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ABSTRACT

In this paper. we consider the problem of target tracking using sen-
sor network measurements. We assume no prior knowledge of the
sensor locations and so we refer to this tracking as 'blind'. Since any
sensor localization algorithm can only find the sensor location esti-
mates up to a rotation and translation, we propose a novel sparsity
penalized multidimensional scaling (MDS) algorithm to align the
current time sensor location estimates to those of the previous time-
frames. In the presence of a target, only location estimates of those
sensors in the vicinity of a target vary from their initially estimated
values. Based on the differences in the sensor location estimates be-
tween two time-frames, we design a perturbation based algorithm
naturally rising from the sparsity penalized MDIS for tracking multi-
ple targets relative to the initial sensor location estimates. Through
a detailed numerical analysis, we show that the tracking algorithm
based on sparsity penalized MDS outperforms the conventional like-
lihood ratio test (LRT) based tracking.

Index Terms- Target tracking, sensor localization, sensor net-
works, distributed detection

1. INTRODUCTION

Target tracking has been of significant interest in many military and
civilian applications such as surveillance, vehicle tracking, robotics,
biological research, and automotive collision warning systems. De-
pending on the models for the target trajectory and sensor measure-
ments, tracking algorithms based on the Kalman Filter [1]. extended
Kalman filter [2], and Gaussian sum approximations [3] have been
proposed. Particle filtering methods were then proposed for tracking,
where the probability density of the state of the target (e.g., physi-
cal coordinates, velocity) is approximated on a set of discrete points
[4]. Most prior work on tracking consider a model-based approach,
which requires a detailed probabilistic model of the unknown target
dynamics, more sensed information, and is computationally inten-
sive.

A link level tracking algorithm localizes the target to within a
small set of sensor links. Link level tracking has many attractive
features, the most important of which is that it does not require a
physical model for the target. This approach for a simple binary
sensing measurement model is shown to require minimal power and
is also analytically tractable [551 Moreover the goal of certain sen
sor networks is to obtain an estimate of the location of the targets,
or detect change in the network For example in military applica
tions the sensors can locate a target relative to the network and the
network can activate the appropriate sensors to identify the target.
For animal tracking in biological research, it is sufficient to have a
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low resolution tracking algorithm to monitor animal behavior and
interactions with their own clan and with other species.

Most tracking algorithms assume knowledge of the sensor loca-
tions or estimate the sensor locations separately before employing
the tracking algorithm. The process of estimating the sensor loca-
tions using a set of inter-sensor measurements is called sensor lo-
calization. Prior work on sensor localization assume the presence
of anchor nodes, i.e., certain sensors which have knowledge of their
positions in the network. In the absence of anchor nodes, the sensor
location estimates are only accurate up to a rotation and translation.
The intuition behind this result is as follows: consider the problem
of estimating n sensor locations given the n(n -1)/2 inter-sensor
distance measurements. The distance information depends only on
the differences in the sensor locations so that the positions of the n
sensors in the network can be rotated and translated without chang-
ing these distances.

In this paper, we propose the sparsity penalized distributed weig-
hted multidimensional scaling (dwMDS) algorithm which simulta-
neously localizes the sensor nodes in the absence of anchors and
tracks multiple targets. The principle behind our proposed algorithm
is the following: in the 'acquisition phase' or initialization. an ini-
tial estimate of sensor locations is acquired. Once the sensors have
been initially localized, it is only the network topology that is criti-
cal to the problem of tracking. Hence, during the tracking phase, we
introduce a sparsity constraint to the cost function of a localization
algorithm, which attempts to align the current time sensor location
estimates to that of the previous time-frame. By doing so, we keep
monitoring the network with respect to a fixed geometry obtained by
the localization algorithm at the first time instance. The sparsity con-
straint only reassigns a small fraction of the sensor locations, while
the rest ofthe sensor location estimates remain unchanged from their
previously estimated values. When the sensor network is then used
for tracking, only the sensors affected by the presence of a target
are perturbed. Based on the differences in the sensor location es-
timates between two time-frames, we propose a novel perturbation
based link level tracking algorithm, which accurately localizes a tar-
get to within a small set of sensor links. Since this tracking method
arises naturally from the sparsity penalized MDS algorithm, it is able
to perform spatial and temporal smoothing unlike the more conven-
tional LRT based tracking. We present a detailed numerical analysis
to illustrate the advantages of the perturbation based tracking method
when compared to LRT based tracking. In the absence of a target tra-
jectory model, we also suggest methods for translating this link level
estimate to actual target coordinates.

The paper is organized as follows: in Section 2, we formulate the
problem of sensor and target localization. In Section 3, we present
the sparsity penalized MDS algorithm for sensor location alignment.
We describe the LRT and the sparse MDS based tracking algorithms
in Section 4 and present a numerical study of their performance in
Section 5 We conclude this paper in Section 6.
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2. PROBLEM FORMULATION

The goal of this paper is to simultaneously localize the sensors and
targets. Consider a network of N = n + m sensors tracking the
targets. Letxl, . .., XN denote the true sensor locations. The m
sensor nodes x}Xin+, are the anchor nodes, i.e., sensors which
know their actual locations. Later, we set m = 0 for anchor free
localization. Denote X = [XI , XN as the matrix of ac-
tual sensor locations. Let D = (dij )N=1 be the matrix of the
true inter-sensor distances. where d,j denotes the Euclidean dis-
tance between sensor i and sensor j. In some cases, there is im-
perfect a priori knowledge of certain sensor locations. This infor-
mation is given by {x? In 1 and the corresponding set of confidence
weights is {rI}1 When xi is unavailable, we set ri = 0. We
obtain Ml inter-sensor received signal strength (RSS) measurements
{Pi 1MI for pairs of sensors i,j at time t. The indices (i, j) run

over a subset of {1, 2?... 7 N} x 1, 2 ... ? NJ. Sensor localiza-
tion is the process of estimating the location of the n sensor nodes
{xi}L= given {x'}-.fl±,{rI, {x }, and {p(t }. Furthermore,
given the RSS measurements, the objective of the tracking algorithm
is to identify the set of links i, j which indicate a presence of a tar-
get. These binary outputs are then used to obtain an estimate of the
physical location of the target.

3. SPARSITY PENALIZED MDS

Sensor localization algorithms can be broadly classified into two cat-
egories: centralized strategies and decentralized strategies. In a cen-
tralized algorithm such as MDS, a fusion center estimates the sen-
sor locations using the measurement data received from the sensors.
In a decentralized algorithm, the localization of the sensor nodes is
performed locally, i.e., each sensor estimates its location based on
the information communicated from its neighbors. This distribu-
tive strategy limits power consumption and conserves bandwidth for
large scale sensor networks. An example of decentralized localiza-
tion is the dwMDS algorithm proposed in [6]. However, consistent
reconstruction of the sensor locations is attainable only in the pres-
ence of anchor nodes. If the current localization algorithms are im-
plemented for anchor free localization, the geometry of the sensor
network assumes different alignments as localization is performed
over various time instants. This makes it impossible to track changes
in the network. To overcome this problem, we present a sparsity
penalized dwMDS algorithm that aligns the current sensor location
estimates to those of previous time-frames.

Consider using the MDS algorithm independently to obtain the
sensor location estimates at time t and at time t -1. Alignment
between these two sets of points can be performed in various ways.
For example, in Procrustes analysis [7] alignment is performed by
finding the optimal affine transformation of one set of nodes that
yields the set closest to the second set of points in the least squares
sense However this procedure cannot guarantee that many sensor
locations estimates will remain unchanged from their previously es-
timated values. The errors in the sensor location estimates between
two time steps may accumulate over time resulting in alignment er
rors. In contrast, we introduce a sparseness penalty on the distances
between the sensor location estimates at time t (xi) and at time t-1
(x(-) directly to the sensor localization algorithm. Construct a
vector of Euclidean distances between the location estimates at time
t and attime t-

g(t) = Ilx -X(t-) x
1 x(-1)1)11

IT

where II denotes the 12-norm, i.e., lxl = xx Define the lo-
iceasure of a vector v = [Vl, V2, . . , Vnr] as the number of nonzero
elements given by

lvlo , EI(vi=, U),T=l (2)

where I( ) is the indicator function. Using an lo-constraint on the
distance vector g(t) of the form IIg(t) llo < q, we guarantee that
no more than q of the location estimates will vary from their pre-
vious time-frame values. Minimizing a cost function under the lo-
constraint requires a combinatorial search which is computationally
infeasible. Define the lp-measure of a vector v as

lvllp -(E viP)IP (3)

For a quadratic cost function, an 1p-constraint (O < p < 1) induces
a sparse solution. Among all lp sparsifying constraints, only p =

1 offers a convex relaxation to the lo-constraint [8]. To promote
sparsity, we next advocate the use of the 1p-constraint as a penalty
term via the Lagrange multiplier in the dwMDS algorithm to solve
for the sensor location estimates. Hence the term sparsity penalized
MDS.

The cost function of the dwMDS algorithm [6] is motivated by
the variational formulation of the classical MDS, which attempts to
find sensor location estimates that minimize the inter-sensor distance
errors. Keeping in mind that it is the geometry of the sensor network
which is crucial for tracking, we present a novel extension of the
dwMDS algorithm through the addition of the sparseness inducing
Ip-constraint. At any time t, we seek to minimize the overall cost
function C(t) given by

C(t) = Et, E 6S(0t)
l<i<nl i<j<n7+m 1<1<lA/I

d2di,(X)

Evlx,jxj,2 Ajg(t P. (4)

-(t)~~~ 1ilx - t12+AlgtFor each time t, d t is an estimate of the distance between sensor

iand sensor j obtained from RSS measurement Pi,t)'- The weights
w } are chosen to quantify the accuracy of the predicted dis-

tances. When no measurement is made between sensor i and sen-
sor j, w 0. Furthermore. the weights are symmetric and
w 0. If available, the a priori information of sensor loca-
tions is encoded through the penalty terms {ri 1xi -xi }. Finally,
we introduce an lp-constraint (O < p < 1) on the distances between
the sensor locations at time t and the estimated sensor locations at
time t- 1. The Lagrange multiplier of the sparseness penalty is
denoted as A. We can tune the value of A to yield the desired spar-
sity level in g(t). Later, when we apply the algorithm for tracking,
the sparseness will be advantageous as only those sensors which are
highly affected by the target will vary from their initial positions,
thereby allowing for a detection of the target through the process of
relative sensor localization. The sensor location estimates are found
by minimizing C(t) in (4) using optimization transfer. Closed-form
iterations for a distributive implementation of the sparsity penalized
MDS algorithm is derived in [9].

To find the maximum likelihood (ML) estimate of the distance
from the RSS measurements, we assume the RSS to be log-normal
in its distribution [10], i.e., if Pi, is the measured power by sensor
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i transmitted by sensor j in milliWatts, then 10 log 0(Pi,j) is Gaus-
sian. Thus PJj in dBm is typically modeled as

pi j _ JV(Pi,j? (T0) (5)

Fij = Po- lOnplog d)

where Pij is the mean received power at distance dij, co is the
standard deviation of the received power in dBm, and Po is received
power in dBm at a reference distance do. np is referred to as the
path-loss exponent that depends on the multipath in the environment.
Given the received power. we use maximum likelihood estimation to
compute the range, i.e., distance between the sensor nodes i and j.
The ML estimator of di,j is given by

Ii,=do((PC -Pi, J))/ I np)66i~ do10' B1 (6)

4. TRACKING USING SPARSE MDS

Given the alignment of sensor location estimates between two time-
frames, we now present an algorithm for performing link level track-
ing using the sparsity constrained MDS algorithm. Link level track-
ing does not require a physical model for a target. However, it is
important to know the effect of the target on the inter-sensor mea-
surements. Researchers have proposed various models for the RSS
measurements ranging from the traditional linear Gaussian model to
the binary sensing models. These are approximate statistical models
and the distribution of the measurements in the presence of a target
remains an open question.

To model the statistics under the setting of vehicle tracking, we
conducted experiments using RF sensors hardware in the presence
of a target [9]. We constructed a fine grid of locations, where the
target was placed and RSS measurements were recorded between
two static sensors for positions on the grid. Upon gatherinig the data,
we fit the following statistical model in the presence of target. The
RSS measurements under this Hi hypothesis at sensor link i, j are
distributed as

Pti',P jI(Pi,j, ou), i.i.d, k= 1,21....I (7)

Pi, j rv A^(Fi,j, (Tl )7

where P;k is the kth inter-sensor measurement when the target is
in the neighborhood of the sensors. The Al1 sensor link measure-
ments are correlated through the random variable PFj. The val-
ues obtained from our actual experiments were co- 0.1463dBm
and , -- 1.5dBm. The noise variance in the measurements a,
was roughly an order of 10 times larger than 0o. In other words,
RSS measurements tend to have a larger variance due to scattering
and attenuation of the signals in the presence of a target. A confi-
dence measure for such a log normal distribution of the RSS data is
obtained using the IKolmogorov-Smirnov (KS) test in [11] and the
model is shown to work well for sensor localization. We assume
this statistical model for the RSS measurements, when the target is
within a specified distance R of the sensor link i j The distance
R depends on the reflectivity of the object. If the object is highly
reflective then the variation in the RSS measurements is detected by
more links.

Based on the Ho and HI hypothesis given in (5) and (7) respec-
tively we formulate the optimal decision statistic to detect a pres
ence of a target in a particular sensor link using the LRT. The LRT

for each link i, j is given by

1 vm pt),
M

111=i
Pi.

Hi
3 (8)

Ho

where -i is chosen to satisfy a false alarm level and Pi, is the mean
received power in the sensor link estimated using an initial set of
range measurements. We assume that the sensor network is in its
steady state operation mode. We do not consider the transient effects
in the measured data when it is obtained in the absence of any target.
A derivation of the decision rule and its performance can be found in
Appendix 7. We show that the performance ofthe optimal detector is
dependent on the number of samples M available for the inter-sensor
measurements. As M1 becomes very large, the probability of correct
detection 3 tends to 1. However, if only few samples are available,
3 may not approach I and misdetect type errors may become non
negligible. In such a case, instead of using the LRT, we can use a
test on the variation of the sensor location estimates at time t from
their estimates at a previous timeT (T < t). In other words, we can
perform a simple hypothesis test for each link of the form

Hi
d (t)-d T

Ho
(9)

where d(t) = xIx(t)-x(t) and {x(t)} are the sensor location esti-
mates obtained from the sparsity penalized MDS algorithm.

5. NUMERICAL STUDY

We analyze the performance of the localization algorithms using
ROC curves. We consider the following setup: we deploy a 10 x 10
uniform grid of sensors in a network (see Fig. 2). We consider an-
chor free localization, i.e., m = 0 and make a single inter-sensor
measurement (l = 1) at each time frame. We assume no a priori
knowledge of the sensor coordinates, i.e., ri = 0. Each sensor com-
municates only to its 8 nearest neighbors and the weights for those
links were chosen by the LOESS strategy [6]. The rest ofthe weights
were set to zero. Furthermore, we set noise variances co and Ca1 de-
fined in (5) and (7), respectively as ro = I andcrT = 5)o = 5.
Sensor links within a radius R = 1.5 indicate the presence of a tar-
get, i.e., follow the HI hypothesis. We set the reference distance do
defined below (5) to be do = 1 and the path loss exponent 1 = 2.
We set the sparseness parameters A = 2.5 and p = 1 to produce a
change in the location estimates for only a small portion (< I10 o) of
the sensors.

We begin by considering the case of random appearance of tar-
gets in the sensor network, i.e., targets appear at different locations
every time instant. For the distance based target localization algo-
rithm (DBT), we setT = 0 in (9), i.e., we compare our distance
estimates to a fixed initial frame For every time instant the DBT
and the LRT are performed on each active sensor link and the pro-
cess is repeated for 5000 target locations. The resulting ROC curve
is presented in Fig. l. The ROC for the LRT using simulations is
indicated using circles and the corresponding theoretical curve ob-
tained from (14) is shown as a solid line. We observe that the sim-
ulation and the theoretical curves match for the LRT The ROC for
the DBT is shown using a dashed line. The DBT algorithm yields
higher probability of correct detection than the LRT for most false
alarm levels For example at false alarm level -i 023 3 for the
DBT is approximately 0.89 which is 5%£ more than that of the LRT,
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LRT: simulation
- LRT: theoretical

--- DBT: =O, random target
DBT: =O, moving target

l DBT: Tt- 1, moving target

0.2 0.4 0.6 0.8 1

Fig. 1. ROC curve for the LRT and the DBT link level tracking
algorithm. LRT (solid line), DBT for a random target with T = 0
(dashed), DBT for a moving target with T = 0 (dotted), and DBT
for a moving target with = t- 1 (dashed dotted).

which yields 8B 0.84. The intuition for this result is as follows: in

the presence of a target, the RSS measurements of the sensor links
are spatially-correlated. The presence of a target in a given link im-
plies that with high probability the target is present in neighboring
sensor links. However, the RSS model in (7) specifies only the dis-
tribution of the measurements independently on each link. The LRT
makes complete use of the RSS measurements but is limited in its
performance as the optimal decision statistic for each sensor link
i: j is independent of other sensor link measurements. On the other
hand, the DBT finds the active sensor links only based on the es-

timated distances through sparsity penalized MDS. However. since
the inter-sensor distances are computed at each sensor using infor-
mation from its nearest neighbors, this method makes an implicit use
ofthe spatial correlation of the measurements in its decision statistic,
which results in an improvement in performance.

Next, we consider the case of a moving target, where we as-

sumed a standard state-space target motion model (for the purpose

of a visually pleasing trajectory). We repeated the same algorithms
for 5000 such trajectories. The LRT based algorithm yields the same

performance curve as the test is independent of whether the target is
moving or not. The resulting ROC curve for the DBT is presented as

a dotted line in Fig. 1. Since we continue to base our decision rule
on the fixed initial frame (T = 0), we observe that the performance
of the DBT is also similar to the case of random target appearances.

In the case of a moving target, the RSS measurements are also
temporally-correlated. Given a set of sensors indicating a presence

of a target at a particular time, there is a high probability that the
target is in the vicinity of these sensors at the next time frame. To
make use ofthe temporal correlation. we can compare the current es-

timated distances to the estimated distances from the previous time-
frame rather than the initial frame, i.e., set T = t 1L instead of

=0. The temporal correlation of the RSS measurements is cap-
tured in the DBT through the sparsity constraint used for aligning
the sensors locations estimates. In other words, with high probabil-
ity the sensor location estimates that are perturbed in the previous
time-frame will also be perturbed in the current time-frame, thereby
increasing the probability of detection. The results for T = t-1
are presented in Fig 1 using a dashed dotted line. We observe that
the performance gains are higher than the DBT performed only with
spatial smoothing (T = 0) as such a decision rule incorporates both
spatial and temporal correlations of the target dynamics. For ex-

Fig. 2. A simple tracking algorithm based on link level tracking.
True sensor locations (circle), true trajectory ofthe target (diamond),
estimated trajectory (plus).

ample, for o = 0.1, for the LRT is 0.75. The result of spatial
smoothing alone yields 0.79. By performing both spatial and

temporal smoothing. we can obtain 0.86 through our algorithm.

which corresponds to a 15% increase in performance.
We make the following observations for the two proposed tests:

* The DBT for link level tracking outperforms the LRT as it
can account for the spatial and the temporal correlations in
the target motion.

* The LRT outperforms DBT for low false alarm levels (c <
0.01) for the following reasons: first, the DBT we considered
is suboptimal as we did not optimize the performance over the
choice of sparsity (p, A). Furthermore, the LRT uses an opti-
mal decision statistic and the exact measurements to perform
the test.

* Any scenario that exhibits high spatial correlations (e.g., highly
reflective targets) can yield further improvement in perfor-
mance of the DBT. If the sampling time for the sensors and
the computation time of the DBT algorithm is much faster
than the target motion, the DBT can yield better performance
by taking advantage of more temporal correlations.

* The disadvantage of LRT in this setting is that the test is per-

formed independently on each sensor link. Further improve-
ments in the probability of detection can be achieved when
the LRT is derived for the full spatio-temporal model.

* In the performance analysis, we assumed steady state opera-

tion, i.e., perfect knowledge of the inter-sensor distances are

obtained a priori in the absence of target. If such knowledge
is unavailable and distances need to be estimated, the LRT
tracker mu.st be modified to a generalized likelihood ratio test
(GLRT). The DBT can estimate the initial set of distances
more accurately from the RSS measurements by taking ad-
vantage of spatial correlations and hence can yield a higher
probability of detection than the GLRT.

Given sensors localizing the target, there is a number of ways in
which the sensor coordinat s can b translated to targ t coordinates.
For example., take the midpoint of the convex hull generated by the
positions of those sensors that yield a high in the hypothesis test.
Another estimate can be found by the intersection of convex regions
corresponding to the sensor links that show the presence of the tar-
get through the optimal decision rule. An example of the midpoint
tracking algorithm is shown in Fig. 2.
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6. CONCLUSIONS

In this paper, we proposed a novel sparsity penalized MDS algo-
rithm for simultaneous target and sensor localization. The subset
selection capability of the sparsity constraint allowed us to find the
set of sensors that have been perturbed in the presence of the tar-
get. Based on experimental results, we formulated statistical models
for the RSS measurements in the presence and absence of targets.
Using this model, we showed that for a large range of false alarm
levels. the DBT outperforms the LRT as it is able to perform spatial
and temporal smoothing without the need for target motion models.
The nonparametric nature of our algorithm makes it attractive when
RSS models are unavailable or inaccurate.

7. APPENDIX: OPTIMAL LIKELIHOOD RATIO TEST

To test the presence of a target on a sensor link i,j, we pose the
following hypotheses testing problem

Ho P1i PI K(P 2)
H1 :P1. P P K(P o) i.i.d P K(P f)

where P1, . . ., PAy are the measurements made by a particular link
i, j. We leave out the indices i, j in the measurements for brevity. P
is the mean received power in the sensor link i, j. We assume it can
be obtained during the system setup in the absence of targets. Denote
the measurements by the Al-element vector p = [P1, P2 P T.
Then the hypotheses can be written as

- 2)Ho p-.AT(P1,uol)
H1 p F(P1 2 T 2I)

To construct the LRT, we first compute the log likelihood ratio as

A log( (I l

I P1)T(C0 1 C- )(p P1)
2 ( Cl )

(10)

where Co = a 2I, C, = '211T + U2T and C denotes the deter-
minant of a matrix C. The eigendecompositions of the covariance
matrices C0 and C, can be written as

Co = VoDoVo C1 = VlDlVl

where Di is a diagonal matrix composed ofthe eigenvalues {A,}A'
and Vi is the matrix of corresponding eigenvectors. The eigenvalues
of the covariance matrix C1 are given by A = NI2Aj + (T2 and
Al = 2 i = 2, ... IML The corresponding eigenvectors are v=
1/ N, V2.... vA,i, where {v}v1i are a set of orthogonal unit
norm vectors. The eigenvalues of Co are all (T 2 and it is easy to
verify that v1, . . . , v are eigenvectors to Co, i.e., V0 = V1. Thus

-1 -1 *T 11T
C0 - C1 Vodiag (b, 0, . ., 0) V = (11)

where i) = II Substituting 11) in (10) and collecting con-
stant terms at the right hand side yields the optimal LRT as

pP-Pl
H1

Ho
(12)

where p = E/' P NiM is the minimal sufficient statistics of this
test. Under Ho, p is distributed as K\(P, (To IM) and under H, p is
AJ(P, o70 I+o'2). We find -y to satisfy a false alarm of level a, i.e.,

p( FP-P > HylHo) = 2Q( )
o0

(13)

which implies -y = (Jo1VI)Q-' (o2). The probability of correct
decision, 3 is then given by

1 = P (lp- PI > VyH1)

2Q ( v'

)

(14)
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