and Wy, € R™tme*"ime that shows the
relationship among time points that span the duration of each trial.

Previous studies consider the average of all trials, for each subject and use the number of sub-
jects as observations to estimate the dependency structures among p = 64 electrodes. Instead, we
look at one subject at a time and consider different experimental trials as observations. Our analy-
sis focuses on recovering the precision matrices of electrodes and time points, but it can be easily
generalized to estimate the dependency structure among trials as well.

Figure 4.5 shows the result of the SyGlasso estimated network of electrodes. For comparison,
both graphs were thresholded to match 5% sparsity level. Similar to the findings of Qiao et al.
[2019], our estimated graph W,,,4. for the alcoholic group shows the asymmetry between the left
and the right side of the brain compared to the more balanced control group. Our finding is con-
sistent with the result in Hayden et al. [2006] and Zhu et al. [2016] that showed frontal asymmetry

of the alcoholic subjects.

While previous analyses of this EEG data using graphical models only focused on the precision
matrix of the electrodes, here we exhibit the second precision matrix factor that encodes temporal
dependency. Figure 4.6 shows a comparison between the alcoholic subject and the control subject.
Overall both of these graphs show a strong autoregressive structure. Both subjects exhibit banded

dependency structures over time since adjacent timepoints are conditionally dependent.
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(a) Alcoholic subject (b) Control subject

Figure 4.5: Estimated brain connectivity results from SyGlasso for (a) the alcoholic subject and (b)
the control subject. The blue nodes correspond to the frontal region, and the yellow nodes corre-
spond to the parietal and occipital regions. The alcoholic subject has asymmetric brain connections
in the frontal region compared to the control subject.

(a) Alcoholic subject (b) Control subject

Figure 4.6: Estimated time conditional dependencies \iln-me from SyGlasso for (a) the alcoholic
subject and (b) the control subject. Both subjects experience banded graph structures over time.

4.6 Discussion

This paper proposed Sylvester-structured graphical model and an inference algorithm, the Sy-

Glasso, that can be applied to tensor-valued data. The current tools available for researchers are
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limited to Kronecker product and Kronecker sum models on either the covariance or the precision
matrix. Our model is motivated by a generative stochastic representation based on the Sylvester
equation. We showed that the resulting precision matrix corresponds to the squared Kronecker sum
of the precision matrices ¥ along each mode. The individual components W;’s are estimated by
the nodewise regression based approach.

Development of the proposed SyGlasso has promising future directions. First is to relax the
assumption that the diagonals of the factors are fixed - an assumption that is standard in the Kro-
necker structured models literature. While SyGlasso can recover the off-diagonals of the individual
components and @le diag(Wy), it cannot recover the diagonal elements of the individual com-
ponents separately. In practice, such restriction can be addressed when there is prior knowledge
of the variation along each mode. However, we believe that analyzing the sparsity pattern of the
squared Kronecker sum matrix would help us estimate the diagonal entries of the individual com-
ponents W,’s. In terms of improving the statistical convergence, our theoretical results guarantee
variable selection of the individual components but do not guarantee the statistical convergence of
individual W;’s with respect to the operator norm. Similar to the solution in Zhou et al. [2011]
for the multivariate case, we propose a two-step procedure using SyGlasso for variable selection
followed by refitting the precision matrix €2 using maximum likelihood estimation with the edge
constraint.

Recently, Wang and Hero [2021] investigated the utility of Sylvester equation by relating to the
generative model of the discretization of separable PDEs with finite elements. Specifically, Wang
and Hero [2021] connected the Syglasso generative equation with the convection-diffusion type of
PDEs and demonstrated the benefit of SyGlasso for forecasting of solar-flares.

While Syglasso has an interpretable connection to a family of PDE problems, there still remains
an open problem of understanding the space of Kronecker covariance models. Without the domain
knowledge, there is no theoretical guideline on selecting a covariance model from the family of
Kronecker structured covariance models. A promising direction in understanding the space of
Kronecker structures has been recently presented in Benzi and Simoncini [2017] based on the
matrix exponential relationship of the Kronecker structures, i.e. exp (A @ B) = exp(A)®exp(B).
This exponential relationship is shown to be useful for evaulating the total communicability of a
complex network in Estrada et al. [2012] and Benzi and Klymko [2013]. Further investigation
towrads the matrix expoential relationship of Kronecker structures in covariance models would
provide a meaningful direction towards understanding the model selection problem for Kronecker

structured covariance models.
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Appendix
A provides the detailed derivation of the updates for Algorithm 2.
B provides the proofs of theorems stated in Section 4.3.

C provides details on the simulated data in Section 4.4.

4.7 Derivation of the Nodewise Tensor Lasso Estimator

4.7.1 Off-Diagonal updates

Forlgik<jk§mk,T»

+oie (PO can be computed in closed form:

S%k <FX7{‘I’I<:}£(:1>

(Tivsc (OR)5r =
kJk kJk (%X(k)xz;v))ikik + (%X( )X(k))Jka

(4.10)

where

1
Fxiugx, =% (((Wm ° X(k))?f@))ikjk + <(W(k) o X(k))Xﬁ))jkik

+ <X DGR ‘I’fo’i“’“)@)) + (X DGR ‘I’Zﬁ’i’“j’“)ﬁ)) ;
eIk

off
Y (R 0w ><k>)m)

14k

Jkik

37 (X (X x B

14k

ik

Here the o operator denotes the Hadamard product between matrices; \Ilsz’i’“j " is WO with the

(ix, Jx) entry being zero; and S, (x) := sign(x)(|z| — A)+ is the soft-thresholding operator.

4.7.2 Diagonal updates

For W,
2
(TOWV))iy) = ] k) o 40)
2(X X))
1:K]

Here we define Y := Zle (X X g \Ilsz). Equations (4.10) and (4.11) give necessary ingredients

for designing a coordinate descent approach to minimizing the objective function in (4.4). The
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optimization procedure is summarized in Algorithm 2.

4.7.3 Derivation of updates

Note that for 1 < iy < jp < my, 1 <k < K,

Qnv({®r}isy)
(Y e Pea ) ()

U1ik—1,k+1:K]
+ NFx qwyx (Wr)igge + Ml (Ph )i

+ terms independent of (W)

ikJk>

where
I 23 i Jk Jk ]k ik
—FZY7{QP}?;1 - :E:: (]/\;Zu K]é*fiu K];*fzu K] ')ﬁ/ i1 Kq‘ququ
Ulik—1,k+1:K]

+ (‘I’ )T X\{Zk,Jk}qu
e, \{iksdk ) 1K i[1:K]
T \ikdk} yrix

+ (W )]k»\{zkyjk} Q1K) Xl[l K]

ik,\iL 427
Z <‘I'l)ll7\ll Xifl:Ki Xi[kl:K]

le[l:k—1,k+1:K]

Y @Al ).

le[l:k—1,k+1:K]

Here X ﬁ[kuq denotes the element of X" indexed by 7[;.] except that the kth index is replaced by i,
and X chjll( ] denotes the element of X" indexed by i[;.x] except that the £, [th indices are replaced by
ik, J1- Note the following equivalence:

T
Z Wl[l K] Z[1 K] 1[1 K <(W(k) © X(k’))x(k))

IkJk
U1:k—1,k4+1:K]

i T
Z X kl K] XZ[IZ:K] = (X(k)x(k))ikjk

U1:k—1,k4+1:K]

> (W)l xp Xk = (X(k)(x Xl‘I’l)ﬁ:)>A .

. Jkk
Ul:k—1,k+1:K]

where W is a tensor of the same dimensions of X, formed by tensorize values in YV, and in the
case of N > 1 the last mode of WV is the observation mode similarly to X but with exact replicates.

Using the tensor notation and standard sub-differential method, Equation (4.10) then follows.
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For Wiu: K]’ using similar tensor operations,
LQ %% {lpoff}K ) =
Wi NUFVOAUEE Tk=1
K
2 oft o
S g WA Wi (X DX W) ) = 0
11:K] P
— ; i T off _
Wl[l K] (X(N)X(N)>i[1.m + WZ[l K] (X N) Z X v )>Z[1_K] —1=0
' k=1 :

and since W, > 0, so the positive root has been

which is a quadratic equation in W; 1K)

1 K]
retained as the solution. Note that the estimation for one entry of WV is independent of the

other entries. So during the estimation process we update all the entries at once by noting that
diag("Y{N)X(N)) = <<X{N)X(N)>. ,\V/Z'U:K]>.

11:K]

4.8 Proofs of Main Theorems

We first list some properties of the loss function.
Lemma 4.8.1. The following is true for the loss function:

(i) There exist constants 0 < AL, < AL < oo such that for Sy = {(ir, k) : 1 < ig <
g <mihk=1,... K,

Aém S )\mln(LSNk SNk(ﬁ>> — )\maX(LSNkSNk(ﬂ)) < Aﬁlax

(i) There exists a constant K(B) < oo such that for all 1 < i < j, < my, L} i (B) <
K(B)

(iii) There exist constant M, (), Ma(B3) < oo, such that for any 1 < iy, < jj, < my,
Varyy g(Li,;, (W, B, X)) < Mi(B), Vary g(Li ;, .5, (W, B, X)) < My(3)
(iv) There exists a constant 0 < g(B) < oo, such that for all (i,7) € An s
Ly OW.B) Ll By, 4 VB Ly (OW.8) > 9(8)

where A%k = Ani/{(i,5)}.
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(v) There exists a constant M (B3) < oo, such that for any (i, j) € Ay

L5 4, OV, B)L Ay ot V. B Hl2 < M(B).

proof of Lemma B.1. We prove (7). (ii — v) are then direct consequences, and the proofs follow
from the proofs of B1.1-B1.4 in Peng et al. [2009], with the modifications being that the indexing
is now with respect to each k for 1 < k£ < K.

Consider the loss function in matrix form as in (4.5). Then Eg“’ SNk(B) is equivalent to
9? £ K C kON,
gagaem LW, { WL, which is

32
oW OW

82
= (tr((\Ilzff + diag(W;))"S(WOT + diag(Wy))) + first order terms in W

<tr( U]SW,) + first order terms in ¥}, + terms independent of \Ilk)

OWSTHWHT
+ terms independent of \Ilff>

82

= ———— | tr((TY")"SWY") + first order terms in " + terms independent of Wy
LW

1
=S = Nvec(X)T vee(X).

Thus L} . 5., (8) = Eyw (S). Then for any non-zero a € R?, we have

al'L" (B)a=a"%a > |a][3Auin(Z).

SN, kSN &

Similarly, aTEgN’hSN’k(B)a < ||a]|2Amax(X). By (A2), ¥ has bounded eigenvalues, thus the
lemma is proved.

]

Lemma 4.8.2. Suppose conditions (A1-A2) hold and if qn . = o(v/ N/ log N), then for any n > 0,
there exist constant cq,, C1 4, C2,y, C3,np, SUch that for any u € R¥* the following events hold with
probability at least 1 — O(N~") for sufficiently large N:

(i) |y 4y, OV, B, X) 2 < cony/an i

(”) ’uTL/NWAN’k (Wa/éa X)‘ S Cl,nHuHQ \/ qN,k%

(i) Ju" L ay ,ay,, OV B, X)u = "L 4 (B)ul < cagllullZaney/ <5
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. log N
(V) [N Ay pan s WV, B, X)u = L (B)ul < csllullBaniy/ =%

proof of Lemma B.2. (i) By Cauchy-Schwartz inequality,
||L/1V7AN,1@ (W7 /67 X) ”2 < V 4Nk Z&%\]Xk |L/N,1(W7 /67 X)|
Then note that

/N,i(W7 /37 X)
= Z (61'[1:1@71]7?71'[1@“:}(] (W’ ,3) U1k—1]D A [k+1:K] + e (1:k—11D[k+1:K] (W B) U1:k—1] D5t [k+1: K])

U1:k—1,k41:K]

where Citik—1] Py k4 1:K] Xi[l:k—l]vQ:i[k+1:K] (Wv B) is defined by

wi[l:k—l]apvi[kJrl:K]X Lik—1]1P k41 K]+§ : lIlk DsJk Z[1k 1Jko b k41 K]+§ : E : ‘I’l HJZ U1:k—11P5 [k+1: K] *
Jk#p I#k 5174

Then evaluated at the true parameter values (W, 3), we have Cifro— 1) Prifes1:K] (W, B) uncorrelated
with Xi[l:k—l]»\p_:i[k-k—i:l(] and E(Wﬁ_)(eiuqu]m,i[kﬂ:x] (W76)) = _0' iAlSO’ since X is subgaussian
and Var(Lly ;(W, B, X)) is bounded by Lemma C.1. Vi, Ly ;(W, B, X) has subexponential tails.

Thus, by Bernstein inequality,

o log N
P(Iy, 4y, W. B, X)ll2 < con\/ans—1)

> P(\/QN,k ,gl“ax |LIN7Z‘<WaB7 X)| < Comn\/ 4N,k
P€AN K

log N
N

)>1-O(N").
(7i7) By Cauchy-Schwartz,

|U’T‘[/,]/\7,./4]\/,}c.ANJC <W7 B’ )U - uTL.AN k.AN k(lé)u|
< llullallu” LY ay o ay,, OV, B, X) _UTLANkANk( )ll2

< [lullay/ans max [u” Ly 4, (W, B, X) —u' Ly, (B)|
= [[ull2/avalu" LY Ay i V. B, X) = uTLZ\N pimax (B)]
4dN,k

= llull2v/anxl Z UL i W, B X) — ;LY (B))]

< ||u||2qN,k|ujmax||L7V,jmax7imax(w B.X) = Lj, . i (B))]
< N ll5aN LN e WV 85 ) = L (B

Jmax,imax
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Then by Bernstein inequality,

- log N
(|uTLNANk.ANk(W7167 )u - uTL.ANk.ANk( )u'| S CZJ]H,UH%qN,k N )
—. = log N
> P<Hu|‘2qu’LN]mdx 7fmdx(W”B’ X) L;/mdx 2mdx( ))’ S CQ?"]HU/HSqN’k N )
>1—-0O(N™).
(1) and (iv) can be proved using similar arguments. O

Lemma C.3. and C.4. are used later to prove Theorem 1.

Lemma 4.8.3. Assuming conditions of Theorem 1. Then there exists a constant C1(3) > 0 such

that for any n > 0, there exists a global minimizer of the restricted problem (4.9) within the disc:

{B:1B-8|: < Cl(B)\/?m]?X VAN EAN
with probability at least 1 — O(N ") for sufficiently large N.

proof of Lemma B.3. Let ay = maxy \/m)‘N,k- Further for 1 < k < K let C;, > 0 and v* €
R™x(mx=1)/2 guch that ufi%k = = Cp,andu = (uy, . .., ug) with v K ming, Cp, < ||ulls <
VK maxy, Cl.

Then by Cauchy-Schwartz and triangle inequality, we have

18 + anu® — ayu|ly < (18" + anul|li + ax|[u|h,

and

18%]l1 = [|1B" + anuf|: < ax|u®||; < OCN\/QN,kHUkHQ = Cran/qn k-
Thus,

Qn(B + anu, X, {Ani}is,) — QN(B X, {Avi}ier)
= Ly(B + anu, X) — Ly (B, X Z)\Nk (18* = 18* + anu®[1)

> Ly(B + anu, X) — Ly(B, X) Z)\NkaOéN\/QNk

> LN(B + O{NU,X) - LN(/67 ) - aNKmkaXCk\/ QN,k/\N,k
> Ly(B+ ayu, X) — Ly(B,X) — Ka3, Hl]?XCk.
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Next,

_ _ 1 _
LN(/B + aNU/, X) - LN(IB7 X) = OéNuiNL/]V,.AN (ﬁ7 X) + §a?vu£NL/]<f,AN.AN (ﬁ7 X>uAN

K K
1
= Z W) Dy ay , (B; X) + 504?\1 Z(UZM)TLNAMAM(@ Xy, ,
P k=1
K K
1 _ _
= Z UANk NANk< )+ 504 Z UANk L ax kANk(ﬁa X) = L ay ptn (B X))UZN,,C
k=1 k=1

K
1
+§a12vZ(UANk)TLNANkANk(5= X)uly,,,
k=1
1 s log N
> S0k D (0 ) Ty, (B R, — axK (max ey, oy favi—5)
k=1
1, k2 log N
_§O‘NK(mI?XCQ777HuAN7k||2QNJ<: N ).

Here the first equality is due to the second order expansion of the loss function and the inequality
is due to Lemma B.2. For sufficiently large N, by assumption that Ay ;+/N/log N — oo and

qnk = o(y/N/log N), the second term in the last line above is o(an/Gni v i) = o(a%); the
last term is o(%;). Therefore, for sufficiently large N

OZ (U.IZN k)TLNAN k.ANk<IB7X)u.I/€4N,k

N | —

v

Qn(B+ anu, X, {ni}iey) — Qn (B, X, {dns}ie,) >

K XCk
1

2 QQNK mkln ((ui\N,k)TEyVyAN,k-AN,k (B’ X)uf‘\z\mc)

2
— Kay m’?XCk,

with probability at least 1 — O(N7). By Lemma B.l., for each &,
(i ) DRyt (B Xl > ALl I3 = ALin(Cr)?. So, if we choose miny Cj, and
maxy Cy such that the upper bound is minimized, then for /N sufficiently large, the following

holds

inf QN(B + ayu, X, {/\N,k}éiﬂ > QN(B; X, {)‘N,k}le)ﬂ

wiu( gy e =0, [|ukll2=Ck.k=1,....K

with probability at least 1 — O(N~"), which means any solution to the problem defined in (4.9)
is within the disc {3 : |8 — B2 < an|ulls < ayVK max; C)} with probability at least 1 —
O(N—™).
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Lemma 4.8.4. Assuming conditions of Theorems 1. Then there exists a constant Cy(3) > 0, such

that for any n > 0, for sufficiently large N, the following event holds with probability at least
1 —O(N): ifforany B € S ={B: |8 — B2 > C2(8)VK maxy /AN kAN ks Bas, = 0}, then
HL/N,AN(W,B; X)||2 > \/?maxk \/QN,k)\N,k-

proof of Lemma B.4. Let any = maxy, \/qn xAn k- For 3 € S, we have 3 = B + anu, with U(An)e
and ||ul|, > C5(B). Note that by Taylor expansion of L}y , (W, 8, X) at 8
L?V,AN <W7 ﬁ’ X) = LE\T AN (W ﬁ X) + OéNLyV,ANAN <W7 ﬁ’ X>u-AN
NAN(W B.X)+ OéN( XI,ANAN(nga’Y) - 77\7,AN.AN(B>)U.AN

+ aNLN,.AN.AN (IB)UAN

By triangle inequality and similar proof strategies as in Lemma B.3., for sufficiently large NV

HL/N,.AN (Wv /37 X)”? > ”L/N,.AN (W7 ,8, X)H? + O‘NHL/](/,AN.AN (W’ /87 X)UAN - 7/]</,.ANAN (B)UAN ||2
+ CYNHI/X[,ANAN (B)UAN”?

> an||Ly ayay (B)uayllz + o(an)

with probability at least 1 — O(N"). By Lemma B.1., [|L% 4 4. (B)uayll2 > AL (8)lway 2.

min

Therefore, taking Cy(3) to be 1/AL. (3) + € completes the proof. O
proof of Theorem 1. By the Karush-Kuhn-Tucker condition, for any solution B of (4.9), it satisfies
1L 4y OV, B, X))l < Ani. Thus,
1Ly ax V. B, )12 < VE max | Ly 4, (W, 8. X)ll2
< VE max /@il Ly a,,, OV 8. X) |
<VK max VAN EAN k-

Then by Lemmas B.4., for any > 0, for N sufficiently large, all solutions of (4.9) are inside the

disc {3 : |8 — B2 < Co(B) maxy /N ANk, Bas, = 0} with probability at least 1 — O(N 7).
If we further assume that min; jyc 4, , 1Bi.] > 2C(B) maxy, /gnx\w x for each k, then

1-O(N™)
= PW,B(|’éAN - BANH2 < Cy(B )max VAN ANk, ijnéljl |5zg| > 20(8 )max \/QNkANIka)

AA AN
< PW B(Slgn(ﬁzk;\;k) Slgn(ﬁzk]k )7v(7/ka]k> € AN,k>Vk)
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proof of Theorem 2. Let En; = {sign(B zm) = sign(,[_i'f“l-v’k)}. Then by Theorem 1,

1kIk

Py 5(Eng) > 1 — O(N7") for large N. On Eyy, By the KKT condition and the expansion
of Ly 4 , (W, B4%, X) at A+

—AN ksign(,@“““)
LNANk( A BAN’k X)
N.ANk(W BAVE X)) + LNAN,kAN,k(Waga X)Un i
= Ly a1 0Nk + Dy an o OV, B, ) + (Lo ay ptg s V5 B X) = L o J0Nks

where vy, = 34Nk — BANk, By rearranging the terms

UNE =
- ANJ‘? [Lii\N’kAN’k]_ISign(BANk) - [7./;1]\[,]@./41\7%]_1[ §V,AN7;€ (W7 BANJC? X) + ‘DNyANA,kAN,k(W? BANJC)UN,]{?]?
4.12)
where Dy Ay Ax = Ax/vv-AN,kAN,k(W B, X) — AN Ay, Next, for fixed (i,5) € Afy,, by
expanding Ly , (W, B4v+ X) at AN
L i (W, BA%%, X) = Ly (W, B4, X) + L 4 (W, B, X)ow i (4.13)

Then combining (4.12) and (4.13) we get

LIN 1ij (W BAN’ka X)
= —\ L (BAN,IC)[E// }flsi n(ﬁAN”*) L// (6AN"“)[Z—// ]—1L/ (V_V BAN’k X)
NEHi5 ANk AN kAN & g i, AN,k AN kAN & N, ANk ) )
+ [DN:ij:-AN,k( 76AN’]€) L{L/] ANk(IBANVk)[Z_—J;NJ@AN’k] DNy-AN,Ic'AN,k (W7BANJ€)]/UNJ€

+ Ly (W, BV X).
(4.14)
By the incoherence condition outlined in condition (A3), for any (i, j) € A,

|‘ZZ7',.A]\7’]€ (W7 B) [E:/AN,kaAN7k (W7 B)]_lsign<IBAN,k)| S 5 < 1

Thus, following straightforwardly (with the modification that we are considering each Ay ;, instead
of Ay) from the proofs of Theorem 2 of Peng et al. [2009], the remaining terms in (4.14) can be
shown to be all o(Ay ), and the event max(; je s, , [Liv; (W, BAvk X)| < Ay, with probability
at least 1 — O(N ") for sufficiently large N. Thus, it has been proved that for sufficiently large
N, no wrong edge will be included for each true edge set Ay ; and hence, no wrong edge will be
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included in Ay = U An £ O

proof of Theorem 3. By Theorem 1 and Theorem 2, with probability tending to 1, any solution to
the restricted problem is also a solution to the original problem. On the other hand, by Theorem 2
and the KKT condition, with probability tending to 1, any solution to the original problem is also

a solution to the restricted problem. Therefore, Theorem 3 follows. U

4.9 Simulated Precision Matrix

1. AR1(p): The covariance matrix of the form A = (pli=7l),; for p € (0, 1).

2. Star-Block (SB): A block-diagonal covariance matrix, where each block’s precision matrix
corresponds to a star-structured graph with (¥y);; = 1. Then, for p € (0, 1), we have that
A;; =pif (i,j) € Eand A;; = p* for (i, j) € E, where E is the corresponding edge set.

3. Erdos-Renyi random graph (ER): The precision matrix is initialized at A = 0.251, and d
edges are randomly selected. For the selected edge (i, j), we randomly choose ¢ € [0.6, 0.8]
and update Aij = Aji — Ai]' — w and An — A“ + w, Ajj — Ajj + ’QD
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CHAPTER 5

High-dimensional Stochastic Linear Bandit with

Missing Covariates

As applications of stochastic contextual linear bandit algorithms have grown, it has become im-
portant to understand how bandit algorithms behave in high-dimensional regimes. Recent works
adopted the oracle lasso convergence theory in the sequential decision-making setting, where the
exploitation stage involves lasso estimation. Even when the context is fully observed, there are
significant technical challenges that hinder the application of existing lasso convergence theory:
1) proving the restricted eigenvalue condition under conditionally sub-Gaussian noise and 2) ac-
counting for the dependence between the context variables and the chosen actions. In addition,
practitioners, practitioners face the additional challenges of missing values in the context vectors in
real-life applications. This paper studies the effect of missing covariates on regret for stochastic lin-
ear bandit algorithms. We accommodate missing covariates using an unbiased plug-in-estimation
policy. Our work provides a high-probability upper bound on the regret incurred by the proposed
algorithm in terms of covariate sampling probabilities, showing that the regret degrades due to
missingness by at most 2., where (,;,, is the minimum probability of observing covariates in the

context vector.

5.1 Introduction

High-dimensional linear stochastic bandits have become of increasing interest for many appli-
cations including recommendation systems and healthcare. In order to provide algorithms with
provable guarantees in the high-dimensional regime, researchers focused on solving bandit prob-
lems with linear rewards, where only a small subset of the covariates is correlated with reward.
For this setting, the learner observes a context variable X; € R%*4 at round t, where each arm i
is associated with a given feature vector X;; € R¢, the i-th row of X;. Then, based on the chosen
arm q, at time ¢, the learner observes a noisy reward 7, = X, ,,8* + ¢, for a fixed and unknown

parameter vector 3* € R%.
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For healthcare and drug discovery applications, an additional sparsity assumption is often im-
posed on 3*. Sparsity is an effective constraint when the feature space is a high-dimensional feature
space, for which only a subset of features is correlated with the expected reward. It is thus natu-
ral to adopt the lasso framework for learning a sparse reward function 5* with sq = ||3*||o. The
difficulty in establishing convergence of lasso bandits has been highlighted in Bastani and Bayati
[2020], Kim and Paik [2019], and Oh et al. [2021].

The difficulty in proving convergence and performing regret analysis is that the observation
noise ¢, associated with successive pulls of the chosen arms is no longer i.1.d. As first addressed
in Bastani and Bayati [2020], under mild conditions, the sequence ¢; X, is a Martingale difference
sequence. This allows them to prove tail inequalities for the lasso estimator under a conditionally
independent subgaussian noise assumption. Kim and Paik [2019] used these Martingale results
to perform regret analysis of the Doubly-Robust (DR) Lasso bandit, and Oh et al. [2021] applied
them to the sparse agnostic (SA) Lasso bandit.

These convergence results relied on technical conditions, namely the compatibility condition
and the restricted eigenvalue condition. In order to establish these conditions in bandit problems,
the oracle lasso convergence theory in Van De Geer et al. [2009] was modified via a Martingale
concentration inequality. This required positive-definiteness of the context covariance matrix, a
condition that is often violated when there are missing values in the observed contexts. This paper
relaxes this requirement, allowing us to prove convergence when there are missing values in the
context variables in stochastic linear bandit problems.

As Tewari and Murphy [2017] point out, missing values are common in contextual bandits,
motivating this work from a practical standpoint. For example, in a clinical application of warfarin
dosing with patient data [Consortium, 2009], missing values for certain genotypes are prevalent in
the context vectors. These are often imputed based on demographic or other genotype information.
Even after imputation, there can remain a few missing covariates.

This work adopts the regression with missing data framework from Loh and Wainwright [2012]
to establish tight convergence for stochastic linear bandits with missing covariates. Specifically,
we adopt the missing completely at random (MCAR) model. In the missing data model, variables
in the context vector X;; € R? of the i-th arm at time ¢ are observed with probabilities ¢ =
[C1, ..., Cq) € ]0,1]%. As aresult, we observe the context with missing entries Z = X ® U, where
© is a Hadamard product and the missing indicator U;; € {0, 1} based on 1 — ¢ is assumed to be
independent of both X, ; and the observation noise ;.

In the high-dimensional statistics literature, Loh and Wainwright [2012] provided a plug-in-
estimator for linear regression problems with additive and/or multiplicative noise. Fan et al. [2019]
tackled a similar problem for estimating sparse precision matrices with missing covariates. We use

these estimators to extend the SA Lasso bandit by Oh et al. [2021] to the noisy and missing data
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setting. The technical challenges that we overcome are the following.

* Optimization convergence: When there are missing covariates, the lasso estimation problem
becomes non-convex. Furthermore, the unbiased estimator of the covariance matrix loses
positive semi-definiteness and has negative eigenvalues. Thus, we must deal with the thorny
problem of how a local optimum of the lasso optimization affects the regret analyses of the

stochastic linear bandit algorithms.

* Statistical convergence: When there are missing covariates, the negative eigenvalues of the

covariance matrix do not allow us to use the compatibility condition.

Both of these challenges can be addressed once we address the conditional dependence of the re-
ward noise ¢;. To the best of our knowledge, our work is the first to propose a lasso bandit with
missing covariates and to provide theoretical guarantees. We combine the results of Loh and Wain-
wright [2012] in our bandit problem using martingale methods to establish convergence. Our work
establishes restricted lower- and upper-restricted eigenvalue (RE) conditions on the adjusted sam-
ple covariance matrix when the observation noises are adapted to the past observations. We show
that missingness in covariates inflates the previous regret bounds by a factor inversely proportional

to the squared minimum sampling probability (2 . , which is reversely proportional to missingness.

5.1.1 Related Work

Sparse Linear Bandit: Interest in sparse linear bandits for high-dimensional contexts began with
Abbasi-Yadkori et al. [2012], Carpentier and Munos [2012], and continued with Gilton and Willett
[2017] and Bastani and Bayati [2020]. Recently, Kim and Paik [2019] applied sparse linear struc-
ture to the stochastic linear bandit problem and incorporated a doubly-robust technique to prove
convergence. The regret analysis in Kim and Paik [2019] mainly adopts the procedure in Bas-
tani and Bayati [2020] that extended the standard lasso convergence results to online regression
with non-i.i.d. samples. Oh et al. [2021] introduced SA Lasso bandit under a balanced covariance
assumption to circumvent the dependency problem.

Missing data in regression and covariance estimation: Traditional methods introduced by
Stadler and Biihlmann [2012] worked with the EM algorithm to perform statistical inference for
missing data. However, even in the batch setting when they do converge, EM algorithms often
converge slowly. Loh and Wainwright [2012] developed M-estimators that cope with missing and
corrupted data by simply adjusting the sample covariance matrix. The adjusted sample covari-
ance estimates, however, are not necessarily positive semi-definite, which makes the likelihood
non-convex. Loh and Wainwright [2012] proved that the local optima of the non-convex lasso

problem have comparable mean squared error as the global optimum. Thus, a simple projected
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gradient algorithm for the non-convex lasso objective under missing data is enough to guarantee

the convergence of their estimators.

5.2 Problem Setup

We address the missing context covariate problem by incorporating an adjusted covariance matrix
during the lasso step and analyze the resulting regret analyses for a modified SA Lasso bandit.
We start with a precise description of the linear contextual bandit problem under missing data and
motivate the proposed estimator.

Missing covariates: In a sparse stochastic linear bandit, the reward for pulling the ¢-th arm
at time ¢ is of the form r,; = X, ;" for i € [K] given the covariates X;; € R, called context
variables. Over the time steps [T'], the learner estimates the unknown regression parameter 5* €
R?, which is assumed to be sparse. In a typical stochastic linear bandit problem, after pulling arm

a;, we observe a reward 7, linked with context vector X, ,, € R?, via the noisy linear model
7= Xt + et te[T],a € [K], (5.1)

where ¢; € R is the observation noise independent of X, ;. Instead of directly observing X, ;, we

observe Z;; = [Zy i1, . .., Z1ia] with missing entries defined as follows

X;,; if the entry is not missin
Zp=14 Y s (5.2)
0 if the entry is missing

Equivalently, the learner observes the context for the i-th arm at time ¢t as Z,; = X;; ©® Uy ;, where
Uy € A0, 1}d and © is the Hadamard product. Each entry U, ;; is an independent Bernoulli random
variable with sampling probability parameter (;, the probability of observing the j-th covariate of
the context vector X;; The estimation goal is to recover 3* as we receive the context vectors Z, ;
with missing entries.

Multi-armed bandit setting with missing covariates: Based on the observed contexts with
missing entries, the learner is repeatedly faced with the problem of deciding which of K available
arms to pull based on the observed contexts Z;;, = X;; © U;; € RY, i e [K]. That is, at time ¢, we
observe Z; € R¥*? matrix-variate data and the missingness pattern U, € R¥*?, where the i-th
row of these variables corresponds to the ¢-th arm. Based on the context variables for each arm,
the learner pulls an arm and incurs a reward. Note that when (; = 1 for all covariates j € [d], our
problem setting is the same as the fully observed case of Kim and Paik [2019] and Oh et al. [2021].

When missing values exist, we incorporate the observed missingness pattern U, to pull the arm
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maximizing the estimated reward

a; = argmax(Z;; © By, t € [T, (5.3)
1€[K]
where é € R?is an estimate of the sampling probabilities based on the U,’s, and Bt is an estimate
of B*. The policy defined by (5.3) is called the plug-in-estimation policy.
We define the optimal arm at time ¢ as

a; = argmax X;,;5", t € [T], (5.4)

1<i<K

and the regret(t) as the difference between the expected reward of the optimal arm and the expected

reward of the chosen arm at time ¢.

regret(t) = Elryqr — T { X}y, ar, Ui
= Xt,afﬁ - Xt,atﬁa te [T]a

where 7 4+ and 1 ,, are the maxima achieved in (5.3) and (5.4). The learner aims to minimize the
cumulative regret over 1’ steps.

For the rest of the paper, we define the filtration F;_; as the union of all observations up to time
t — 1 including rewards, missingness patterns, and contexts:

ft—l - {(ZTalij,(zfa UT) "

T=1"

Given F;_1, the learner selects the arm a, according to the current estimate Bt.

5.3 Lasso bandit with missing covariates

We introduce covariate missingness into the SA Lasso bandit [Oh et al., 2021] when the contexts
are corrupted with missing values. We analyze the regret when the plug-in-estimation policy (5.3)

is used in the modified lasso bandit algorithm.

5.3.1 Bandit with missing covariates

Compared to Kim and Paik [2019], where the uneven sampling of the covariates is addressed
by taking the average of the contexts at each round and calculating the corresponding pseudo-
rewards, Oh et al. [2021] introduced the SA Lasso bandit by making an additional assumption

on the distribution of the contexts such that the covariance matrix 3; = E[X X;|F;_] behaves
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sufficiently well enough to converge to the marginal context covariance matrix ¥ = E[XT X}].
More specifically, Oh et al. [2021] showed that

k
ZEXt {XgiXtﬁil(Xm = argmax X 3)| = (2vCx)'%,
Py XeX,
under the balanced covariance assumption (Assumption.6) stated later in this paper, where X; =
(X1, .., Xik]" (See Lemma 3 and Lemma 10 of Oh et al. [2021] for more details). This paper
will show that under the balanced covariance assumption, we can achieve a similar result as Oh
et al. [2021] even in the presence of missing covariates.

For the SA Lasso bandit with missing covariates algorithm, we directly use the observed re-
wards 7;,, and the incompletely observed contexts Z;,, = X;,, © U;,,. Thus, in the case of
our modification, we define Z; = [Z14,,... Zia,] € R>*? and 7, = [fy,...,7] € R, where

ZT’U’T = X77a7' @ UT70«7— and 727' = XT,aq—ﬁ + Er.

5.3.2 Lasso estimation with adjusted covariance matrix

Based on the observed Z;, we optimize

. 1 e .
5t € arg min {§ﬁTrmiss,t5 - <7miss,t7 5) + 77tHBH1} (55)

8lli<R

where ||-||; is an ¢; norm and

~ 1 ~

Diniss,t = <¥Z?Zt) o M

~ o 1ZT =

Tmisst =\ 72T ) @€ (5.6)
. Foifi =

i, = ¢ J

where f € R? is the sampling probability of each of the covariates. This type of lasso estimator,
under noisy and missing data, was first introduced in Loh and Wainwright [2012] for the regres-
sion problem. Our analysis adopts this estimator for the high-dimensional stochastic linear bandit
problem.

While the application of Loh and Wainwright [2012]’s approach seems simple enough, several
challenges arise due to the sequential-decision making setting. As the noise ¢; is not i.i.d., we
cannot directly apply the convergence results from Loh and Wainwright [2012] to the lasso bandit

with covariate missingness.
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We show that the optimal regularization path depends on the minimum sampling probability

of the covariates (yn;, = min; fj. Our theorem shows that 7; should scale with t.lggi dn This
regularization path agrees with the noiseless setting in Oh et al. [2021]. Intuitively, the effective
sample size of the covariates is ¢ - (2, , which is the number of time steps needed to reliably
estimate the off-diagonal entries of E[ X/ X;|F;_1]. It will be easily seen that all of our results will

reduce to Oh et al. [2021] for the case that (; = 1 for all j € [K].

5.4 Algorithm

Algorithm 3 solves the lasso bandit problem under the covariate missingness. The key differences
compared to the fully-observed counterpart are 1) the use of adjusted plug-in estimators f,m»ss,t
and 9,,iss¢ and 2) the theoretically justified regularization parameter 7,. An additional tuning
parameter R is introduced to the non-convexity of the problem (5.5) to constrain /5 in an ¢; ball
and is motivated by a similar approach proposed by Loh and Wainwright [2012] and Rudelson
et al. [2017].

Algorithm 3: SA Lasso bandit with missing covariates
Input: 7, R
Initialize By = 0, o = 1
fort=1,...,7 do

Observe contexts Z; ~ P xq

and the missing pattern Uy

Update ét = ét—l + % (% Zfil Ui — ét71>

Pull arm a; = arg max;¢ (Zii© ét)Bt
Observe 7; for the arm a;

Update n, = 1, \/ 4log(t iy y) Hlog d

t Cg’nn
Updated fmiss,t and 7,55+ based on (5.6)
Update ; based on (5.5)
end

For Algorithm 3, we consider the constrained program as introduced in Loh and Wainwright

[2015a], given fmiss,t and Yiss 15

- (1 e -
B € aHrB% rg;n{—BTFmiss,tﬁ — Vmiss,t, B) + ne| B Hl} , (5.7)
1>

for some constant R = b,/sq, where b = max;¢c|q 3*. As we do not have a priori knowledge
of the sparsity level sq, R is user-defined parameter. While typical gradient descent methods fail

to converge to a global optimum due to local minima, Loh and Wainwright [2012] proved that a
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simple projected gradient descent algorithm for (5.7) converges within the statistical tolerance of
the global optimum even when fmiss’t # 0.
To iteratively solve (5.7), we apply the following Lagrangian update with ¢;-ball penalty pa-

rameter o and sparsity parameter 7);.

31 =argmin { £(8") + (VL(F). 3 = 5)
18I<R : (5.8)
+£18 = B3+ Ml 81l }

where 1 > 0,7, > 0, £(8) = 1 87T s 18— (Gmiss.e, B) is the likelihood, and VL(3) = Tppigs 1S —

Fmiss¢ 18 its gradient.

5.5 Regret analysis under missing data

We derive an upper bound on the regret of the SA Lasso bandit with missing covariates defined in
Section 5.3.1. We emphasize that the regret analysis is not limited to our problem but can be derived
for any linear bandits using Proposition 5.5.1. This key result extends Proposition 1 in Bastani and
Bayati [2020] to the case where there are missing values. We first state the standard assumptions
we make to derive the upper bound for the cumulative regret and the relevant definitions that will

extend the compatibility assumption to the case of missing covariates.

Assumption 1 (Feature set and parameter). There exists a positive constant T, such that
| X¢ille < Tmax for all X,; € RY and a positive constant b such that ||3*||2 < b and ||3*||o = so.

Assumption 2 (i.i.d. context). The context variables X, € R5*? gre i.i.d. and follow matrix-

variate distribution Px at every time t:

Assumption 3 (Sub-Gaussian error). The error e, = 744, — Xy 4,3 is 0.-sub-Gaussian adapted
to Fi_1 for some o. > 0. In other words, for every a € R, E[e®|F,_1] < eo2a?/2,

Assumption 1-3 are standard assumptions in the stochastic linear bandit literature [Bastani and
Bayati, 2020, Oh et al., 2021, Kim and Paik, 2019].

We additionally assume the compatibility condition on the true Gram matrix ¥ := +E[X7X].
This is a standard assumption in high-dimensional regression literature [Van De Geer et al., 2009]
and stochastic linear bandit problems [Wang et al., 2018, Bastani and Bayati, 2020, Kim and Paik,
2019, Oh et al., 2021]. Before we introduce the compatibility condition, we first define the active

set So = {j : B} # 0} as the set of indices that correspond to non-zero values of ;. Thus, the true
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B* can be divided into the following

Bi.so = Bil(J € So) and fj g = B;1(j & So)

Let C(Sy) be the set of vectors 3 € R? defined as

C(So) = {8 € RY[|Bsgll < 3(18s, 11} (5.9)

Then, we can define the compatibility condition.

Assumption 4 (Compatibility Condition). For an active set Sy, there exists a compatibility con-
stant ¢* > 0 such that

Sl Bsolli < s087S8 VB € C(S)

The compatibility condition generalizes the positive-definite assumption on the population co-
variance matrix and ensures that a Lasso estimator will converge to the true parameter $ with high
probability as the sample size grows to infinity. While the compatibility condition seems technical
at first sight, it allows us to bound the ¢;-norm with the /5-norm. It can be easily seen that the
positive-definite assumption in OLS satisfies the compatibility condition with ¢g = /Ain(2).
Despite the compatibility condition on the true 3., our unbiased estimator for > always contains
negative eigenvalues when there are missing covariates in the context vector. Thus, we later intro-

duce restricted strong convexity to prove convergence.

Assumption 5 (Relaxed symmetry). For a joint distribution Px, there exists v < oo such that

pgx((;’;) < vforallx € R%

Relaxed symmetry assumption is satisfied by a wide range of distribution including the Gaus-
sian distribution and the uniform distribution. Note that for symmetric distributions, Assumption 5

is satisfied with v = 1.

Assumption 6 (Balanced covariance). Consider a permutation (i1, .. . ,ix) of (1,..., K). For any
integer k € {2,..., K — 1} and fixed vector (3, there exists C'y such that

E [ X)X, 1(X;, 8" < < X;,. 6]

In bandit problems, the sample covariance we work with at time ¢ is E[ X7 X |F;_;]. As we are
selecting arms a; = arg max;¢ (g (Zi; © f )3, based on the current estimate [3;, our algorithm may

not evenly sample from the whole distribution. As introduced in Oh et al. [2021], the balanced

74



covariance assumption implies that we can control the covariance matrix based on the extreme
selections of the arms.

For example, if the arms are completely correlated, C'x is constant independent of dimensions.
In a more general setting, Oh et al. [2021] proved that the balanced covariance condition is satisfied
with Cx = (Ii(_o 1) with Ky = [%1 when the arms are independent and identically distributed
from Gaussian distribution. While the balanced covariance condition was first introduced from
the proof technique in Oh et al. [2021], the value of Cx gives an insight into the behavior of the
population covariance matrix.

As fmiss’t is not positive semi-definite, we introduce lower-restricted eigenvalue (RE) and
upper-RE conditions from Loh and Wainwright [2012], which are also known as restricted strong
convexity and restricted strong smoothness conditions in the optimization literature [Agarwal et al.,

2012, Negahban et al., 2012].

Definition 5.5.1. (Lower-RE condition) The matrix T satisfies a lower restricted eigenvalue con-

dition with curvature o; > 0 and tolerance 7(t,d) > 0 if
BTTB > aul|BI3 — 7(t, d) 18]I} VB € RY. (5.10)

This condition is also used in Loh and Wainwright [2012]. In the fully observed case, the stan-
dard covariance matrix X/ X; will satisfy the lower-RE condition with oy = 2 \.;,, (£ X7 X)
and 7(t,d) < @ (See Loh and Wainwright [2012] for more details). This condition is useful to
study the statistical aspect of the proposed method, as fmiss’t has negative eigenvalues. We extend
the results of Loh and Wainwright [2012] and show that the estimator for the covariance matrix

with missing covariates in bandit problems satisfies the lower-RE condition.

Definition 5.5.2. (Upper-RE condition) The matrix T satisfies an upper restricted eigenvalue con-

dition with smoothness s > 0 and tolerance 7(¢,d) > 0 if
BTTS < azl|BI + 7 (1, d)IIBIT V5 € R, (5.11)

A popular example that satisfies the lower- and upper-RE condition is a Toeplitz matrix > €
R4 where 3;; = p"=Il with p € [0,1). Such covariance structure arises from autoregressive
processes, and the parameter p determines the memory in the process. In this setting, it can be
shown that the minimum eigenvalue \,,;,(X) is 1 — p > 0 regardless of the dimension d, and thus
a Toeplitz matrix satisfies the lower- and upper-RE condition. Thus, the sample covariance matrix
for autoregressive processes will also satisfy the RE condition with high probability. Besides
Toeplitz matrices, Raskutti et al. [2010] showed that a wide range of random Gaussian matrices
that satisfy (5.10) and (5.11), and Rudelson and Zhou [2012] established similar results for random
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matrices with dependent entries in the sub-Gaussian setting.

5.5.1 Lasso convergence for bandit problems with missing data

Given the observed covariates Z;, = X; © U, we have the following proposition.

Proposition 5.5.1. Let X; € RE*? be sub-Gaussian with parameters (3, 02) and Z; = X; ® U,
be the missing data matrix with parameter { = [(y,...,Cq € [0,1]% Also, define F,_, to be
the filtration up to time T — 1 in the bandit setting with 7, = X, , * + .. Suppose £.|F_1 is
o.-sub-Gaussian for r = 1,...,t. Ift > max (Cfnm Wi(ﬁ) 1) - 8o log d, then for any vector 3*
with sparsity at most sy, there is a universal positive constant cq such that any global optimum (3

of (5.5) with any ||5*||2 < R and n, > 4¢(Q, 0.)4/ logd satisfies the bound

I8, 5l < 0 {¢<@,aa> lofd,nt}, 612

with probability at least 1 — ¢, exp(—co log d) for ay = %)\mm(Ex) and ¢p(Q, 0.) = ¢ fC (cfE +
)18z

This convergence result does not follow directly from Loh and Wainwright [2012] since
{e:Z1a,; }izl for j € [d] are not i.i.d. However, they are a martingale difference sequence adapted
to the filtration F;_1, as shown in Appendix C.

The technical challenges in proving (5.12) when €, 7, ,_; is a martingale difference sequence

and 2) proving ||Ymisst — fmiss,tﬁ*ﬂoo < ¢(Q, 05)\/@ in the bandit
setting. Once these are bounded with high-probability, the rest of the proof of Proposition 5.5.1
follows the proof method of Loh and Wainwright [2012] (provided in Appendix C).

Note that Proposition 5.5.1 only bounds the statistical error of the global optimizer. As the

1z
t

problem (5.5) is non-convex, we also need to address the optimization error of our estimator.
Based on Lemma 5.8.6 and Lemma 5.8.8, we can adopt Theorem 2 of Loh and Wainwright [2012]
to obtain the following theorem.

Theorem 5.5.1 (Theorem 2, Loh and Wainwright [2012]). Denote 1 as the objective function of
Lagrangian program (5.8) with global optimum Bt after applying the updates (5.8). Under the
conditions of Proposition 5.5.1, there are universal positive constants (ci,cz) and a contraction

coefficient w € (0,1), independent of (t,d, sy), such that

16 =Bl <cllf— 813 foralliteratesi > T (513
N—

52
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where T := ¢y log Wﬂo)&—gd’(g))/log(l/w).

The standard regret analyses of the SA bandits without missing covariates assume that B is the
global optimum of the problem (5.7). However, in reality, as our objective function is non-convex,
only a local optimum E of (5.7) may be available.

Lemma 5.8.6 and 5.8.8 allow us to adopt the optimization result from Loh and Wainwright
[2012], and we can bound the regret for ¢t > T}, by

Hgt — B2 < Hgt — BtHZ + HBt — B
< COHBt — 5|2

for some constant ¢y > 1. Such an extension is possible since the lower-RE condition of the co-
variance matrix allows our objective function to be slightly non-convex, where all local optimums

are within the statistical tolerance of the problem for ¢ > Tj,.

5.5.2 Regret Analyses with missing values
In this section, we provide our regret analysis for Algorithm 3.

Theorem 5.5.2 (SA Lasso bandit with missing values). Suppose Assumption 1, 2, 3, 4 and 5 hold.
Then, for some constant cy,cy > 0, the cumulative regret of the SA Lasso bandit with missing
values is O (ﬁ soT 10g(dT)> with probability at least 1 — ¢y exp(—cy log d).

As pointed out in Oh et al. [2021], the learner does not have to go through the exploration

phase due to the balanced covariance assumption (Assumption 6). Compared to the fully observed

setting, the regret is increased by —— due to the missing covariates. This matches our intuition that

min

extra arm pulls are needed to accurately estimate the off-diagonal entries of I',,,;5 ; when covariates

are missing.

5.6 Simulation study

To demonstrate the benefit of incorporating the missing pattern in the observed context, we per-
formed two sets of simulations.
1. Convergence: For the first set of experiments, we first compare the modified SA Lasso to

existing methods as we increase the missingness.

2. Comparison to Imputation: As there is no systematic way of incorporating the missing
values, practitioners often impute the missing values by columns. We compare our method

to the SA lasso bandit with imputed context variables.

77



Missing Probability = 0.2 Missing Probability = 0.4

1000 Lasso Missing 12004 — Lasso Missing
DR Missing DR Missing
. SA Missing o SA Missing
800 1000 4

800 -

600
600

400+
400 4

Cumulative Regret
Cumulative Regret

2004 200 -

T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time Time

Figure 5.1: Cumulative regret over time with 1 — (; € {0.2,0.3,0.4} for j € [K]|, k = 20, and
d = 200 ‘r:or the lasso bandit, the DR Lasso bandit, and the SA Lasso bandit with the adjusted
estimator I'; ,,i5s and Y4 mss-

5.6.1 Convergence Simulation

We conduct simulations to evaluate the improvement in cumulative regret based on our modifica-
tions on the lasso bandit, the DR lasso bandit, and the SA lasso bandit, presented in Figure 5.1. The
details of the DR lasso modification are included in Appendix 5.8.5. We set £ = 20, d = 200 and
the missing probability 1—¢; € {0.2,0.4} forall j € [K]. The sparsity was set to sy = cv/d, where
c 1s constant. At each round ¢, we generate the true contexts X; € RA*4 where Xii~N (0,%)
and ¥ is a Toeplitz matrix. The learners observe Z;, = X; ® U,, where all entries U, ;; ~ Ber((;).
We could have also varied the sampling probability (; for each covariate, but Theorems 5.5.2 shows
that only the minimum sampling probability plays a role in the convergence rate. In this setting,
the Gaussian model for X, satisfies the symmetry condition (Assumption 5). Lastly, we generate
¢ from the normal distribution, and the reward is observed based on the approximation Z; @ ¢ of
the context X,.

In order to verify the rates predicted by Theorem 5.5.2, we perform the same simulations for
¢; € [0.65,0.9]. Given our specified simulation of (7', d, so, (), Theorem 5.5.2 says that the regret is
@) (ﬁ soT log(dT )) for the SA Lasso bandit. Thus, the rescaled cumulative regret rogret(®) Chuin

v/ soT log(dT)

for the SA Lasso bandit have similar values for different (,,;, € [0.65,0.9] as shown in Figure 5.2.

5.6.2 Comparison to Imputation

In real-life applications, practitioners are often faced with missing entries and resort to imputing
the missing entries with the observed column average. The resulting sample covariance matrix
with imputed covariates, however, becomes a biased estimator of the population covariance ma-
trix. With the same set of parameters from the first experiments, we compare our method to the

imputation method. Figure 5.3 shows the results for our method and imputation. For a smaller
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Figure 5.2: (Top) Cumulative regret over time with ¢ € [0.65,0.9], £ = 20, and d = 200 for the
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the rates of Theorem 5.2.
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Figure 5.3: Cumulative regret over time with 1 — ¢; € {0.1,0.2} for j € [K], k = 20, and d = 200
for the proposed method and the SA Lasso Bandit with imputed covariates.

missing probability of 0.1, the number of imputed covariates is small enough that the performance
between our method and the imputation method is about the same. However, as we increase the
missing probability of the covariates to 1 — (,,,;, = 0.2, the difference in performance starts to be-

come clear. With the unbiased estimator of ft7miss, we can quickly recover the 8* with our method.
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As a result, the resulting cumulative regret performance has an edge over the imputation method.

5.6.3 Case Study: Experimental Design

Understanding the interactions among microbiomes in microbial communities is important to many
applications in health, ecology, and antibiotic design. Recently, Lozano et al. [2019] introduced
a model microbiome community for the rhizosphere, called THOR or BFK, that combines three
microbial species Bacillus cereus (B), Flavobacterium Johnsonian (F), and Pseudomonas koreen-
sis in order to study the complex interactions between them under different conditions (classes).
We will use data from this model to illustrate the application of the proposed contextual bandit
with missingness to the sequential design of experiments for discovering the gene probes that best
discriminate between two experimental conditions: a BFK community having a wildtype strain of
F (class 1) vs a community having a mutant strain of F (class 2).

Gene probe Selection Problem: Often only a few key genes among the thousands of genes
play important roles in the behavior of microbial species under varying experimental conditions.
However, simultaneously collecting all available gene expression data for multiple experiments
could be costly for researchers. We reformulate the DNA probe selection problem as a sequential
design problem using contextual bandits. The objective is to sequentially select gene probes (arms)
to discover a few genes that best discriminate between the classes. We aim to establish proof of
concept that such discriminative genes can be discovered sequentially without the need to sequence
the entire genome at once.

Dataset: Experimental microbiome data was collected and processed in the lab of one of the
co-authors. We performed gene sequencing on each species, yielding the three gene expression
datasets X; € R%>(mi+m2) forj € { B, F, K}, where n; is the number of genes for species 7 and 1,
and ms are the number of replicates (samples) for conditions (classes) 1 and 2, respectively. There
are 6179 gene probes for Bacillus, 5198 genes in Flavobacterium, and 5864 genes in Pseudomonas
with m; = 38 and my = 34.

Bandit Formulation: We formulate the sequential gene selection problem with the contextual

bandit having the following components

* Arms: The arms correspond to the genomes of B, F, K for the three species, denoted X &€
R¥*(m1+m2) where k represents the number of selectable DNA probes, which depends on B,
F,or K.

* Covariates: The covariates of the i-th arm at time ¢ X, ; € R™ "2 are the gene expressions

of the i-th probe for the set of samples for both experimental conditions.

* Reward: The reward is the observed discrimination provided by the selected gene probe
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(arm). We use Welch'’s t-statistic, specifically the p-value of this statistic to measure discrim-

ination. The reward is defined as

11— a

7, = log (—p) = X, 5" +e (5.14)
at

where p,, denotes the p-value of the Welch’s test of the null hypothesis that the arm a; is a

non-discriminative gene whose means are identical in each class.

Evaluation and Results: Based on the reward function (5.14), we apply our contextual bandit
and treat the zero expression values in the data X as missing entries. As the goal of the bandit
problem is to select the most discriminating DNA probes at each time point, we evaluate the
fraction of the probe selections that correctly lead to a statistically significant (o« = 0.05). To

simulate noisy rewards in terms of p-value, each probe is sampled with replacement at each time ¢.
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Figure 5.4: Success rate of proposed contextual bandit as measured by the fraction of probes
selected at each time (arm pull) that highly discriminate between microbiome classes as measured
by p-value (o« < 0.05) of Welch’s test of significance for testing that class means are identical.
Each result represents an average over 100 trials. The proposed sparse agnostic with missingness
bandits (SAM) more rapidly achieve 100% success rate than the standard bandit (OLS).

Figure 5.4 shows the pull success rate for our proposed bandit. For each species, the success
rate rapidly reaches around 0.95 for SAM. The difference between the class distributions is the
largest for Flavobacterium in the overall data, and the bandit quickly discriminates this in its early

set of selected probes for /' (shown in orange in Figure 5.4).
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5.7 Conclusion

The missing value problem is challenging in high-dimensional stochastic linear bandit problems.
Missing covariates often result from the high cost of collecting context vectors, or alternatively,
sensor failures. This paper presented a modification of the SA Lasso bandit when the context
covariates may be incompletely observed. We modeled the problem as missing completely at
random but with the possibly different covariate missingness probabilities. Even in this simple
setting, the unbiased plug-in estimators of the lasso estimation result in a non-convex objective
of the lasso estimation, which was first addressed in Loh and Wainwright [2012] for regression
problems and extended in this paper for bandit problems.

A natural extension to our paper is to relax the MCAR assumption. Often in clinical trials, the
missing pattern itself has an implication for a given patient. For example, a patient is more likely
to complete a health survey if he or she has a relevant medical condition. In such a setting, we can
have an additional layer of modeling the missing probabilities based on the meta-data of the pa-
tients or the groups defined by the observed data. Then, the data are considered missing at random
(MAR), which corresponds to a much broader than MCAR. This direction gives us an additional
group information of the observed data to improve the convergence rate of our covariance matrix
and in turn result in a faster regret convergence.

Another direction is to incorporate the noisy data into the learning framework based on errors-
in-variables (EIV) models, introduced in Loh and Wainwright [2012] and Rudelson et al. [2017]
for regression problems. In a bandit EIV model, the column-correlated contexts X; € REXt at
time ¢ would be observed with the row-correlated measurement noise matrix W, € RX*? The
intuition behind the EIV-model for the bandit problems is to take the arm-correlated measurement
noise into account. We can effectively reduce the noise by looking at the covariance structures.
Thus, similar to the problem in this paper, the problem can be formulated as recovering 5* based
on the noisy context covariates Z; = X; + W,.

Besides EIV models, matrix-variate modeling for bandit problems could be used to improve
the performance of the bandit algorithms when the arms are correlated or specific group means
are present in the context vectors. We hope our work promotes additional interest in theoretically

exploring bandit algorithms with noisy and missing covariates.
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5.8 Detailed Proofs for stochastic multi-armed bandit with

missing covariates

5.8.1 Outline

The structure of the appendix is as follows. First, we present the regret analysis for Sparse Agnostic
Lasso Bandit with missing covariates. In Appendix 5.8.4, we state the technical lemmas needed to
complete the regret analysis proofs in this paper.

For ease of notations in the proofs, we let || X, ||z < Znar = 1 for all X;; € R? and ||5*]]2 <
b=1.

5.8.1.1 Notations

Recall that at time ¢, we observe the contexts of each arm Z, = X; ® U, € R¥*? where K is
the number of arms and d is the dimension of the context covariate vector. Based on the arm, the
environment provides a noisy reward 7, = X 4, 3" + ;. At each round, the learner observes 7, and

performs lasso on {Z, .. @ ;,7,}._,, where Z, ,_ is the context covariate for arm a, at time 7.

5.8.2 Regret analysis for SA Lasso bandit with missing contexts

The proof structure of the regret analysis is inspired by the regret analysis of Kim and Paik [2019]

and Oh et al. [2021] for stochastic linear bandits but is different in two aspects.

* Kim and Paik [2019], Bastani and Bayati [2020], and Oh et al. [2021] work with positive
semi-definite > and thus do not have to consider the optimization error as their sub-problems
are convex. With additional insight from Loh and Wainwright [2012], we work with the local
approximation Bt instead of the global optimum Bt of the non-convex sub-problems in our
analysis. The technical difficulty is addressed in Loh and Wainwright [2012], but we bring

it here for regret analysis for completeness.

* While we could consider the missing probability as a constant over all covariates, we keep
track of the minimum sampling probability (,,,;, to provide more insight to practitioners for

systematically dealing with missing covariates.

The technical challenge with regret analysis for the SA Lasso bandit comes from proving the
lower- and upper-RE condition for ft, shown in Appendix 5.8.3. The rest of the regret analysis
follows the proof in Oh et al. [2021], but we keep track of the sampling probability (,.;,. We

include the proof of the regret analysis here for completeness.
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5.8.2.1 Proof of Theorem 5.5.2

2 . 2
Proof. For T, = Zg(’)g(g‘)@ where Cy(sp) = min <%, 216?(:%)(32 lf:ggn_ ), we first define the event

& = Y — Fmiss [eS) S T~
t {H ! 7t|| 54SQVCX}

&; as follows

In other words, &; corresponds to the event where fmiss,t is close enough to X;. Then, the structure

of the proof can be decomposed as follows

(a) t < Tp: The first part of the learning phase is an exploration phase based on Bt. The bandit

algorithm accumulates data to estimate fmiss’t during this phase.

(b) t > T} and & fmz-ss,t does not converge to ; and thus does not satisfy the lower- and

upper-RE condition.
(c) t > T, and &;: SA Lasso bandit algorithm correctly estimates /5 with missing covariates.

We use regret(t) as the regret at time ¢, and R(t) = E[regret(¢)]. Then, by Assumption 1 and 2,

we can bound regret(t) by
I‘egret(t) S Xt,az‘ﬁ* - Xt,atﬁ* S HXt,aZ‘ - Xt,atH2Hﬁ*H2 S meaxb

For ease of notation, we will set x,,,, = 1 and b = 1.

As noted above, we can divide regret(?) into three parts

regret(t) = regret(t)1(t < Tp) + regret(t)1(t > To, &) + regret(t)1(t > Tp, E°)
< 21(t < Tjp) + regret(t)L(t > T, &) + 2XmarbL(E > T, E°)
=21 (t < To) +regret(t)]l ((Zt,at %) ét)Bt > (Zta? @ ét)Bt,t > T, 515) + 2]1(t > T, gtc)
—— ——

4

(a) ) (c)

We first relate part (b) with the lasso convergence result for our case for ¢t > Tj and &; detailed in
Lemma 5.8.2. That is,

regret(t)1 ((Zt,at 08B > (Ziwy @ &) Bt > T, &) <|Bror = Blla < s

where d; = 9% max {¢(Q, 0.)q/ 8l )\t}.

aq t
For part (c), we have that by Lemma 5.8.3 the event £ does not happen with probability at least
1 — coexp(—cy logd) for t > T.
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Based on the regret at time ¢, we can calculated the expected regret for ¢ > T} as

R(t) <E [regret(t)]l (2”@ — 5*||1 > regret(t), Et>] + 22,0, DP(E°)
=E [regret(t)]l <2||Bt — [*||1 > regret(t), regret(t) < dy, é})}
+E [regret(t)]l <2||§t — B*[|1 > regret(t), regret(t) > d, 5})} + 22,0, bP(E°)

<d +P (2”@ ~ B> dt,&) +2P(E°)

Then, with probability at least 1 — ¢y exp(—cy log d), we have that the regret is bounded by

T
regret(t) < Ty + Z d,

t=To
o(so 1

=0 (2L soTlog(dT)>

min
[

Lemma 5.8.1 (Kim and Paik [2019], Lemma 4.3). Suppose Assumption 1, 2, 3, and 4 hold, and
d, = %%max {qﬁ(@,ag)\/b%i,/\gt}. Then, fort > Ty,

P (”Bt — B2 < d;

1By = B*ll2 < dier, - 1By — B*]l2 < dTO> < ¢y exp(—cylogd)
Thus, with probability at least 1 — ¢1 exp(—cy log d),
18, — B2 < dy for every t > Ty

Proof. The proof is same as Kim and Paik [2019] except we use Proposition 5.5.1 for the lasso

convergence using the martingale difference sequence. 0
Lemma 5.8.2. With probability at least 1 — ¢; exp(—cy log d),
a Cor/50
regret(T,b) < Z dy = Y 26(Q, 0.)\/log d\/log TV'T
g
t=Top

Proof. The proof of the final lemma follows from Lemma 4.4 of Kim and Paik [2019] by combin-
ing the result of Proposition 5.5.1, and we include the proof here for completeness. Suppose
t > Ty. Then, by Lemma 5.8.1, we have that || Bt_l — [B*|l2 < d; with probability at least
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1 — ¢y exp(—colog d). Also, by the definition of a;, we have that

(Ztar © G — Zia; @ ét)Btfl >0
= E[(Zva, @& = Zia; @ &) B | Fict] = (Xia, — Xoay)Bio1 > 0

as X;’s and U;’s are independent and E[U, ;| = ét for all i € [K]. Then,

N

regret(t,b) < regret(t,b) + (Xa, — Xiar)Bi—1
= (Xt,at - Xt,a;)(Bt—l - 5)
< | Xta, — Xtar ol Bio1 — B2
< Bea = BNl <

Thus, we have the cumulative regret is at most ZtT:l ds.

T T
_ N v Jlogd
;dt—z " max{cb(@,aa) ; ,A%}

t=1

. CO\/S_(] T 1
= 1 max{qﬁ(@,aa)\/logd,)\gt}; -

o t

c()a—\/%gb((@, 0.)y/1og d\/log TV'T
1

IN

5.8.3 Technical Proofs for SA Lasso bandit with missing covariates

Instead of dealing with the uneven sampling based on 5* with pseudo-reward construction as in
Kim and Paik [2019], Oh et al. [2021] address this problem by utilizing Assumption 5 on the
symmetry of the covariate distribution. The core of the proof is adopted from Oh et al. [2021],
but additional efforts are needed to prove similar results based on the non-positive semi-definite
matrix fmiss,t. Since the important parts of proving the convergence of Lasso estimators include

bounding Hfmisw — ¥|| 00, We address this problem first.
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5.8.3.1 RE condition of for SA Lasso bandit with missing covariates

In order to use the Bernstein inequality for adapted samples in Oh et al. [2021], we need to bound

the infinity norm. Define the following

Definition 5.8.1. For all 7, j with 1 < i < j < d, we define 6’ (Z,) to be a real-value function with
random variable Z, = X, ® U, € R? as input:

” (i) ,(4) i o
Lo (5 wxOxDE ) i

5;0’ (Z,) = x%; 12@-0 z(“;(% © ' (5.15)
e TG ( Z —E[X{" X !FH]) 1<i<d

where Zt(i) is the ¢ — th element of Z; and Uy ;; € {0,1}.

Note that this is a generalization of the deviation definition in Oh et al. [2021], where the
definition is equivalent for the case of fully observed covariates with (; = 1 Vi € [d] As we cannot
directly use the convergence results from Loh and Wainwright [2012], the deviation proofs have
to modify the proof structure of Oh et al. [2021] to incorporate the missing value correction of the
proposed modified SA and DR Lasso bandits. Then, it follows that 1) E[6 (Z;)|F;_1] = 0 and 2)
E[|6/7|™|F,_1] < 1 for all m > 2. Therefore, similarly to the fully observed covariates in Oh et al.
[2021], Lemma 5.8.10 can be applied for ft.

2
Lemma 5.8.3. For ™ > ZIZg((OC)lQ), where Cy(sp) = min (;, 2163(?11/2'/(\»21),2”” 15;25” ) we have that

min

o~ Amin (2 7Co(s0)?
P (Hrmiss,t H = 5450—1/(6&> < exXp (—%)

Proof. 5? (Z;) is defined for the diagonal entries and off-diagonal entries. We show the arguments

for diagonal entries first. Note that we have

Cmin || Ft,miss Z’T‘ ||oo
]‘ + szn x?yza;p

= max —

1| <~ .
> 6z
t=1

Then, Lemma 5.8.10 gives us that

; r > /8log(2 41og(2
IED gmm H miss,t ”oo > + \/_+ 8 Og( d) Og( d) S exp (_E)
1 + Cmin $2 T T 2

max
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Then for 7 > £(2d) \where Co(s0) = min (1 Amin(E)  Cmin )’

4 1o,
Co(s0)2 2 216sgvx2,,, 1+Cmin
8log(2d)  4log(2d)
w~+ V2w + i + - < 400(80)

= 2
ddsova? .

Thus, we have that

Ea Amin (2
P (HET - Pmiss,t“oo > J#) < exp <_ﬂ)

SOVTin 2

The argument for off-diagonal entries are the same. 0

210g(2d2) _ : 1 Amin () C72nzn 1
Lemma 5.84. For 7 > NoNONLE where Cy(sg) = min ( 3, STosgrCra? . Toer ) there are uni-

versal positive constants c; such that I'y,;ss satisfies the lower- and upper-RE conditions with

ap = AWLMT(ET)’ Gy = %/\mam(27>’ Cll’ld T(t7 d) = Am;r;E)Zt).

Proof. For v € K(2s), we have that

10T (T iss.s — 500 < I Tmiss — Srllsellv]lo
A (20
S mzn( )80
5480VCX
- 54

Thus, it follows that

. | 2
P (!vT(Fmiss,t — %] < M) <1—exp (_@)

54
Therefore, Lemma 5.8.11 gives us that fmiss,t satisfies the RE-condition with vy = ’\’"""2(27),
a2 = $Anao(-), and 7(t, d) = A==, O

5.8.3.2 Technical Lemmas

We adopt the strategy in Bastani and Bayati [2020] and use the Bernstein concentration inequality

(Lemma 5.8.5) for the martingale difference sequence adapted to a given filtration.
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Lemma 5.8.5. Let { Dy, Fi.}72, be a martingale difference sequence, and suppose that Dy, is o-
subgaussian in an adapted sense, i.e., for all o € R, E[e"‘D Rl F] < e’ 12 glmost surely. Then,
forallt >0, P[| > _, Di| > t] < 2exp[—t?/(2n0?)).

Lemma 5.8.5 follows from Theorem 2.19 of Wainwright [2019] when i, = o, = O0and v, = o
for all &.

Lemma 5.8.6. Under the assumption of Proposition 5.5.1,

T
= Y > ¢ 0.0 [logd < e logd/Cfnm’
where Z, = X,0U, € R is the observed matrix, €, = 1, .. 7€t]T € R, and (nin = mine(q Gi

is the minimum sampling probability of the covariates.

Proof. The key component of the proof follows from the observation that Z, is sub-Gaussian with

the parameter at most (%E 02). From our assumption, at time 7, X, € R¥*? s a sub-Gaussian

oK
matrix with parameter aﬁ. Then, as noted in Loh and Wainwright [2012], Z, = X, ® U is a sub-
Gaussian matrix with parameter at most 2.

Note that for any vector v € R? and any missing pattern of pattern of X ;, it follows that

2 2
E[exp(aZ, ;v)|missing pattern] = E[exp(aX, u)] < exp (%204 )

where the vector u € RP has entries u; = v; if the ¢-th entry is observed and u; = 0 if not

observed. Thus, it follows that Z, = X, ® U, is a sub-Gaussian matrix with parameter at most

o?. Furthermore, since the i-th row of Z. is a row-mean of Z,, i.e. Z., we have that Z; is a

X
sub-Gaussian matrix with parameter at most %Jg.
Let F; be the sigma algebra generated by random variables Z,, r;, and U;. Also, foreach i € [d],

define D, ; = €, ;2 ;. Then,

a? o20?
Elexp(aD; ;)| Fi—1] < Eg, [exp(aQZt,ﬂ-US/2)|Ft_1] < exp(; . %)
Then, it follows that D, ;,..., D;; is a martingale difference sequence adapted to the filtration
Fy C -+ C Fysince Ele, Z; | F:) = 0and D, is %-sub-Gaussian adapted to {F, }._;.
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In order to prove the bound on ||-||,, we rewrite the following probability using a union bound

. /1 teoo,o. [logd
(|5, o) 1B (vm )

51
> 1—2dexp( o2gd>

man

log d
=1—2exp (—01%)

for some constant ¢y > 1 and ¢; > 0. The second inequality follows from the Bernstein inequality
stated in Lemma 5.8.5. [

GtTZt
t

Lemma 5.8.7. (Lemma 3 of Loh and Wainwright [2012]) Under the condition of Proposition 5.5.1,
there are universal positive constant c; such that f,mvss,t satisfies lower- and upper- RE condition
with a1 = Apin(2)/2, g = %)\mw(zx), and

ol log d
T(t,d) = coA(Xz) max( e ) 1) g

min

with probability at least 1 — cq exp <—02t - min (M, 1>)

T

Proof. The proof of this Lemma follows from Loh and Wainwright [2012] tracking all relative

constants for the bandit problem. [

Lemma 5.8.8. Under the conditions of Proposition 5.5.1, there are universal positive constants c;

such that
log d
t

||/3/miss,t mzss tﬁ ||oo < ¢(@7 a) (516)

holds, with parameter

Oy O
gb(Q, O-E) - \/Eszn (0-6 " \/Egm'm> 7

with probability at least 1 — ¢; exp(—cy log d)

Proof. The deviation condition (5.16) has the same proof structure as L.oh and Wainwright [2012],
but adopts Lemma 5.8.6 instead of Lemma 14 of Loh and Wainwright [2012]. The technical
challenge from directly adopting Lemma 4 of Loh and Wainwright [2012] in our analysis comes
from the assumption that €, is conditionally sub-Gaussian adapted to /,_; in bandit settings, but

this can be easily addressed by using Lemma 5.8.6.
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Note that

1
|’7mzsst D 6 HOO N H <¥ ZTrt a COU(Zt’.Z” rt)) ? C)
1 1,7 *
S (Zir: = cov(Zui,m)) B
1 1 2
= H¥ (ZF Xy — cov(Zy i, Xy..0)) * Ett t

~~ ~~
1

The component / can be bounded by Lemma 14 of Loh and Wainwright [2012], and /] is bounded
by Lemma 5.8.6. In other words,

o2 log d)
P (I > ¢ < ¢ exp(—czlog d)
2. VE

(5.17)
020 log d
P (I] > ¢ VL > < ¢y exp(—czlogd)
Similarly, we have that
; AN/
||(Fmiss,t 5 ||oo H(( L _Zz> ®M>
o (5.18)
o] (Zfzt - zz)
N min t 00
Then, using Lemma 3 of Loh and Wainwright [2012], we have that
A 2 log d
P <||(P,m»ss,t — 28 oo < cokg; o8 ) <1 — ¢y exp(—cy log d) (5.19)
Combining the inequalities (5.17) and (5.18) completes the proof. U

5.8.3.3 Proof of proposition

Proof. With the previous results in hand, the proof of the proposition follows from Loh and
Wainwright [2012], which requires 1) RE-condition (Lemma 5.8.7) and 2) deviation bounds
(Lemma 5.8.8). O
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5.8.4 Technical Lemmas

Lemma 5.8.9 (Oh et al. [2021], Lemma 10). Suppose Assumption 6 holds. For a fixed vector
B € RY, we have

K
> Ea, {X{ixt,in(xt,i = argmaxXﬁ)} = (200y) 7Y

i=1 Xex,

Lemma 5.8.10 (Oh et al. [2021], Lemma 9). Suppose E[6/(Z)|Fi-i] = 0 and
E(|67(Z,)|™|Fio1] < m! for all integer m > 2, all t > 1, and all 1 < i < j < d. Then, for

all w > 0, we have

> w4+ V2w +

1Sz

T T T
t=1

2 2
5 < i 4log(2d?) N 2log(2d )) < exp( 7w>
1<i<j<d

Lemma 5.8.11 (Loh and Wainwright [2012], Lemma 13). Suppose s > 1 and ft is an estimator

of X satisfying the deviation condition

T, — ¥, <
[v (' )] < 54

Vo € K(2s)

Then, we have the lower-RE condition

2

vITw >
25

lvllz - vy

and the upper-RE condition

2

Arin(Ze) )12

. 3

T 2
Lo < = A ez (X +

A ACAS 9 (Zo)[lvll3 95

5.8.5 DR Lasso Bandit Modification

In this subsection, we introduce the modification on DR Lasso bandit proposed by Kim and Paik
[2019]. This modification was implemented for comparison in the empirical studies (subsec-
tion ??)

5.8.5.1 Missing covariates DR Lasso bandit

For the DR Lasso bandit by Kim and Paik [2019], we observe the reward 7; after pulling arm a;
based on (5.3) using the estimate Bt_l of 3 given F;_; and define the doubly-robust pseudo-reward
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with covariate missingness as follows

A H=(Zim o OB
o= (20 O + (Z2: @€)B1-1 (5.20)
,/Tt,at

where Z, = % Zfil Zii € R?. The pseudo-reward (5.20) differs from the original DR Lasso
bandit with full data in that Z, © f replaces the fully observed mean context X, = % Zfil Xii €
R?. As we are dealing missingness, we adjust the weights of the context vector in order to get the
linear relationship E[7|F;,_1] = (Z; @ ().

Based on the pseudo-reward defined in (5.20), the DR Lasso bandit with missing context applies
Lasso regression to the pair (Z; © é ,7¢). For ease of notation, at round ¢, we define Z; € R**? and

r, = [r,...,7)" € RY, where Z, , is the 7-th row vector defined by

This accomplishes context averaging for the case of covariate missingness, in analogy to the aver-
aging of fully observed context introduced in the original DR Lasso bandit of Kim and Paik [2019].
By averaging the context matrix, Kim and Paik [2019] circumvent the violation of the i.i.d. condi-
tion and the uneven sampling of the contexts in the stochastic linear bandit setting. As a result, the
extended oracle lasso convergence from Bastani and Bayati [2020] could be adopted for the regret
analysis of DR Lasso bandit. Such averaging of Z;; will have analogous benefits in our analysis
of regret when there exists covariate missingness.

As noted in Oh et al. [2021], DR lasso bandit has to explore the sample space with an explicit
exploration phase. Furthermore, the stringent assumption on the noise distribution in the original
paper remains one of the main factors that make SA lasso bandit a better method to utilize. Fur-
thermore, the calculation of the pseudo-reward has a high variance when the standard assumption

on the noise variable is imposed.
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Algorithm 4: DR Lasso bandit with missing covariates

Input: 7, 12, Ty, R

Initialize 8y = 0, o = 1
fort=1,....,Tdo

Observe contexts Z; ~ Prwd
and the missing pattern U,

Update ét = ét—l + % <Zf:1 Ui — ét—1>
if t <1} then

Pull arm a; = ¢ with probability %
Update 7, = %
else

log(t ¢2,;,)+logd
Me ="\ — & —

Sample m; ~ Ber (ny;)

if m; = 1 then
‘ Pull arm a; = 7 with probability %
else
‘ Pull arm a; = arg maXie[K]{(Zt’i @ Ct)ﬂt—l}
end
Ta, = B+ (1 — ) - I(a; = 1)
end

Observe 7 ,, and calculate the pseudo-reward 7, based on (5.20)
Updated I';,,;55 + and 4,55+ based on (5.6)
log(t C?m.n)-i-log d

772t - T’Q tc'?nin
Update Bt based on (5.5)
end
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CHAPTER 6

Conclusion

Multi-modal and high-dimensional data from complex systems have called for scalable and inter-
pretable models. In this thesis, we tackled several problems in various machine learning applica-
tions by imposing decomposable structures. Topic modeling and multi-spectral Brainbow images
have a common generative model that is driven by latent topics or neuronal processes. Methods
in these applications, including the proposed models in this thesis, look into the estimation of the
decomposable means with multi-variate noises. In real-life applications, however, it is possible
to exhibit dependencies among observations and variables. While the simultaneous estimation
of dependencies in multiple modes of the matrix- and tensor-variate data has been studied, it is
not straightforward how the existing methods can be combined to jointly estimate the mean and
covariance structures.

On one hand, we have a decomposable mean structure that can be often motivated by the data
generating process. Low-rank matrix decomposition methods have been well studied as it has de-
sirable theoretical results, and an increasing body of machine learning researcher shows the benefit
of using such models even for the tensor-variate data. However, there are no theoretical or empir-
ical results to provide guidance for practitioners on how to decide on which Kronecker structures
to use for estimating tensor- covariance models in a given application. An insight into this open
question would allow us to have a better understanding of how to tackle tensor-variate problems.
Furthermore, this would allow researchers to explicitly incorporate structured covariance models
with decomposable means. In particular, combining the Kronecker covariance model and the low-
rank mean structure could be powerful for modeling non-stationary spatio-temporal data as the

Kronecker model effectively formulate spatio-temporal behavior by viewing the data as a tensor.
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6.1 Future Works

6.1.1 Time Varying Topic Modeling with kernel estimator

The majority of approaches for estimating topic polytope focus on the mean structure of the word
distributions in a given corpus. As an alternative, there has been a line of work that looks at
the second- and/or third-order co-occurrence tensor to estimate the topic vertices [Anandkumar
et al., 2012, Fu et al., 2018]. Extending these approaches, one could study the time-varying topic
modeling with the correlation among words by looking at the kernelized co-occurrence matrix

defined as follows .
~ QW W
En (t) — ZS st S S
ZS st
where w; € [0, 1]V is the word distribution for the document at time s and oy, = K <Sh—j> is a
symmetric non-negative kernel function over time. Fu et al. [2018] connected this co-occurrence

(6.1)

matrix with a geometric view similar to our method in Chapter 2. The consistency results can
be derived based on the theoretical analyses in Zhou et al. [2010] with the estimation procedures
from Anandkumar et al. [2012] and Fu et al. [2018]. Such a model would allow practitioners to

explicitly build a continuous evolution of latent topics over time with theoretical guarantees.

6.1.2 Parallelizing Brainbow Tracing

The hidden Markov model formulation of the neuron tracing problem is a building block for tracing
neurons in the whole brain. When the researchers in neuroimaging capture the Brainbow images,
only a small portion of the brain is recorded at a time. Therefore, the tracing algorithm is only based
on a small portion of the brain. Although we provide some guidance on the tracing problems in
Chapter 3, there remain numerous computational challenges when it comes to stitching together
tracing results from different parts of the brain. In theory, by calculating the global adjacency
matrix with edges between adjacent states of the supervoxels, one can naively apply our method.
However, the computational burden of calculating and storing the adjacency matrix for the entire
brain is prohibitive. Instead, one could impose auto-regressive structures on the adjacency matrix

and sequentially trace the entire brain.

6.1.3 Relaxing MCAR assumption in the bandit problem

In Chapter 5, we modeled the missing values in the contextual linear bandit problem as missing
completely at random (MCAR) with the possibility of different covariate missing probabilities.

While MCAR assumption is standard and leads to convenient theoretical analyses, MCAR can be
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overly simplifying in certain applications. For example, in clinical trials, a patient is more likely to
complete a health survey if he or she has a relevant medical condition. In such a setting, it would
be more realistic to look into the underlying structure of the missing mechanism to improve the

learner’s performance.
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