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Abstract

We address the problem of recognizing the pose of an object category from video
sequences capturing the object under small camera movements. This scenario is rele-
vant in applications such as robotic object manipulation or autonomous navigation. We
introduce a new algorithm where we model an object category as a collection of non
parametric probability densities capturing appearance and geometrical variability within
a small area of the viewing sphere for different object instances. By regarding the set of
frames of the video as realizations of such probability densities, we cast the problem of
object pose classification as the one of matching (i.e., comparing information divergence
of) probably density functions in testing and training. Our work can be also related to
statistical manifold learning. By performing dimensionality reduction on the manifold of
learned PDFs, we show that the embedding in the 3D Euclidean space yield meaningful
trajectories which can be parameterized by the pose coordinates on the viewing sphere,
this enables an unsupervised learning procedure for pose classification. Our experimental
results on both synthesized and real world data show promising results toward the goal
of accurate and efficient pose classification of object categories from video sequences.

1 Introduction
Designing vision systems for enabling efficient and accurate scene interpretation is one of
the greatest challenges in computer vision and related applications. In robotic manipulation,
a robotic arm may need to detect and grasps objects in the scene such as a cup or book;
in autonomous navigation, an unmanned vehicle may need to recognize and interpret the
behavior of pedestrians and other vehicles in the environment. In all these applications, not
only does one need to tackle the problem of object categorization but it is also critical to
accurately estimate the pose of unknown objects in the scene: if a robotic arms wishes to
grasp a mug, the system must estimate mug’s pose with high degree of accuracy. While a
large amount of research has been dedicated to the problem of categorizing object observed
from a restricted set of views [12, 13, 19, 33], only recently a number of methods have been
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proposed for detecting and recognizing object classes from arbitrary view point conditions
[8, 16, 17, 21, 24, 27, 28, 30, 31, 32, 34]. Critically, just a subset of these have addressed the
issue of estimating the pose of an object category [21, 28, 31]. While most of the previous
literature has focused on studying cues that can be extracted from a single image, in this work
we use videos sequences for solving the problem of accurate pose estimation. We believe
that the additional information provided by the video sequence in training and testing (that
is, the temporal coherency of the object appearance as the camera moves around) plays a
critical role in eliminating the inherent ambiguity in pose configurations. Unlike [3, 10, 20,
23, 25, 26, 35], however, our goal is to estimate the pose of an object instance that has not
been already observed in training; thus we seek to learn object representations that enable
the recognition of object poses at categorical level.

Our work starts by observing that a video sequence (portraying an object as the camera
position and view point changes) can be used to parameterize a trajectory of positions on the
viewing sphere, where each position corresponds to the azimuth and zenith angle coordinates
describing the pose of the object (Fig.1). Our key idea is to decompose the video sequence
into pockets of frames (video segments). Thus, each video segment can be associated to a
location on the viewing sphere that captures the average pose within the video segments. No-
tice that our work is related to the large literature on manifold learning [5, 6, 11] and its appli-
cation to computer vision tasks [15]. By regarding images as low-dimensional (non-linear)
manifolds embedded in the high-dimensional image space, manifold learning is designed
to analyze the low-dimensional structure which underlies a collection of high-dimensional
data. Recent studies in statistical manifold learning [6] define information divergence as a
metric of distance between probability densities and apply common dimensionality reduc-
tion techniques for visualization. Inspired by [6], we estimate probability densities using
nonparametric kernel density estimation techniques and evaluate similaritues between those
densities via the Kullback-Leibler divergence. Classical multidimensional scaling (cMDS)
[9] can be then adopted to reconstruct the manifold in a low dimensional Euclidian space,
where the pairwise KL distances are preserved through dimensionality reduction. We find
that the manifold of pose trajectories forms meaningful clusters in a Euclidean embedding
and enables an unsupervised learning procedure for pose estimation.

We demonstrate the recognition accuracy of the proposed algorithm on both synthesized
and real datasets. Supervised classification results show that our method achieve an overall
accuracy of 86.4% on a real car dataset and 85.4% on a real PC mouse dataset. Comparison
with state-of-the-art spatial pyramid matching framework [14, 18] shows that our algorithm
outperforms the spatial pyramid matching consistently, with a notable 10%−20% lead when
the detected location of the object is corrupted by noise. We also test our unsupervised learn-
ing algorithm and obtain an accuracy of 72.1% and 57.7% for these two datasets respectively.

2 Problem Formulation
We define the problem of object pose estimation as follows. In the training stage, we are
given a collection of video sequences V = {V 1, . . . ,V N}, where V i captures an object instance
Oi. Here we assume all the object instances belong to the same object category C, and
different object instances vary in shape and texture. During each video sequence, the camera
moves around the object along an arbitrary trajectory on the viewing sphere. We do not
assume prior information on camera movement. If we assume that the object lies at the
center of the viewing sphere (Fig.1), we may describe the pose of the object as a pair of
zenith and azimuth angles q = (θ ,ϕ). In the testing stage, we are given a new video sequence
V t , capturing a new object instance observed around a certain viewpoint qt = (θ t ,ϕ t). Our
goal is to estimate qt . Note that our testing object instance does not need to appear in our
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Figure 1: Pose Estimation as a pair of az-
imuth and zenith angles q = (θ ,ϕ) on the
viewing sphere. The object is assumed to lie
at the center of the viewing sphere.

Part of the viewing sphere

Training Segment [Exp 6.2]

Testing Sequence
[Exp6.1] [Exp6.2]

Δθ θ

Δφ

φ

Training Patch:[θ-Δθ, θ+Δθ]
          [Exp 6.1]        [φ-Δφ, φ+Δφ]

Object

Figure 2: Trajectories showing the camera
movement. Images sampled from a small
segment are used for training in Exp. 5.2.
Images sampled from a small patch are used
for training in Exp. 5.1.

training data set, but we do assume it belongs to the same object category. Also since we
do not assume any predetermined camera motion, our videos for training and testing are not
necessarily taken from consistent trajectories on the viewing sphere.

In this paper we seek to solve this pose estimation problem from video segments by us-
ing statistical manifold learning techniques. We regard videos (image sets) as realizations of
PDFs, where object category, shape, texture and pose are interpreted as hidden parameters.
Object poses are eventually estimated in an information geometric framework, where simi-
larities between poses are measured by information divergence between underlying PDFs.

The rest of this paper is organized as follows. A review of statistical manifold learn-
ing, information divergence theory and dimensionality reduction on statistical manifold is
presented in Section 3. In Section 4, we model our object pose estimation problem in the
statistical manifold learning framework and propose an algorithm to estimate pose from un-
seen object instances. Experimental results using our method and a benchmark experiment
based on spatial pyramid matching framework [14, 18] are presented and discussed in Sec-
tion 5. Finally, we conclude our paper in Section 6.

3 Statistical Manifold Learning
A manifold M is a locally Euclidean topological space which has a coordinate function φ to
map every point m ∈M to a point p = [P1 . . .Pd ]T ∈Rd , where d is known as the dimension
of M , and [P1 . . .Pd ]T serves as a coordinate system. Statistical manifolds are manifolds of
probability distributions. Define M = {p(x|π)|π ∈ Π ⊆ Rd}, with p(x|π)≥ 0,∀x ∈X and∫

p(x)dx = 1. Then M is known as a statistical manifold on X ; π serve as a coordinate
system for the manifold, and there exists a one-to-one mapping between π and p(x|π).

3.1 Fisher Information Distance
As shown in [5], Fisher information distance is used as a metric to evaluate the diver-
gence between probability densities. For a family of probability density functions (PDFs)
f (x;π1), . . . , f (x;πd), the Fisher information distance is defined as

DF(π1,π2) = min
π(·):π(0)=π1,π(1)=π2

∫ 1

0

√
(

dπ

dt
)T [I(π)](

dπ

dt
)dt (1)
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where matrix [I(π)], known as Fisher information distance, is defined with element

[I(π)]i j =
∫

f (X ;π)
∂ log f (X ;π)

∂π i
∂ log f (X ;π)

∂π j dX . (2)

Essentially, (1) amounts to the geodesic distance on manifold M connecting coordinates
θ1 and θ2. When prior information regarding the parameterization of the manifold is not
available, equation (1) cannot be solved explicitly. As discussed in [7], symmetric Kullback-
Leibler divergence (KL-divergence) can be used to approximate the Fisher information dis-
tance. Given two PDFs p1 and p2, we have

DKL(p1, p2)sym =
∫

p1(x)log
p1(x)
p2(x)

dx+
∫

p2(x)log
p2(x)
p1(x)

dx (3)

which converges to the Fisher information distance:
√

DKL(p1, p2)sym → DF(p1, p2) as
p1 → p2. When p1 and p2 do not lie closely together on the manifold, this approxima-
tion becomes weak. Thus, we may update the distance between p1 and p2 by their geodesic
distance, which is the sum of a series of paths connecting closely related points on the man-
ifold. Specifically, given the collection of N probability distributions P = {p1, . . . , pN} , we
define an approximation of the geodesic distance for all pairs of PDFs as

DG(p1, p2;P) = min
M,P

M−1

∑
i=1

DKL(p(i), p(i+1))sym (4)

where P is the collection of PDFs on the manifold and the minimum is over all paths through
the complete graph over P connecting p1 to p2. This geodesic distance DG is what we finally
used as an approximation of information divergence. For details, see also [7].

3.2 Manifold Clustering and Visualization
After calculation of the pairwise dissimilarity matrix of probability densities through the in-
formation divergences, we are actually building a statistical manifold. Similar PDFs form
natural groups in the manifold which can be utilized for clustering and as models for un-
supervised pose classification. Fig.3(b) shows 4 (of the 36) clusters obtained by applying
k-means on the original manifold built using our real car dataset. Note that clusters sharing
similar poses lie closer to each other.

Common multidimensional scaling techniques, such as classical Multidimensional Scal-
ing (cMDS) [9] and Laplacian Eigenmaps [4], can be applied to the statistical manifold for
the purpose of dimensionality reduction and visualization. Embedding results for a car in-
stance from our synthesized dataset is shown in Fig 3(a), where the original video sequence
is embedded as a 2D surface in a 3D Euclidean space, with object pose θ and φ as 2 degree
of freedom. We will come back to this in Sec.4.1.

4 Classification on Statistical Manifold
Classification is nothing but estimating labels. Here we show that the general estimation
problem on statistical manifold can be solved through a series of hypotheses testing, thus
converting the classification problem as a detection problem.

Assume we are given sets of training data X = {X1,X2, . . . ,XN}, where each data set Xi is
assumed as a realization of certain PDF P(X |πi). In the testing stage, we are given an unseen
data set Xt which we assume is generated according to P(X |πt), and our task is to estimate
the underlying parameter πt . To solve this problem, first we need to estimate the probability
density P(X |πi). There are two general approaches that are usually adopted to tackle this
problem. If our data come from certain parametric models (such as the Gaussian Mixture
Model used in [1]), then general Maximum Likelihood techniques such as the EM algorithm
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Figure 3: 3(a) Embedding of estimated PDFs from a single instance of the synthesized car
data (See Section 5.1). Each point in the figure corresponds to a PDF, which is estimated
from images taken from a 10◦× 10◦ small patch on the viewing sphere (Refer to Fig.2).
Trajectories in the manifold show the two main parameterizations of the learned PDFs, which
corresponds to two intrinsic degrees of freedom (θ ,ϕ) in the data. 3(b) The manifold can be
naturally used to discover clusters for unsupervised pose estimation.

can be used to estimate the hidden parameters. However, in cases where prior information
of the data is unknown or inaccurate, non-parametric models are used and estimated through
Kernel Density Estimation (KDE). In this paper, we take the latter approach.

With the knowledge of PDFs, this estimation problem is solved by a N-ary hypothesis
test, where the hypotheses are those probability densities we learned in the training stage

H0 : Xt ∼ P(X |π0) . . .HN : Xt ∼ P(X |πN) (5)
By Neyman-Pearson lemma [29], the optimal decision rule for this N-ary hypotheses test-
ing problem is choosing Hi whose Xt is associated to the highest likelihood, which can be
approximated by finding the hypothesis with the minimal KL-divergence. So the testing
parameter πt is estimated as

πt = argmax
πi

P(X |πi)' argmin
πi

DG(P(X |πi),P(X |πt)). (6)

That is to say, we are actually doing a Nearest Neighbor classification by assigning the
label of the most similar dataset in training to the testing data, where similarity is measured
through information divergence.

Further more, by utilizing information divergence as a measurement of similarity be-
tween data, we can apply more sophisticated classifiers, such as the Support Vector Machine
as used in [6] or Weighted Parzen Window Classifier [2] for final classification.

4.1 Object Pose Classification
By viewing images as realizations of probability distributions, as discussed in Section 2, we
are able to formulate our problem of object pose classification within a statistical manifold
learning framework. Specifically, assuming the object lies at the center of the viewing sphere,
our observation X is generated according to

P(X |C ,T,ρ,θ ,ϕ), (7)
where C is the object category; T is the texture, which captures the appearance of an object
instance; ρ is the distance between the object and the camera, which affects the object scale;
θ and ϕ are azimuth and zenith angles representing the viewpoint, respectively. By assuming
all the objects belong to the same category, and ρ is fixed (small scale variations can be
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accommodated by normalizing the object bounding box to unit length, as we will discuss in
detail in Section 5), the probability density function (7) can be rewritten as

P(X |C ,T,ρ,θ ,ϕ) = P(X |T,θ ,ϕ) (8)
Note here the observation vector X can be represented in different ways. While pixel in-
tensity value is the most straightforward one, various pre-processing techniques (such as
the Canny edge detector) and feature descriptors (such as SIFT [22]) can also be used. As
we shall see in Section 5.2, edge based features help make our algorithm more robust in
discriminating object poses.

Suppose we are given a video sequence V i capturing the object instance i as view point
q = (θ ,ϕ) varies on the viewing sphere. We divide the video into segments of length K, and
regard frames in segment j ( j = 1,2, . . . ,dNi/Ke, where Ni is the number of frames in V i)
as generated according to

Pi
j = P(X |T = t i,θ ∈ [θ j −∆θ j,θ j +∆θ j],ϕ ∈ [ϕ j −∆ϕ j,ϕ j +∆ϕ j]) (9)

where [θ j −∆θ j,θ j + ∆θ j], [ϕ j −∆ϕ j,ϕ j + ∆ϕ j] defines the angular support of the segment
j on the viewing sphere (Fig.2).

The PDFs (9) are estimated through KDE. Then the KL-divergence between all pos-
sible pairs of PDFs are calculated. We use classical multidimensional scaling (cMDS) to
reduce dimensionality and reconstruct the statistical manifold. This gives rise to a manifold
which consists of ∑i Ni/K points, where each point corresponds to a probability density (9).
Fig.3(a) shows an example of the embedded PDFs from the synthesized car dataset ( Section
5.1) in a 3D space. Each point in the figure is estimated from images taken from a 10◦×10◦
small patch on the viewing sphere (E.g. See Fig.2). Trajectories in the manifold in Fig.3(a)
show the two main parameterizations of the learned probability models, which corresponds
to two intrinsic degrees of freedom (θ ,ϕ) in the data.

In testing, we are given a small video sequence V t of a new object instance Ot from an
unknown viewpoint, and our goal is to estimate the viewpoint q = (θt ,ϕt) of the test video.
We explored two classification schemes. By following the Neyman-Pearson lemma and the
hypothesis testing scheme, we apply a nearest neighbor classifier to estimate object pose in
the video sequence. A weighted Parzen window predictor was also tested and shown to yield
higher classification accuracy.

5 Experiments
In this section, we show that our algorithm is able to successfully recognize the pose of an
object given a short video sequence capturing the object under small view point changes.

5.1 Pose classification with synthesized data
We first conduct experiments on a synthesized car dataset, which contains ten 3D car models
mapped with texture from real photographs - such photographs are taken from the database
presented in [27]. By changing viewpoint θ ∼ [0◦,360◦], ∆θ = 1◦, φ ∼ [0◦,40◦], ∆φ = 1◦,
we generate 360×40 = 14400 images for each car instance.

A leave-one-out cross validation scheme is adopted on those 10 car instances. Test object
instances are never used in training for estimating relevant PDFs. During training, a PDF as
in (9) for instance i is estimated by considering a set of 10×10 images associated to a small
patch on the viewing sphere, defined as θ = [θ0−∆θ ,θ0 +∆θ ],φ = [φ0−∆φ ,φ0 +∆φ ] (See
Fig.2). By choosing ∆θ = 10◦ and ∆φ = 10◦, we obtain 36× 4× 9 = 1296 hypotheses. A
test dataset is generated by taking image samples along a randomly chosen curve segment
on the viewing sphere, which mimics the behavior of a moving camera (See Fig.2). Here the
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F FL L BL B BR R FR
F .62 . . . .18 . . .16
FL .11 .81 .04 . .02 .03 . . 10 20 30 40
L . .03 .94 .02 . . . . 10 .84 .16 . .

BL . . .08 .82 . . . .11 20 .14 .76 .1 .
B .25 . . .12 .58 . . .05 30 .01 .16 .72 .11

BR .04 .04 . . .11 .79 .03 . 40 . . .25 .75
R . . . . . .05 .93 .02

FR . . . .06 . . .06 .88

Avg. accuracy = 76.20%

Avg. accuracy = 82.23%

F FL L BL B BR R FR F FL L BL B BR R FR F FL L BL B BR R FR F FL L BL B BR R FR
F .52 .00 .00 .01 .01 .00 .00 .17 .03 .00 .00 .04 .23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FL .08 .74 .04 .00 .00 .00 .00 .00 .00 .13 .00 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

L .00 .06 .78 .03 .00 .00 .00 .00 .00 .00 .14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

BL .00 .00 .07 .55 .00 .00 .00 .21 .00 .00 .01 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

B .27 .00 .00 .13 .45 .00 .00 .09 .00 .00 .00 .01 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

BR .02 .02 .00 .00 .01 .80 .06 .00 .00 .00 .00 .00 .01 .08 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

R .00 .00 .00 .00 .00 .04 .74 .02 .00 .00 .00 .00 .00 .00 .19 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FR .00 .00 .00 .00 .00 .00 .06 .74 .00 .00 .00 .07 .00 .00 .07 .06 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

F .11 .00 .00 .00 .00 .00 .00 .00 .50 .00 .00 .01 .15 .00 .00 .09 .06 .00 .00 .01 .07 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FL .00 .05 .00 .00 .00 .00 .00 .00 .09 .74 .01 .00 .01 .00 .00 .00 .00 .05 .03 .00 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

L .00 .02 .15 .00 .00 .00 .00 .00 .00 .01 .66 .02 .00 .00 .00 .00 .00 .00 .13 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00

BL .00 .00 .00 .09 .00 .00 .00 .05 .00 .00 .07 .74 .00 .00 .00 .01 .00 .00 .00 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

B .13 .00 .00 .00 .05 .00 .00 .02 .18 .00 .00 .05 .47 .00 .00 .02 .00 .00 .00 .01 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

BR .04 .00 .00 .00 .03 .05 .00 .00 .02 .00 .00 .00 .10 .65 .02 .00 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00

R .00 .00 .00 .00 .00 .03 .16 .01 .00 .00 .00 .00 .00 .02 .62 .02 .00 .00 .00 .00 .00 .00 .11 .00 .00 .00 .00 .00 .00 .00 .02 .00

FR .00 .00 .00 .00 .00 .00 .00 .11 .00 .00 .00 .04 .00 .00 .03 .72 .00 .00 .00 .02 .00 .00 .01 .07 .00 .00 .00 .00 .00 .00 .00 .00

F .00 .00 .00 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .00 .00 .02 .55 .00 .00 .02 .06 .00 .00 .18 .02 .00 .00 .04 .06 .00 .00 .00

FL .00 .00 .00 .00 .00 .00 .00 .00 .01 .13 .00 .00 .00 .00 .00 .00 .12 .52 .04 .00 .01 .01 .00 .00 .00 .11 .00 .00 .00 .05 .00 .00

L .00 .00 .01 .00 .00 .00 .00 .00 .00 .02 .22 .01 .00 .00 .00 .00 .00 .01 .60 .01 .00 .00 .00 .00 .00 .00 .12 .00 .00 .00 .00 .00

BL .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .06 .00 .00 .00 .07 .00 .00 .05 .74 .00 .00 .00 .02 .00 .00 .01 .03 .00 .00 .00 .00

B .01 .00 .00 .00 .03 .00 .00 .00 .08 .00 .00 .02 .06 .00 .00 .03 .11 .00 .00 .12 .48 .00 .00 .00 .00 .00 .00 .00 .06 .00 .00 .00

BR .00 .00 .00 .00 .00 .00 .00 .00 .01 .02 .00 .00 .02 .13 .00 .00 .01 .01 .00 .00 .08 .62 .01 .00 .00 .00 .00 .00 .00 .06 .01 .00

R .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 .00 .01 .16 .00 .00 .00 .00 .00 .00 .04 .61 .00 .00 .00 .00 .00 .00 .01 .15 .00

FR .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .11 .00 .00 .00 .02 .00 .00 .02 .72 .00 .00 .00 .03 .00 .00 .02 .08

F .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .07 .00 .00 .00 .00 .00 .00 .08 .57 .00 .00 .02 .18 .00 .00 .08

FL .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .15 .00 .00 .00 .00 .00 .00 .11 .59 .00 .00 .03 .09 .00 .00

L .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .28 .00 .00 .00 .00 .00 .00 .00 .70 .00 .00 .00 .00 .00

BL .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .06 .11 .00 .00 .00 .09 .00 .00 .06 .67 .00 .00 .00 .01
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Figure 4: Confusion table reports azimuth pose (Left), zenith pose (Middle) and joint pose
estimation (Right) for the synthesized car dataset.

length of the segment is 10 frames. Rasterized image pixel values are used to represent the
observation vector X and a 1 nearest neighbor classifier is adopted for final classification.

To avoid having the bounding box shape contaminate our classification result (Frontal
view of a car tends to have a smaller bounding box than the side view), images are normalized
so as to make the bounding box a unit square. Fig.4 reports a summary of the estimation
accuracy. We discretize the viewing sphere into 8 azimuth regions (Front, Front-Right, Right,
Back-Right, Back, Back-Left, Left, Front-Left) and 4 zenith regions ([0◦,10◦], [10◦,20◦],
[20◦,30◦], [30◦,40◦]) for calculating the final confusion table. As shown in the figure, we
achieve an average performance of 82.23% in estimating the azimuth pose and 76.20% in
estimating the zenith pose. Joint estimation of θ and ϕ achieves an overall accuracy of
64.6%, where random guess accuracy is only 1/32 = 3.12%.

5.2 Pose classification with real data
In this experiment we test our algorithm on a real world dataset comprising 4 car instances
and 5 PC mouse instances captured by a hand held low resolution camera; the camera tra-
jectory covers different locations on the viewing sphere following a semi-sinusoidal trace
(Fig.2). This trajectory mimics the behavior of a person observing an object - moving around
the object and raising/lowering the observation point slowly. Bounding box for the object is
assumed in training and testing. This assumption is reasonable in scenarios where objects
are tracked or detected using off-the-shelf object detectors. To make our experiments closer
to real situations, where accurate bounding box is rarely available, independent Gaussian
noises are added to the top-left and bottom-right coordinates of the ground truth bounding
box. Noise level is controlled by setting standard deviation of the Gaussian distribution as
a function (percentage) of the width/height of the bounding box. Examples of frames from
our dataset along with bounding boxes are shown in Fig.5.

As opposed to the experiment with synthesized dataset, where each PDF Eq.(9) is esti-
mated from a (2D) patch on viewing sphere defined by [∆θ ,∆ϕ], our hypotheses are now
estimated on images belonging to small (1D) trajectory segments on the viewing sphere;
trajectory segments are obtained by dividing the video sequence into short segments of K
frames. Testing images are obtained in a similar way. In our experiment, we use K = 10.

Another major difference is that the synthesized images have blank backgrounds, while
in real photographs objects lie in cluttered environments. Since accurate object segmenta-
tions are rarely available in real world situations, it is very important that our proposed pose
estimation algorithm be robust to background noise and clutter.
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Noise Level = 3% Noise Level = 6% Noise Level = 9% Noise Level = 12% Noise Level = 15%

Figure 5: Some frames from the car and mouse dataset we used in the experiments, along
with bounding boxes localizing the object. Note the intra-class variability (appearance dif-
ference) within each category (Modeled as texture t i). Different degrees of noise are added
to the ground truth bounding boxes. See text for details.

Image representation. We tested several methods for representing the information ex-
tracted from the images: raw pixel intensity values (image+intensity: II), SIFT descriptors
computed on uniformly sub-sampled pixel locations (image+SIFT: IS), edge maps gener-
ated by Canny edge detector from original images (edge+intensity: EI), and SIFT descrip-
tors computed on uniformly sub-sampled edge maps (edge+SIFT: ES). For compuatational
efficiency and tractability, data from all these representations is pre-processed by PCA and
the first 50 principle components are fed to KDE to estimate the actual PDFs (experimental
results indicate that our system produces stable and consistent results if more than 50 princi-
ple components are used). In our experiments, a weighted Parzen window classifier is used
to estimate the pose label, where the Parzen window size is chosen empirically.

For a given noise level, we generate 10 realizations of the noisy bounding boxes and
repeat classification 10 times for each image representation. This scheme helps average
out performance variability due to noise and lead to more stable quantitative evaluations.
Relevant average accuracies (with standard deviations) are reported as an assessment of the
performance. As shown in Fig.6(a) and 6(d), our method (using ES representation) consis-
tently yields the highest average accuracy across all tested noise levels (with an accuracy of
86.4% for the car class and 85.4% for the mouse class at 3% noise). An interesting obser-
vation is that by using a representation based on edges, the pose recognition accuracy jumps
from less than 60% (II) to up to 80% (EI) on both datasets. These results indicate that edges
lead to highly discriminative capabilities in our manifold learning framework.

Video segment length. Fig.6(b) and 6(e) show the performance of our algorithm as
a function of the number of frames K used for tranining/testing in each video segment. As
shown in these figures, the recognition accuracy is very low when K is small, which is simply
because there is not enough data for estimating the PDFs. As K gets larger (K ∼ [1− 6]),
the PDFs are estimated more accurately and the performance improves significantly. This
suggests that, with more frames, the contribution of noise becomes less significant and that
patterns of features start emerging and becoming statistically significant. And after a certain
threshold (K > 10), the performance becomes stable.

Number of training instances. Fig.6(c) and 6(f) summarize the recognition accuracy as
a function of the number of training instances. The performance improves as more instances
are used in training, indicating that our algorithm has promising generalization power.

Unsupervised pose estimation. We also demonstrate the power of using our method
for unsupervised pose estimation. In this experiment we first use k-means to cluster the
statistical manifold (which is build on the training data only) with number of clusters C = 36,
and assign a unique pose label to each cluster. Then we use a Parzen window classifier to
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Figure 6: (Left column) 8-Pose classification accuracy at different noise levels. Note that our
proposed method is robust to different degree of noise applied to the bounding box location
and size, while the performance of pyramid matching framework drops dramatically when
the bounding box is inaccurate. (Mid column) Classification accuracy as a function of length
of video segment used for training and testing. (Right column) Classification accuracy as a
function of number of instances used for training. (Top row) Experimental results with the
car dataset. (Bottom row) Experimental results with the mouse dataset.

predict the labels of the testing video segment based on the estimated labels. Finally, we
compare the predicted labels of the testing images to the ground truth and report the accuracy.
We show samples of clusters in the manifold in Fig.3(b) and the recognition accuracy in Fig.7
as function of number of dimensions of the reconstructed manifold.

Comparison with [18]. As a baseline experiment, we applied the spatial pyramid match-
ing scheme[18] on our car and mouse datasets and formulate the pose estimation as a single
frame classification problem. We again adopt the leave-one-out scheme and use all the video
frames for training/testing. We set the dictionary size to be 100 and calculate level 3 spatial
pyramids on raw images, followed by a 1 nearest neighbor / Parzen window classifier. As
shown in Fig.7, our method performs better than the pyramid matching baseline for both
classifiers. Note that our algorithm tends to be more robust to noise compared to pyramid
matching. As the noise level increases from 3% to 15%, our method (using a ES representa-
tion with the Parzen window classifier) outperforms pyramid matching on both dataset up to
20%.

6 Conclusion
We tackled the problem of estimating the pose of an object category from a video sequence
portraying the object under small camera movements. We introduced a new algorithm that
models an object category as a collection of non-parametric probability density functions
capturing appearance and geometrical variability as the camera moves around the object.
The problem of object pose classification is tackled by measuring the information divergence
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Figure 7: Comparison of our method with the spatial pyramid matching scheme for the car
(7(a)) and mouse (7(b)) dataset. (7(c))Unsupervised classification accuracy as a function of
number of dimensions of the reconstructed manifold.

of the probably density functions in testing and training. The key advantage of this algorithm
with respect to competing methods for pose classification is that no pose labeling is required
in training. We demonstrated that our algorithm can successfully classify the pose of unseen
instances of cars and PC mouses observed from a short period of time using a hand held low
resolution camera. We believe this work represents a promising step forward for solving the
challenging and yet fairly unexplored problem of pose classification from video imagery.
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