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Abstract—In this paper, a new centrality called local Fiedler
vector centrality (LFVC) is proposed to analyze the connectivity
structure of a graph. It is associated with the sensitivity of
algebraic connectivity to node or edge removals and features
distributed computations via the associated graph Laplacian
matrix. We prove that LFVC can be related to a monotonic
submodular set function that guarantees that greedy node or edge
removals come within a factor 1−1/e of the optimal non-greedy
batch removal strategy. Due to the close relationship between
graph topology and community structure, we use LFVC to detect
deep and overlapping communities on real-world social network
datasets. The results offer new insights on community detection
by discovering new significant communities and key members in
the network. Notably, LFVC is also shown to significantly out-
perform other well-known centralities for community detection.

I. INTRODUCTION

In social, biological and technological networks [1]–[3],
communities are defined as tightly connected modules em-
bedded in a graph [4]–[6]. Communities play an important
role in determining collective behaviors. Recently, community
detection has attracted a great deal of interest across different
fields [5], [7]. Conventional community detection techniques
such as the edge betweenness method [1] and the modularity
method [8] presume that each node in a graph is affiliated
with only one community of a network. However, in reality
an individual node can have multiple memberships resulting
in overlapping community structure [9]–[11].

Communities can be cast as the collection of remaining
connected components/subgraphs when a subset of nodes or
edges are removed based on centrality measures (e.g., the
isolated community defined in [6]). In [1], edge removal based
on edge betweenness centrality is proposed to detect hier-
archical community structures. In [12], node removal based
on node degree is proposed to improve the performance of
the modularity method. In this paper, we are interested in
investigating new centrality measures such that their removals
come within a factor 1− 1/e of the optimal non-greedy batch
removal strategy to aid community detection.

Since current community detection methods must assign
one membership to each node in the network, detection
performance of such methods may suffer from the presence
of “outlier nodes” that prevent reliable community detection.
Consequently, significant communities may be neglected or
disguised during the detection process in the presence of
outlier nodes resulting in biased or inaccurate social network
analysis. The goal of this paper is to propose a systematic
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approach to detect significant communities and key members
in the network, which we refer as deep and overlapping com-
munity detection. For instance, when our proposed approach is
applied to the network scientist coauthorship dataset we show
that a zoologist is correctly identified as an outlier node during
the detection process since the authors are mostly physicists,
thus leading to revelation of new community structures.

Local Fiedler vector centrality (LFVC) is proposed to eval-
uate the connectivity structure of a graph based on spectral
graph theory [13]. LFVC is associated with an upper bound
on algebraic connectivity [14] when a subset of nodes or edges
are removed from a graph. We show that LFVC relates to a
monotonic submodular set function such that greedy node or
edge removals can be employed with bounded performance
loss relative to the optimal non-greedy batch removal strategy.
Moreover, LFVC can be computed in a distributed manner and
it is applicable to large-scale network analysis. We apply this
method to real-world social network datasets and compare to
the modularity method and other well-known centralities.

II. SPECTRAL GRAPH THEORY AND CENTRALITIES

A. Graph Laplacian and algebraic connectivity
Consider an undirected and unweighted graph G = (V,E)

without self loops and multiple edges between any node pair.
V is the node set with |V | = n and E is the edge/link set
with |E| = m. The connectivity structure is characterized by
an n-by-n binary and symmetric adjacency matrix A, where
Aij = 1 if (i, j) ∈ E, otherwise Aij = 0. Let di =

∑n
j=1 Aij

denote the degree of node i. The degree matrix D = diag(d)
is a diagonal matrix with degree pattern (d1, d2, . . . dn) on its
diagonal. The graph Laplacian of G is defined as L = D−A.
Let λi(L) denote the ith smallest eigenvalue of L, 1 denote
the all one vector, and Ni denote the set of neighboring nodes
of i, i.e., Ni = {j : Aij = 1}. It is well-known [13], [15] that

xTLx =
1

2

∑
i,j∈V

Aij(xi − xj)
2 =

1

2

∑
i∈V

∑
j∈Ni

(xi − xj)
2 (1)

and L1 = (D − A)1 = 0, therefore λ1(L) = 0 and L is a
positive semidefinite (PSD) matrix.

The algebraic connectivity of a graph is defined as the sec-
ond smallest eigenvalue of L, i.e., λ2(L). A graph is connected
if and only if λ2(L) > 0, and, for any non-complete graph
[14], λ2(L) is an lower bound on node/edge connectivity,
where node/edge connectivity is the least number of node/edge
removals that disconnects the graph. Therefore, a graph with
larger algebraic connectivity is more resilient to node and
edge removals. For any connected graph, we can represent
the algebraic connectivity as λ2(L) = min∥x∥2=1, x⊥1 x

TLx



using the Courant-Fischer theorem [16] and the fact that 1 is
an eigenvector of λ1(L).

The Fiedler vector is the eigenvector of λ2(L) [14], which
can be distributedly computed via local information exchange
over the graph Laplacian matrix [17]. It has been widely used
in graph partitioning, image segmentation and data clustering
[18]–[22]. The Fiedler vector facilitates community detection
by separating the nodes in the graph according to the signs of
the corresponding Fiedler vector elements. Hierarchical com-
munity structure can be detected by successively evaluating the
Fiedler vector on the successively discovered communities.

Similarly, the modularity method [8], [23] uses the largest
eigenvector of a matrix B for community detection, where
Bij = Aij − didj

2m is the number of excessive edges relative
to the associated random graph. The modularity is defined as
maxs∈{1,−1}n

1
4msTBs, where s is the community indicator

vector. To divide a network into more than two communities,
Newman proposes that one should compute the incremental
modularity of further dividing each community into two com-
munities and select the partition that has the largest modularity
increment. It is shown in [23] that the modularity method
tends to give more accurate results compared with community
detection based on the standard Fielder vector approach.
However, unlike the proposed method, these methods can not
be applied to overlapping community detection.

B. Some examples of centralities
Centralities can be classified into two categories. Global

centralities require complete topological information whereas
local centralities only require local information from neigh-
boring nodes for their computation.
Betweenness [24]: betweenness is a global node centrality
defined as betweenness(i) =

∑
k ̸=i

∑
j ̸=i,j>k

σkj(i)
σkj

, where
σkj is the total number of shortest paths from k to j and
σkj(i) is the number of such shortest paths passing through i.
Closeness [25]: let ρ(i, j) denote the shortest path distance be-
tween node i and node j in a connected graph. closeness(i) =
1/
∑

j∈V,j ̸=i ρ(i, j) and it is a global node centrality.
Eigenvector centrality (Eigen centrality) [26]: eigenvector
centrality of node i refers to the ith entry of largest eigenvector
of adjacency matrix A and it is a global node centrality.
Degree (di): degree is the simplest local node centrality
measure which accounts for the number of neighboring nodes.
Ego centrality [27]: Ego centrality can be viewed as a local
version of betweeness centrality that computes the shortest
paths between its neighboring nodes. Let A(i) be the local
adjacency matrix of i and I be an identity matrix. Since
[A2(i)]kj is the number of two-hop walks between k and
j and A2(i)[I − A(i)]kj is the total number of two-hop
shortest paths between k and j, ego centrality is defined as
ego(i) =

∑
k

∑
j>k 1/A

2(i)[I −A(i)]kj .

III. LOCAL FIEDLER VECTOR CENTRALITY (LFVC)
A. Edge-LFVC

Consider the graph G̃ = (V,E ∪ (i, j)) by adding an edge
(i, j) to G, where (i, j) /∈ E and we denote the resulting graph
Laplacian by L̃(i, j). Let ei be a zero vector except that its
ith is equal to 1. We have L̃ = L+∆L and ∆L = ∆D−∆A,
where ∆D and ∆A are the augmented degree and adjacency
matrices, respectively. We have ∆D = eie

T
i +eje

T
j and ∆A =

eie
T
j +eje

T
i and therefore L̃(i, j) = L+(ei−ej)(ei−ej)

T .
That is, The resulting graph Laplacian L̃(i, j) after adding an
edge (i, j) to G is the original Laplacian matrix L perturbed
by a rank one matrix. Similarly, when a (i, j) ∈ E is removed
from G, we have L̃(i, j) = L− (ei − ej)(ei − ej)

T .
Consider removing an edge (i, j) ∈ E in G and following

the definition of λ2(L) = min∥x∥2=1,x⊥1 x
TLx. Let y denote

the Fiedler vector of L, computing yT L̃(i, j)y gives an upper
bound on λ2(L̃(i, j))

λ2(L̃(i, j)) ≤ yT L̃(i, j)y = λ2(L)− (yi − yj)
2. (2)

It is worth mentioning that for any connected graph G, there
exists at least one edge removal such that the inequality
λ2(L̃(i, j)) < λ2(L) holds, otherwise yi = yj for all
i, j ∈ V and this violates the constraints that ∥y∥2 = 1 and∑n

i=1 yi = 0. Consequently, there exists at least one edge
removal that leads to a decrease in algebraic connectivity.

Similarly, when we remove a subset of edges ER ⊂ E from
G, where |ER| = h. The upper bound becomes

λ2(L̃(ER)) ≤ λ2(L)−
∑

k=(i,j)∈ER

(yi − yj)
2. (3)

We define the local Fiedler vector edge centrality as

edge-LFVC(i, j) = (yi − yj)
2. (4)

From (2) and (3), the top h edge removals which lead to the
most decrease in algebraic connectivity of the remaining graph
are the top h edges with the highest edge centralities.

B. Node-LFVC
When a node i ∈ V is removed from G, all the edges

attached to i will be removed from G. Following (2), the
resulting graph Laplacian L̃(i) can be regarded as a rank di
perturbation to L. Since L−L̃(i) =

∑
j∈Ni

(ei−ej)(ei−ej)
T ,

λ2(L̃(i)) ≤ λ2(L)−
∑
j∈Ni

(yi − yj)
2. (5)

Similarly, for any connected graph, there exists at least one
node removal that leads to a decrease in algebraic connectivity.

If a subset of nodes R ⊂ V are removed from G, where
|R| = q. Then

L− L̃(R) =
∑
i∈R

∑
j∈Ni

(ei − ej)(ei − ej)
T (6)

− 1

2

∑
i∈R

∑
j∈R

Aij(ei − ej)(ei − ej)
T ,

where the last term accounts for the edges that are attached to
the removed nodes at both ends. Consequently, we obtain an
upper bound for multiple node removals

λ2(L̃(R)) ≤ λ2(L)−
∑
i∈R

∑
j∈Ni

(yi − yj)
2 (7)

+
1

2

∑
i∈R

∑
j∈R

Aij(yi − yj)
2.

We define the local Fiedler vector node centrality as

node-LFVC(i) =
∑
j∈Ni

(yi − yj)
2, (8)



which is the sum of the square terms of the Fielder vector
element differences between node i and its neighboring nodes.
Similar to the modularity method [8], the computational com-
plexity for node-LFVC is O ((m+ n)n).

A deep community is defined as a nonsingleton maximal
connected subgraph (i.e., a connected component) in conjunc-
tion with the removed nodes that were previously adjacent to
the subgraph before their removal. In other words, consider
a nonsingleton maximal connected subgraph S with node set
VS when a set of nodes R is removed from G. The deep
community is the set VS ∪{i ∈ R : Aij = 1 for some j ∈ S}.

C. Monotonic submodular set function and greedy removals
Consider the problem of finding the optimal node removal

set with cardinality q that maximizes loss in algebraic con-
nectivity. The computational complexity of this batch removal
problem is of combinatorial order

(
n
q

)
. Here we show that

greedy removal, whose computation is only linear in n, is
almost as good as the combinatorial algorithm in terms of
achieving, within a multiplicative constant (1−1/e), the same
algebraic connectivity. Let

f(R) =
∑
i∈R

∑
j∈Ni

(yi − yj)
2 − 1

2

∑
i∈R

∑
j∈R

Aij(yi − yj)
2 (9)

such that λ2(L̃(R)) ≤ λ2(L)−f(R). Note that when |R| = 1,
f(R) degenerates to node-LFVC. f(R) is nonnegative since

f(R) =
∑
i∈R

∑
j∈Ni

(yi − yj)
2 − 1

2

∑
i∈R

∑
j∈V

Aij(yi − yj)
2 (10)

+
1

2

∑
i∈R

∑
j∈V/R

Aij(yi − yj)
2

=
1

2

∑
i∈R

∑
j∈Ni

(yi − yj)
2 +

∑
j∈V/R

Aij(yi − yj)
2

 ≥ 0.

The following theorem shows submodularity of f(R). This
implies that greedy node removals based on node-LFVC are
almost as effective as the combinatorially complex batch
algorithm. More specifically, it implies the inequalities in (15).

Theorem 1. f(R) is a monotonic submodular set function.

Proof: Consider two removal sets R1 ⊂ R2 ⊂ V , since

f(R2)− f(R1)

=
∑

i∈R2/R1

∑
j∈Ni

(yi − yj)
2 −

∑
i∈R1

∑
j∈R2/R1

Aij(yi − yj)
2

− 1

2

∑
i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)
2

≥
∑

i∈R2/R1

∑
j∈V

Aij(yi − yj)
2 −

∑
i∈R1

∑
j∈R2/R1

Aij(yi − yj)
2

−
∑

i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)
2

=
∑

i∈R2/R1

∑
j∈V

Aij(yi − yj)
2 −

∑
j∈R2

Aij(yi − yj)
2


=

∑
i∈R2/R1

∑
j∈V/R2

Aij(yi − yj)
2 ≥ 0, (11)

f(R) is a monotonic increasing set function (i.e., f(R2) ≥
f(R1) for all R1 ⊂ R2 ⊂ V ). Furthermore, f(R) is a submod-
ular set function [28], [29] since for any node v ∈ V, v /∈ R2,

f(R1 ∪ v)− f(R1) =
∑
j∈Nv

(yv − yj)
2 −

∑
j∈R1

Avj(yv − yj)
2

≥
∑
j∈Nv

(yv − yj)
2 −

∑
j∈R2

Avj(yv − yj)
2

= f(R2 ∪ v)− f(R2). (12)

The set function f(R) has diminishing gain property and
therefore f(R) is a submodular set function.

When |R| = q, let Ropt be the optimal node removal set
that maximizes f(R) and Rk be the greedy node removal set
at kth stage with |Rk| = k. By submodularity, there exists a
v ∈ Ropt/Rk such that

f(Rk ∪ v)− f(Rk) ≥
1

q
(f(Ropt)− f(Rk)) . (13)

We have f(Ropt)− f(Rk+1) ≤ (1− 1
q )(f(Ropt)−f(Rk)) and

f(Ropt)− f(Rq) ≤ (1− 1

q
)qf(Ropt) ≤

1

e
f(Ropt). (14)

The submodularity of the function f implies that after q
greedy iterations the loss in performance is within a factor
1/e of optimal batch removal [28]. In other words, when
removing Rq from G, the algebraic connectivity is guaranteed
to decrease by at least (1− e−1)f(Ropt) of its original value.

λ2(L̃(Rq)) ≤ λ2(L)− f(Rq)

≤ λ2(L)− (1− e−1)f(Ropt). (15)

Consequently, identifying the top q nodes affecting algebraic
connectivity can be regarded as a submodular set function
maximization problem, and the greedy algorithm can be ap-
plied iteratively to find the node with the highest node-LFVC
and successively remove it from the graph.

IV. PERFORMANCE EVALUATION

In this section, we use node-LFVC to perform community
detection on several datasets collected from real-world social
networks and compare the results with the modularity method
[8], [23]. The community structures are revealed by iteratively
removing the node with the highest centrality from the largest
community. Due to Theorem 1 and (15) after q iterations, this
greedy node removal strategy is almost as good as the non-
greedy batch removal of the best q nodes.

A. Coauthorship among network scientists
Consider the coauthorship network in network science stud-

ied by Newman [23]. Nodes represent network scientists and
edges represent the existence of coauthorship. The coauthor-
ship network is fragile in the sense that it can be divided
into 2 deep communities by 1 node removal and into 6
deep communities by 2 node removals. The first node with
the highest node-LFVC is Yamir Moreno, who is a network
scientist in Spain but has many collaborators outside Spain.
The local (two-hop) coauthorship network of Yamir Moreno is
shown in Fig. 1. The red square community mainly represents
the network scientists in Spain and Europe, whereas the
blue triangle community represents the rest of the network



Fig. 1. Yamir Moreno’s local 2-hop coauthorship network (from part of
the network of coauthorship among network scientists [23] having n = 379
nodes and m = 914 edges). Moreno has 14 coauthors (marked by light
orange color) and his coauthors have 35 coauthors. The modularity method
[23] detects that Moreno is a member of only one large community (dashed
box in gray). The proposed LFVC method detects Moreno as belonging to
two separate communities indicated by red and blue nodes, respectively.

Fig. 2. Mark Newman’s local 1-hop coauthor network in the network scientist
coauthorship graph [23]. The proposed LFVC method detects Newman as
belonging to 5 communities (marked by different vertex shapes and colors in
solid boxes) and being associated with 3 outlier scholars (marked by black X
label). For instance, Lusseau is detected as an outlier node since his research
area is primarily in zoology. As shown in gray dashed box, the modularity
method [23] detects 25 out of 28 scholars as being in a single community,
and the top left 3 scholars as belonging to 3 different communities.

scientists. After removing Yamir Moreno from the network,
the node with the highest node-LFVC in the remaining largest
community is Mark Newman, who is associated with 5 com-
munity memberships and 3 outlier nodes as shown in Fig.
2. Each community can be related to certain relationship
such as colleagues, students and research institutions. For
instance, although Lusseau has coauthorship with Newman,
his research area is primarily in zoology and therefore he has
no interactions with other network scientists in the dataset
since other network scientists are mainly specialists in physics.
This also explains why Lusseau is detected as an outlier node
in the community detection process in Fig. 2. Consequently,
using node-LFVC for overlapping community detection and
outlier nodes exclusion reveals new community structures that
are not identified by the modularity method.

B. Friendship in hamsterster.com
Hamsterster.com is an online social website for hamster

owners. We use the friendship dataset collected in [30] for
community detection based on node-LFVC and other well-

Fig. 3. Community detection on friendship in Hamsterster.com [30] with n =
2000 nodes and m = 16097 edges. (a) Normalized largest community size.
(b) Discovered communities. In addition to minimizing largest community
size, node-LFVC is capable of detecting more communities.

known centralities introduced in Sec. II-B. Two quantities,
the normalized largest community size and the number of
discovered communities with respect to node removals, are
used to evaluate the performance of community detection
when different centralities are applied. These two quantities
reflect the effectiveness of graph partition and the capability
of community detection.

As shown in Fig. 3 (a), the normalized largest community
size decays linearly with respect to the number of node
removals. Among all node centralities, node-LFVC has the
steepest decaying rate, which suggests that it is capable of
detecting significant communities embedded in the largest
community more rapidly than the other centralities. Further-
more, using node-LFVC can discover more communities, as
shown in Fig. 3 (b), especially during the first 50 node
removals. The only node centrality that is comparable to node-
LFVC is betweenness centrality. It it worth mentioning that
computing betweenness centrality is a centralize approach that
requires global shortest path information from every node
pair in the network, whereas node-LFVC only requires local
information from the standard Fiedler vector elements and
it can be computed in a distributed manner, which is more
scalable to large-scale network data. Notably, node-LFVC
significantly outperforms other local node centrality such as
node degree and ego centrality.

V. CONCLUSION

Based on the sensitivity of algebraic connectivity to node
or edge removals, we propose a centrality called local Fiedler
vector centrality (LFVC) for network connectivity analysis.
We prove that the sensitivity on algebraic connectivity is
a monotonic submodular set function. Therefore, despite its
greedy nature, LFVC can be applied to identify the most
vulnerable nodes or edges with bounded performance loss.
Applying LFVC to community detection on real-world social
network datasets, the results are self-contained in the sense that
our method is capable of discovering significant communities
and key members compared with conventional methods. In
addition, LFVC is shown to have comparable performance
to global centrality such as betweeness and it significantly
outperforms other distributed centralities in terms of the largest
community size and the number of discovered communities.
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