
COMPLEX WAVELETS FOR REGISTRATION OF TAGGED MRI SEQUENCES

Estanislao Oubel, Alejandro F. Frangi

Pompeu Fabra University
Department of Technology

Barcelona, Spain
{estanislao.oubel,alejandro.frangi}@upf.edu

Alfred O. Hero

The University of Michigan
Department of EECS
Ann Arbor (MI), USA

hero@umich.edu

ABSTRACT

Tagged Magnetic Resonance Imaging (MRI) is currently the
reference MR modality for myocardial motion and strain anal-
ysis. Mutual Information (MI) based non rigid registration
has proven to be an accurate method to retrieve cardiac de-
formation fields. However, this technique ignores high fre-
quency information in tags. In a previous work this infor-
mation was included by using feature vectors formed with
wavelet coefficients and kNN graphs to estimate αMI. It was
shown that cardiac motion estimation was feasible with these
features. In this work, features were derived from Complex
Wavelet Transform (CWT), which is shift invariant and pro-
vides more high frequency subimages than conventional wavelets.
Results show that lower errors are obtained with respect to the
use of pixel intensity.

1. INTRODUCTION

Tagged magnetic resonance imaging (MRI) is a well estab-
lished technique used to obtain regional information on left
ventricle (LV) deformation[1], and thus potentially valuable
to diagnose cardiovascular diseases. Basically, this technique
consists in perturbing the magnetization of the myocardium
in a specific spatial pattern at end-diastole. These perturba-
tions appear as dark stripes (tags) when imaged immediately
after application of the magnetic field. Since the myocardium
retains “memory” of this disturbance, tags undergo the same
deformation as the heart does, allowing local strain parame-
ters to be estimated.

Several methods have been proposed to retrieve LV defor-
mation fields: optical flow, Harmonic Phase (HARP) MRI,
tag detection and tracking, and image registration. The use of
MI based non rigid registration to estimate cardiac motion [2]
has proven to overcome many drawbacks existent in previous
approaches. However, since MI is based on pixel intensity,
high frequency information in tags is ignored. Aiming to in-
clude this information, in a previous work [3] we used feature
vectors formed by wavelet coefficients and kNN graphs to es-
timate αMI. It was shown that it is feasible to retrieve cardiac

motion with this method, but the error obtained with MI was
lower.

This work uses feature vectors formed with the coeffi-
cients obtained by applying a complex wavelet transform to
the image. This transform is shift invariant and decomposes
an image into an approximation and six high frequency subim-
ages. Therefore, it is possible to define a vector with ad-
ditional information on directionality for each pixel. These
features were used along with kNN graphs to improve mo-
tion estimation with respect to the classic method based on
pixel intensity. The method was tested in four tagged MRI
sequences and the results compared against manual measure-
ments.

This paper is organized in six sections. In the next sec-
tion the Complex Wavelet Transform is introduced. Section 3
explains how to estimate cardiac deformation fields by using
image registration. In that section, αMI estimation by using
kNN graphs is also presented. Section 4 describes the dataset
used for the experiments. Results are presented in Section 5
and discussed in Section 6. Finally, conclusions can be found
in Section 7.

2. COMPLEX WAVELET TRANSFORM

For one dimensional signals, the Discrete Wavelet Transform
(DWT) can be regarded as equivalent to filtering a signal with
a set of bandpass filters whose impulse responses are scaled
versions of a function called mother wavelet. At the coars-
est scale, an aditional filter is required to represent the lowest
frequencies of the signal. To remove redundancy in the trans-
form, the filter output must be subsampled. The usual way to
do this is the cascade filter bank shown in Fig. 1. The bidi-
mensional DWT of an image is obtained applying a 1D DWT
to rows and then to columns.

The DWT has two main drawbacks: 1) Lack of shift in-
variance: this means that the energy of DWT coefficients
changes with image shifts. For registration purposes it would
be desirable for energy to remain the same. 2) Poor direc-
tional selectivity: this is a consequence of separable filtering
in images. The Lo-Hi and Hi-Lo filtering provides high hor-
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Fig. 1. Filter bank to implement three levels of DWT. H0:
Low pass filter; H1: High pass filter. An undersampling by 2
is applied to the filter output.

Fig. 2. One-level CWT decomposition of a tagged MRI im-
age. Colors were chosen to represent complex values.

izontal and vertical frequencies respectively, and there is no
ambiguity in the information. However, the Hi-Hi filtering
provides information on diagonal features in both directions
(it does not differentiate between an edge at 45o and 135o de-
grees, for example).

To overcome these problems, Kingsbury [4] introduced
the CWT. This transform can be represented by the same block
diagram in Fig. 1, but in this case the filters have complex co-
efficients and generate complex signals as well. Therefore,
a 2:1 redundancy is introduced which results into a 4:1 re-
dundancy for images. Despite being implemented separably,
complex filters provide true directional selectivity as they sep-
arate all parts of the frequency space. For 2D images the CWT
produces six bandpass subimages oriented at ±15o, ±45o,
±75o. A comprehensive explanation and more details on
CWT can be found in the paper by Kingsbury [5]. Fig. 2
shows the CWT of a tagged MRI image.

3. METHOD

3.1. Motion estimation

To track cardiac motion throughout multiple time frames, Mul-
tilevel Free Form Deformations (MFFDs) were used as sug-
gested by Schnabel et al. [6], where the transformation T(u, t)
is represented as the sum of a series of local FFDs:

T(u, t) =
t∑

p=1

Tp
local(u, t)

Thus, the motion estimation starts registering the first two
frames of the sequence I(x, 0) and I(x, 1), and a single FFD
is obtained. Then, for the next frame I(x, 2), a new FFD is
added and the frame is registered to I(x, 0) taking as initial
transformation the one obtained for I(x, 1). This process is
repeated for the remaining frames I(x, t) in the cardiac cycle.
Once all the frames are registered to the first one, the MFFD
consists of N FFDs that model the myocardium deformation.

The local transformations are obtained by means of the
registration algorithm proposed by Rueckert et al. [7] for de-
tection of cancerous lesions in contrast enhanced MR breast
images. This approach uses MI of pixel intensity to find the
transformation that best matches source and target.

The method used in this work proceeds in two steps: 1)
source and target are registered using CWT aproximation co-
efficients, and 2) with vectors formed by concatenating de-
tail coefficients taking as input the transformation used in
step one. In this way, the registration process is prevented
from being dominated by approximation coefficients, which
have higher values than detail coefficients. The second step is
where high frequency information in tags is introduced into
the registration process. Since feature vectors are in high di-
mensional spaces, the use of histograms for MI estimation is
quite inexact. Therefore, kNN graph estimators were used,
which bypass probability density function (pdf) estimation.

3.2. αMI estimation using kNN graphs

Given a set Z = {z1, . . . , zn} of n vectors in R
d, the k-

Nearest Neighbor Graph (kNN Graph) is formed by the points
zi and the edges with their k nearest points Nk,i(Z). If Is

and It are two images from which the sets of feature vectors
Zs = {zs1, . . . , zsn} and Zt = {zt1, . . . , ztn} have been ex-
tracted, after calculating the corresponding kNN graphs, αMI
can be estimated as [8]:

α̂MI =
1

α − 1
log

1
nα

n∑
i=1

k∑
p=1

(
‖eip(zsi, zti)‖√‖eip(zsi)‖ ‖eip(zti)‖

)2γ

,

where ‖eip(zsi, zti)‖ is the distance from the point (zsi, zti) ∈
R

2d to its p-nearest neighbor in {zsj , ztj}j �=i, and ‖eip(zsi)‖
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Table 1. Accuracy of manual measurements. Bias and standard deviation of the
differences with respect to GS.

Observer A Observer B Observer A and B

Bias (mm) 0.01 0.06 0.03
SD (mm) 0.35 0.31 0.29

(‖eip(zti)‖) is the distance from the point zsi ∈ R
d, (zti ∈

R
d) to its p-nearest neighbor in {zsj}j �=i({ztj}j �=i).

To make a fair comparison with respect to the results ob-
tained with Shannon MI (αMI|α=1) α = 0.9 was used.

3.3. Feature vectors

As commented before in this section, feature vectors at each
point in the image were obtained by concatenating wavelet
transform coefficients. For DWT, this vectors were formed
by grouping corresponding values of LoLo, LoHi, HiLo and
HiHi subimages, resulting in points in R

4. When CWT is
used, feature vectors are points in R

12 (six complex values
corresponding to six directional filters).

4. MATERIALS

4.1. Dataset

Four tagged 2D sequences were acquired with a GE Gene-
sis Signa 1.5T MRI scanner. A cine breath-hold sequence
with a SPAMM grid tag pattern was used, with imaging being
done at end expiration. The in-plane image resolution was
1.56mm×1.56mm. Cardiac cycle was sampled by acquiring
a total of 16 frames. However, only images from End of Di-
astole (ED) to End of Systole (ES) (systolic phase) were used
in the experiments since the interest on evaluating deforma-
tion during heart contraction. The length of this cardiac cycle
segment is 5 frames.

4.2. Manual measurements

In order to assess method performance in tracking myocar-
dial motion, tag intersection points were marked manually in
each frame by two observers in two independent sessions. For
each sequence, 18 points (average) were chosen to be tracked,
and thus 90 (18×5) points were marked. Gold standard mea-
surements (GS) were derived for each tag intersection point
by taking the average of the measurements made by the ob-
servers. Fig. 3 shows the GS point set for each frame in
sequence A.

5. RESULTS

The mean error was calculated between the GS and measure-
ments made by observers. Table 1 shows intra and interob-
server variabilities of manual landmarking.

(1) (2) (3)

(4) (5)

Fig. 3. Gold standard points in each frame from ED to ES for
one of the sequences used in this work.

(a) (b) (c)

Fig. 4. (a) Motion field from ED to ES. Markers at ES before
(b) and after (c) registration

Myocardium deformation field was calculated with the
method explained in Section 3. Fig. 4 shows an example
of motion fields obtained and how the landmarks marked by
one observer are mapped onto the GS. The resulting trans-
formations were then applied to the GS at ED to map these
points to each phase. The mean error between these mapped
points and the GS for each phase was calculated. Since this
error is different for each phase and in general increases from
ED to ES, the sum of this error over all phases was taken as
index of method performance. Fig. 5 shows this value for all
sequences and methods compared in this work.

6. DISCUSSION

Fig. 5 shows that for all sequences except B, the use of CWT
allowed to obtain lower mean errors than pixel intensity for
both histograms and kNN graphs. It is particularly important
to note that for most cases CWT and DWT outperform pixel
intensity when kNN graphs are used, because the same esti-
mator is used for different features and it allows a more fair
comparison on the effect of including high frequency infor-
mation (the potential effect of using histograms on the perfor-
mance is removed).

The main drawback of the presented method is the speed.

624

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 5, 2009 at 15:33 from IEEE Xplore.  Restrictions apply.



Fig. 5. Sum of mean error over all phases for sequences and
metrics used in this work. MI: Standard Mutual Informa-
tion (pixel intensity and histograms); PXL/WAV/CWT: αMI
for Pixel Intensity/Haar Wavelet/Complex Wavelets and kNN
graphs.

The computational burden comes from two sources: calcula-
tion of a wavelet transform for each degree of freedom modi-
fied during the optimization process, and the use of graphs to
estimate αMI. However, whenever features other than pixel
intensity are considered the computational cost will be nec-
essarily higher, since these features must be calculated some-
way. With respect to the estimator, some alternatives to kNN
graphs are currently being studied, which could potentially
reduce registration time.

One possible way of improving the obtained results is
the use of CWT phase information, since it depends almost
linearly on displacements in the image. Some other ideas
are the selection of coefficients based on noise level estima-
tion, and to take advantage of the multiresolution nature of
wavelet transform to implement an intrinsically multiresolu-
tion method. With respect to the optimizer, and given the
presence of local minima in αMI, the use of gradient based
optimizers may be not the best choice, and experiments with
Powell and Nelder-Mead methods should be carried out.

7. CONCLUSIONS

Spatial information present in tags has been introduced into a
registration based method used for cardiac motion estimation.
This has been accomplished by using feature vectors formed
with CWT coefficients. CWT offers shift invariance, good
directional selectivity, and intrinsicaly multiresolution image
representation, properties that make the transform quite suit-
able for registration purposes. This has been demonstrated by

obtaining lower errors with respect to the use of Haar wavelet
transform and pixel intensity to form feature vectors. How-
ever, a drawback of the presented methodology is its high
computational cost, which could limit its practical application
(specially in 3D datasets). Currently, the use of CWT phase
information, other estimators as alternatives to kNN graphs,
and the extension of this method to 3D, are being investigated
with the aim of improving accuracy, speeding up the process
and finding new target applications.
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