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Abstract

Percolation on complex networks has been
used to study computer viruses, epidemics,
and other casual processes. Here, we present
conditions for the existence of a network spe-
cific, observation dependent, phase transi-
tion in the updated posterior of node states
resulting from actively monitoring the net-
work. Since traditional percolation thresh-
olds are derived using observation indepen-
dent Markov chains, the threshold of the pos-
terior should more accurately model the true
phase transition of a network, as the up-
dated posterior more accurately tracks the
process. These conditions should provide in-
sight into modeling the dynamic response of
the updated posterior to active intervention
and control policies while monitoring large
complex networks.

1 INTRODUCTION

Increasingly often, researchers are confronted with
monitoring the states of nodes in large computer, so-
cial, or power networks where these states dynamically
change due to viruses, rumors, or failures that prop-
agate according to the graph topology [2, 5, 8]. This
class of network dynamics has been extensively mod-
eled as a percolation phenomenon, where nodes on a
graph can randomly “infect” their neighbors.

Percolation across networks has a rich history in
the field of statistical physics, computer science, and
mathematical epidemiology. Here, researchers are typ-
ically confronted with a network, or a distribution over
the network topology, and extract fixed point attrac-
tors of node configurations, thresholds for phase tran-
sitions in node states, or distributions of node state
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configurations [4, 1, 9]. In the field of fault detection,
the nodes or edges can “fail”, and the goal is to ac-
tivate a subset of sensors in the network which yield
high quality measurements that identify these failures
[12]. While the former field of research concerns it-
self with extracting offline statistics about properties
of the percolation phenomenon on networks, devoid
of any measurements, the latter field addresses online
measurement selection tasks.

Here, we propose a methodology that actively tracks a
causal Markov process across a complex network (such
as the one in Figure 3), where measurements are adap-
tively selected. We extract conditions such that the
updated posterior probability of all nodes “infected”
is driven to one in the limit of large observation time.
In other words, we derive conditions for the existence
of an epidemic threshold on the updated posterior dis-
tribution over the states.

The proposed percolation threshold should more ac-
curately reflect the true conditions that cause a phase
transition in a network, e.g., node status changing
from healthy/normal to infected/failed, than tradi-
tional thresholds derived from conditions on predic-
tive distributions which are devoid of observations or
controls.

Since most practical networks of interest are large,
such as electrical grids, it is usually infeasible to sam-
ple all nodes continuously, as such measurements are
either expensive or bandwidth is limited. Given these,
or other resource constraints, we present an informa-
tion theoretic sampling strategy that selectively tar-
gets specific nodes that will yield the largest informa-
tion gain, and thus, better detection performance.

The proposed sampling strategy balances the trade-
off between trusting the predictions from the known
model dynamics (from percolation theory) and ex-
pending precious resources to select a set of nodes for
measurement.

We present the adaptive measurement selection prob-
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lem and give two tractable approximations to this
subset selection problem based upon the joint and
marginal posterior distribution, respectively. A set
of decomposable Bayesian filtering equations are pre-
sented for this adaptive sampling framework and the
necessary tractable inference algorithms for complex
networks are discussed. We present analytical worst
case performance bounds for our adaptive sampling
performance, which can serve as sampling heuristics
for the activation of sensors or trusting predictions
generated from previous measurements.

To the author’s knowledge, this is the first attempt
to extract a percolation threshold of an actively moni-
tored network using the updated posterior distribution
instead of the observation independent predictive dis-
tributions.

2 PROBLEM FORMULATION

The objective of actively monitoring the n node net-
work is to recursively update the posterior distribution
of each hidden node state given various measurements.
Specifically, the next set of m measurement actions
(nodes to sample), m � n, at next discrete time are
chosen such that they yield the highest quality of in-
formation about the n hidden states. The condition
on m � n simulates the reality of fixed resource con-
straints, where typically only a small subset of nodes
in a large network can be observed at any one time.

Here, the hidden states are discrete random variables
that correspond to the states encoded by the percola-
tion process on the graph. Here, the graph G = (V, E),
with V representing the set of nodes and E corre-
sponding to the set of edges. Formally, we will as-
sume a state-space representation of a discrete time,
finite state, partially observed Markov decision process
(POMDP). Here,

Zk = {Z1
k , . . . , Z

n
k } (1)

represents the joint hidden states, e.g., healthy or in-
fected

Yk = {Y(1)
k , . . . ,Y(m)

k } (2)

represents the m observed measurements obtained at
time k, e.g., biological assays or PINGing an IP address,
and

ak = {a1
k, . . . , a

m
k } (3)

represents the m actions taken at time k, i.e., which
nodes to sample. Here, Y(j)

k , continuous/categorical
valued vector of measurements, which is induced by
action ajk, ajk ∈ A, with A = {1, . . . , n} confined
to be the set of all n individuals in the graph, and
Zik ∈ {0, 1, . . . , r}. Since the topology of G encodes the
direction of ”flow” for the process, the state equations

may be modeled as a decomposable partially observed
Markov process:

Yi
k = f(Zik) + wi

k (4)

Zik = h
(
Zik−1, {Zjk−1}j∈η(i)

)
. (5)

Here, η(i) = {j : E (Vi,Vj) /∈ ∅} is the neighborhood
of i, f(Zik) is a non-random vector-valued function, wi

k

is measurement noise, and h
(
Zik−1, {Zjk−1}j∈η(i)

)
is a

stochastic equation encoding the transition dynamics
of the Markov process (see Figure 1 for a two node
graphical model representation).

Zj
k−1Zi

k−1

Yj
k−1Yi

k−1

Yi
k Yj

k

Zi
k Zj

k

Figure 1: Partially Observed Markov Structure for i
and j for E (Vi,Vj) /∈ ∅

2.1 BAYESIAN FILTERING

In our proposed framework for actively monitoring the
hidden node states in the network, the posterior dis-
tribution is the sufficient statistic for inferring these
states. The general recursion for updating the joint
posterior probability given all past and present obser-
vations is given by the standard Bayes update formula:

p(Zk|Yk
0) =

f(Yk|Zk)
g(Yk|Yk−1

0 )
p(Zk|Yk−1

0 ) (6)

with

p(Zk|Yk−1
0 ) =

∑
z∈{0,1,...,r}n

p(Zk|Zk−1 = z)p(Zk−1 = z|Yk−1
0 ).

(7)
The Chapman-Kolmogorov equations provide the con-
nection between the posterior update (7) and the
distribution resulting from the standard percolation
equations. In the former, the updates are conditional
probabilities that are conditional on past observations,
while in the latter, the updates are not dependent on
observations.

The local interactions in the graph G imply the follow-
ing conditional independence assumptions:

f(Yk|Zk) =
n∏
i=1

f(Yi
k|Zik). (8)



p(Zk|Zk−1) =
n∏
i=1

p
(
Zik|Zik−1, {Zjk−1}j∈η(i)

)
(9)

where the likelihood term is defined in (4) and the
transition dynamics are defined in (5). This decom-
posable structure allows the belief state (posterior ex-
cluding time k observations) update, for the ith node
in G, to be written as:

p(Zk|Yk−1
0 ) =

∑
z∈{0,1,...,r}‖pa‖

p(Zk|Zpa
k−1 = z)p(Zpa

k−1 = z|Yk−1
0 )

(10)
with the parent set, pa = {η(i), i}. Unfortunately,
for highly connected nodes in G, this marginal update
becomes intractable. It thus must be approximated
[3, 10, 7].

2.2 INFORMATION THEORETIC
ADAPTIVE SAMPLING

In most real world situations, acquiring measurements
from all n nodes at any time k is unrealistic, and
thus, a sampling policy must be exploited for mea-
suring a subset of nodes [6, 12]. Since we are con-
cerned with monitoring the states of the nodes in the
network, an appropriate reward is the expected in-
formation gain between the updated posterior, pk =
p(Zk|{Yi

k}i∈ak
,Yk−1

0 ), and the belief state, pk|k−1 =
p(Zk|Yk−1

0 ):

ak = argmaxa⊂AE
[
Dα
(
{Yi

k}i∈a
)
|Yk−1

0

]
(11)

Dα
(
{Yi

k}i∈a
)

= Dα
(
pk||pk|k−1

)
, 0 < α < 1 (12)

with α-Divergence

Dα(p||q) =
1

α− 1
log (Eq [(p/q)α]) (13)

for distributions p and q with identical support.

The reward in (11) has been widely applied to
multi-target, multi-sensor tracking for many prob-
lems including, sensor management and surveillance
[6, 11]. Note that limα→1Dα(p||q) → DKL(p||q),
where DKL(p||q) is the Kullback-Leibler divergence
between p and q. The expectation in (11) is taken with
respect to the conditional distribution g(Yk|Yk−1

0 )
given the previous measurements Yk−1

0 and actions
ak. In practice, the expected information divergence
in (11) must be evaluated via Monte-Carlo methods.
Also, the maximization in (11) requires enumeration
over all

(
n
m

)
actions (for subsets of size m), and there-

fore, we must resort to Greedy approximations. We
propose incrementally constructing the set of actions
at time k, ak, for j = 1, . . . ,m, according to:

ajk = argmaxi∈A\ak
E
[
Dα
(
Yi
k, {Yj

k}j∈ak

)
|Yk−1

0

]
.

(14)

Both (11) and (14) are selecting the nodes to sam-
ple which yield maximal divergence between the per-
colation prediction distribution (belief state) and the
updated posterior distribution, averaged over all possi-
ble observations. Thus (11) provides a metric to assess
whether to trust the predictor and defer actions until
a future time or choose to take action, sample a node,
and update the posterior.

2.2.1 Lower Bound on Expected
α-Divergence

Since the expected α-Divergence in (11) is not closed
form, we could resort to numerical methods for esti-
mating this quantity. Alternatively, one could specify
an analytical lower-bound that could be used in-lieu of
numerically computing the expected information gain
in (11) or (14).

We begin by noting that the expected divergence be-
tween the updated posterior and the predictive dis-
tribution (conditioned on previous observations) dif-
fer only through the measurement update factor,
fk/gk|k−1 ((11) re-written):

Egk|k−1

[
Dα
(
pk||pk|k−1

)]
]

= Egk|k−1

[
1

α− 1
log Epk|k−1

[(
fk

gk|k−1

)α]]
. (15)

So, if there is significant overlap between the likeli-
hood distributions of the observations, the expected
divergence will tend to zero, implying that there is
not much value-added in taking measurements, and
thus, it is sufficient to use the percolation predictions
for inferring the states.

It would be convenient to interchange the order of the
conditional expectations in (15). It is easily seen that
Jensen’s inequality yields the following lower bound
for the expected information gain

Egk|k−1

[
Dα
(
pk||pk|k−1

)]
≥ 1
α− 1

log Epk|k−1

[
Egk|k−1

[(
fk

gk|k−1

)α]]
. (16)

Here, the inner conditional expectation can be ob-
tained from Dα

(
fk||gk|k−1

)
, which has a closed form

for common distributions (e.g., multivariate Gaus-
sians) [6].

3 ASYMPTOTIC ANALYSIS OF
MARGINAL POSTERIOR

For tracking the percolation process across G, we have
discussed recursive updating of the belief state. How-
ever, computing these updates exactly is in general in-
tractable. For the remainder of the paper, we will use



(4) and (5) to directly update the marginal posterior
distribution using the following matrix representation:

pk(z) = Dk(z)pk|k−1(z) (17)

with updated marginal posterior pk(z) =
[p1,k(z), . . . , pn,k(z)]T with pi,k(z) = p(Zik =

z|Yi
k,Y

k−1
0 ), Dk(z) = diag

(
f

(z)
i,k /gi,k|k−1

)
,

and marginal belief state pk|k−1(z) =
[p1,k|k−1(z), . . . , pn,k|k−1(z)]T with pi,k|k−1(z) =
p(Zik = z|Yk−1

0 ).

Note that for i /∈ ak, (Dk(z))i,i = 1, and pi,k(z) =
pi,k|k−1(z). Given that we can find an efficient way
of updating pk|k−1(z), according to the transition dy-
namics (5), we can solve a modified version of (14), for
j = 1, . . . ,m:

ajk = argmaxi∈A\ak
E
[
Dα
(
Yi
k

)
|Yk−1

0

]
(18)

Dα
(
Yi
k

)
= Dα

(
pi,k(z)||pi,k|k−1(z)

)
, 0 < α < 1.

(19)

3.1 TOTAL DIVERGENCE OF UPDATED
POSTERIOR

One interesting property of the Bayesian filtering equa-
tions is that the updated posterior can be written as
a perturbation of the predictive percolation distribu-
tion through the following relationship (z omitted for
clarity):

pk = Dkpk|k−1 = pk|k−1 + (Dk − I) pk|k−1. (20)

Hence, when the sensors do a poor job in discriminat-
ing the observations, Dk ≈ I, we have pk ≈ pk|k−1. It
is of interest to determine when there is significant dif-
ference between the posterior update and the prior up-
date specified by the standard percolation equations.
Recall that the updated posterior is, in the mean,
equal to the predictive distribution, E

[
pk|Yk−1

0

]
=

pk|k−1. The total deviation of the updated posterior
from the percolation distribution can be summarized
by computing the trace of the following conditional
covariance:

tr
“
R
h
pk|Y

k−1
0

i”
= (21)

tr

„
E
»“

pk − E
h
pk|Y

k−1
0

i”“
pk − E

h
pk|Y

k−1
0

i”T
|Yk−1

0

–«
.

Using (20) and properties of the trace operator, we
obtain the following measure of total deviation of the
updated posterior from the predictive distribution in
terms of fk and gk|k−1:

tr
(
R
[
pk|Yk−1

0

])
= tr

(
E
[
(Dk − I)2 |Yk−1

0

]
Pk|k−1

)
(22)

with Pk|k−1 = pk|k−1p
T
k|k−1. The conditional expec-

tation in (22) is the Pearson χ2 divergence between
distributions fi,k and gi,k|k−1, for all i. This joint mea-
sure of deviation is analytical for particular families of
distributions and thus can be used as an alternative
measure of divergence for activation of sensors [6].

3.2 PERCOLATION THRESHOLD OF
UPDATED POSTERIOR

There has recently been significant interest in deriv-
ing the conditions of a percolation/epidemic threshold
in terms of transition parameters and the graph ad-
jacency matrix spectra for two state causal Markov
processes [1, 4, 9]. Such thresholds yield conditions
necessary for an epidemic to arise from a small number
of “infections”. Knowledge of these conditions are par-
ticularly useful for designing “robust” networks, where
the probability of epidemics is minimized.

Percolation thresholds are typically obtained by ex-
tracting the sufficient conditions of the network and
model parameters for the node states to be driven
to their stationary point, with high probability. The
probability of these events are usually computed using
the observation independent percolation distribution
[1, 4, 9].

We use the results in [1, 4] to derive a percolation
threshold based upon the updated posterior distribu-
tion assuming a restricted class of two-state Markov
processes. These conditions should more accurately
model the current network threshold since the poste-
rior distribution tracks a particular “disease” trajec-
tory better than the observation independent percola-
tion distribution.

Formally, Zik ∈ {0, 1}, f
(z)
i,k = f(Yi

k|Zik = z) is
the conditional likelihood for node i, pi,k = p(Zik =
1|Yi

k,Y
k−1
0 ), and pi,k = p(Zik = 1|Yk−1

0 ). Here, we
will assume that Zk = 0 is the unique absorbing state
of the system.

The Bayes update for pi,k can be written as (i sub-
script omitted for clarity):

pk =
f

(1)
k

f
(1)
k pk|k−1 + f

(0)
k (1− pk|k−1)

pk|k−1

=
f

(1)
k /f

(0)
k

1 + f
(1)
k −f

(0)
k

f
(0)
k

pk|k−1

pk|k−1

=
f

(1)
k /f

(0)
k

1 + ∆fk

f
(0)
k

pk|k−1

pk|k−1. (23)

There are three different sampling/observation depen-
dent possibilities for each individual at time k: case



(1), i is not sampled and therefore, pk = pk|k−1, case
(2), ∆fk > 0, and case (3), ∆fk < 0.

We first derive a tight-upper bound for cases (2) and
(3) of the form pk ≤ ck pk|k−1. For the remainder of
the analysis we will assume that |∆fk

f
(0)
k

pk|k−1| < 1 for

cases (2) and (3) (see Appendix).

Using the upper-bounds derived in the Appendix, and
after gathering all n nodes, we have the following
element-wise upper-bound on the updated belief state:

pk ≤ Ckpk|k−1 = (Bk +Ok) pk|k−1. (24)

with Bk = diag (bi,k) and Ok =

diag
(

I{∆fi,k<0}O
(
|∆fi,k|
f
(0)
i,k

pi,k|k−1

))
where I{∆fi,k<0}

is the indicator function for the event ∆fi,k < 0.

Thus far, we have established, under the assumptions
of |∆fk

f
(0)
k

pk|k−1| < 1, an upper-bound for the updated

posterior in terms of observation likelihoods and the
belief state (24).

Next, consider the restricted class of two-state Markov
processes on G, for which we can produce a bound of
the form

pk|k−1 ≤ Spk−1 (25)

where S contains information about the transition pa-
rameters and the topology of the network.

It turns out that the SIS model of mathematical epi-
demiology falls within this restricted class of percola-
tion problems [1].

The SIS model on a graph G, assumes that each of the
n individuals are in states 0 or 1, where 0 corresponds
to susceptible and 1 corresponds to infected. At any
time k, an individual can receive the infection from
their neighbors, η(i), based upon their states at k− 1.

Under this SIS model in [1]

S = (1− γ)I + βA (26)

where the Markov transition parameters γ is the prob-
ability of i transitioning from 1 to 0, β is the proba-
bility of transmission between neighbors i and j, and
A is the graph adjacency matrix (see Figure 2).

Returning to the derivation, using the bound (25), we
have, by induction, the following recursion:

pk ≤ Ckpk|k−1 ≤ CkSpk−1 ≤ (CkS · · ·C1S) p0

= (BkS · · ·B1S) p0 +OCkS (27)

where we have lumped the higher order modes and
higher order cross-terms into OCkS.

The dominant mode of decay of the updated poste-
rior may be found by investigating the following eigen-
decomposition:

BkS =

 n∑
j=1

bj,kejeTj

 n∑
j=1

λjujuTj

 (28)

with ej = [0, . . . , 0, 1, 0, . . . , 0]T (1 at jth element).
Without loss of generality, we can assume the eigen-
values of S are listed in decreasing order, |λ1| ≥ · · · ≥
|λn|. Now rewriting (28), we have

BkS =
(
bjkejke

T
jk

+OB
) (
λ1u1uT1 +OS

)
=

(
λ1bjkejke

T
jk

u1uT1 +OBS
)

(29)

where bjk = maxj∈{1,...,n}bj,k and the OB ,OS ,OBS
variables corresponds to the higher order terms. In-
serting (29) into (27), and matching the largest eigen-
values of Bk with λ1 we obtain

pk ≤ (BkS . . .B1S) p0 +OCkS

=λk1

k∏
l=1

bjl

(
k∏
l=1

(
ejle

T
jl
u1uT1

))
p0 +O(ϕk).(30)

Thus, at large k, the dominant mode of the posterior
goes as λk1

∏k
l=1 bjl (the modes in O(ϕk) decay faster

than the dominant mode presented above).

We can see that if the spectral radius of S is less than
one, |λ1| < 1, then for large k, pk → 0, which is the
unique absorbing state of the system.

This epidemic threshold condition on λ1 has been pre-
viously established for unforced SIS-percolation pro-
cesses [1]. However, in the tracking framework, the
rate at which the posterior decays to the susceptible
state is perturbed by an additional measurement de-
pendent factor,

∏k
l=1 bjl .

This measurement-dependent dominant mode of the
posterior should more accurately model the true dy-
namic response of the node states better than that
in [1] since the posterior better tracks the truth than
the unforced predictive distribution. Additionally, this
dominant mode of the updated posterior distribution
allows one to simulate the response of the percolation
threshold to intervention and control actions which are
designed to increase the threshold, such that the prob-
ability of epidemics is minimized.

4 NUMERICAL EXAMPLE

Here, we present results of simulations of our adaptive
sampling for the active tracking of a causal Markov
ground truth process across a random 200 node, scale-
free network (Figure 3). Since the goal in tracking



IS

γ

1− γ
q1− q

I(1) I(|η|)

Figure 2: SIS Markov Chain for Node i Interacting
with the Infected States of its Neighbors

is to accurately classify the states of each node, we
are interested in exploring the detection performance
as the likelihood of an epidemic increases through the
percolation threshold for this graph.

One would expect different phase transitions (thresh-
olds) in detection performance for various sampling
strategies, ranging from the lowest threshold for un-
forced percolation distributions to highest for a con-
tinuous monitoring of all n nodes. We will present a
few of these detection surfaces that depict these phase
transitions for the unforced percolation distribution,
random m = 40 node sampling, and our proposed in-
formation theoretic adaptive sampling of m = 40.

Here, we will restrict our simulations to the two-state
SIS model of mathematical epidemiology described
above.

Figure 3: 200 Node Scale-Free Graph G = (V, E)

The sensor models (4), are of the form of two-
dimensional multivariate Guassians with common co-
variance and shifted mean vector. The transition dy-
namics of the ith individual (5), for the SIS model is
given by:

Zik|Z
{i,η(i)}
k−1 ∼ (1−γ)Zik−1+(1−Zik−1)

241−
Y
j∈η(i)

(1− βZjk−1)

35 .
(31)

where Zik−1 ∈ {0, 1} is the indicator function of i be-
ing infected at time k − 1. The transmission term
between i and η(i) is known the Reed-Frost model

[1, 4, 8]. Since the tail of the degree distribution of
our synthetic scale-free graph contains nodes with de-
gree greater than 10, updating (10) exactly is unreal-
istic and we must resort to approximate algorithms.
Here, we will assume the mean field approximation
used by [1] for this SIS model, resulting in the fol-
lowing marginal belief state update for the ith node of
infected (Zik = 1):

pi,k|k−1 = (1−γ)pi,k−1+(1−pi,k−1)

"
1−

Y
j∈η

(1− βpj,k−1)

#
.

(32)

Equation (32) allows us to efficiently update the
marginal belief state directly for all n nodes which are
then used for estimating the best m measurements us-
ing (18).

As we are interested in detection performance as a
function of time and epidemic intensity, the Area Un-
der the ROC Curve (AUR) is a natural statistic to
quantify the detection power (detection of the infected
state). The AUR is evaluated at each time k, each SIS
percolation intensity parameter

τ = β/γ (33)

and over 500 random initial states of the network. For
the SIS model, τ is the single parameter (aside from
the topology of the graph) that characterizes the in-
tensity of the percolation/epidemic. It is useful to
understand how the detection performance varies as
a function of epidemic intensity, as it indicates how
well the updated posteriors are playing “catch-up” in
tracking the true dynamics on the network.

For this SIS model, the percolation threshold is de-
fined as τc = 1/λ1(A) where λ1(A) = maxi∈{1,...,n}|λi|
is the spectral radius of the graph adjacency matrix,
A [1]. Values of τ greater than τc imply that any infec-
tion tend to become an epidemic, whereas those values
less than τc imply that small epidemics tend to die out.

For the network under investigation (Figure 3), τc =
0.1819. We see from Figure 4(a) that a phase transi-
tion in detection power (AUR) for the unforced per-
colation distribution does indeed coincide with the
epidemic threshold τc. While the epidemic threshold
for the random and adaptive sampling policies is still
τc = 0.1819, the measurements acquired allow the pos-
terior to better track the truth, but only up to their re-
spective phase transitions in detection power (see Fig-
ures 4(b) and 4(c)).

Figure 4(c) confirms that the adaptive sampling bet-
ter tracks the truth than randomly sampling nodes,
while pushing the phase transition in detection per-
formance to higher percolation intensities, τ . We see
that the major benefit of the adaptive sampling is ap-
parent when conditions of the network are changing
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(a) AUR Surface for Unforced Prediction Distribution (no ev-
idence acquired throughout the monitoring)
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(b) AUR Surface for Updated Posterior Distribution with m =
40 Random Measurements at Each Time k
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(c) AUR Surface for Updated Posterior Distribution with
m = 40 Information Theoretic Adaptive Measurements at
Each Time k

Figure 4: Area under the ROC curve surface as a func-
tion of percolation parameter τ = β/γ and time

moderately, at medium epidemic conditions. Beyond
a certain level of percolation intensity, more resources
will need to be allocated to sampling to maintain a
high level of detection performance.

A heuristic sampling strategy based on the topology
of G was also explored (results not shown) by sam-
pling the ”hubs” (highly-connected nodes). However,
detection performance was only slightly better than
random sampling and poorer than our adaptive sam-

pling method.
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Figure 5: Relative Frequency of Nodes Sampled (z-
axis) of a Given Degree (x-axis) Over Time (y-axis) for
m = 40 Adaptive Sampling Strategy: a.) τ = 0.125,
b.) τ = 0.2143, and c.) τ = 0.5

It is often useful for developing sampling heuristics and
offline control/intervention policies to inspect what
type of nodes, topologically speaking, is the adaptive
sampling strategy targeting, under various network
conditions (different values of τ). In Figure 5, the
relative frequency of nodes sampled with a particular
degree is plotted against time (under the m = 40 adap-
tive sampling strategy) for three different values of τ
(over 500 random initial conditions of the network).

For the larger of the three values explored (τ = 0.5 >
τc) we see that the sampling is approximately uniform
across the nodes of each degree on the graph (Figure
5(c)). Therefore, under extremely intense epidemic
conditions, the adaptive sampling strategy is target-
ing all nodes of each degree equally, and therefore, it
is sufficient to perform random sampling. For the two
lower values of τ , Figure 5(a) and Figure 5(b) (near
τc), we see that adaptive policy targets highly con-
nected nodes more frequently than those of lesser de-
gree and thus, it is more advantageous to exploit such
a strategy, as compared to random sampling (see AUR
surface in Figure 4(c)).

5 DISCUSSION

In this paper, we have derived the conditions for a net-
work specific percolation threshold using expressions
for the updated posterior distribution resulting from
actively tracking the process. These conditions recover
the unforced percolation threshold derived in [1] but
with an additional factor involving sensor likelihood
terms due to measurements obtained throughout the



monitoring. A term of the form λk1
∏k
l=1 bjl (derived

in (30)) was shown to be the dominant mode of the
updated posterior dynamic response to active inter-
vention of immunizing the nodes (holding node states
constant). The conditions of the percolation using the
updated posterior should more accurately model the
phase transition corresponding to a particular disease
trajectory and therefore, enable a better assessment
of immunization strategies and any subsequent obser-
vations resulting from such actions. The framework
presented above, along with the new posterior perco-
lation threshold, should provide additional insight into
active monitoring of large complex networks under re-
source constraints.

6 APPENDIX

In case (2), when ∆fk > 0, we can re-write (23) in
terms of an alternating geometric series:

pk =
f

(1)
k

f
(0)
k

 ∞∑
l=0

(−1)l
(
|∆fk|
f

(0)
k

pk|k−1

)l pk|k−1

≤ f
(1)
k

f
(0)
k

[
1 +
|∆fk|
f

(0)
k

pk|k−1

]
pk|k−1 (34)

where we have used the fact that 1/(1 + |a|) ≤ 1 + |a|.
Recalling that p ≥ p2 for 0 ≤ p ≤ 1, we have

pk ≤
f

(1)
k

f
(0)
k

[
1 +
|∆fk|
f

(0)
k

]
pk|k−1. (35)

In case (3), when ∆fk < 0, and (23) can be represented
as a geometric series:

pk =
f

(1)
k

f
(0)
k
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k
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|∆fk|
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k
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(36)

Once again, using the p ≥ p2 bound, we obtain:

pk ≤
f

(1)
k

f
(0)
k

[
1 +
|∆fk|
f

(0)
k

]
pk|k−1 +O

(
|∆fk|
f

(0)
k

pk|k−1

)
.

(37)

A general inequality, that is equality for case (1), is of
the form pk ≤ ck pk|k−1 with

bk =

1 , i /∈ ak
f
(1)
k

f
(0)
k

[
1 + |∆fk|

f
(0)
k

]
,∆fk > 0 or ∆fk < 0

with ck = bk for cases (1) and (2) and ck = bk +

O
(
|∆fk|
f
(0)
k

pk|k−1

)
for case (3).
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