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Abstract
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Research Assistant Professor Arvind Krishnamurthy
Department of Computer Science and Engineering

Over the last few years, several new applications have emerged on the Internet that are

distributed at a scale previously unseen. Examples include peer-to-peer filesharing, content

distribution networks, and voice-over-IP. This new class of distributed applications can make

intelligent choices among the several paths available to them to optimize their performance.

However, as a result of the best-effort packet forwarding interface exported by the Internet,

applications need to explicitly measure the network to discover information about any path.

Not only does measurement at the time of communication impose a significant overhead

on most applications, but it is also redundant to have every application reimplement an

Internet measurement component.

In this dissertation, I design, build, and evaluate an information plane for the Internet,

called iPlane, that enables distributed applications to discover information about Internet

paths without explicit measurement. iPlane efficiently performs measurements from end-

hosts under its control to predict path properties on the Internet between arbitrary end-

hosts. I pursue a structural approach in issuing and synthesizing measurements—instead of

using only end-to-end measurements and thus treating the Internet as a blackbox, I discover

the Internet’s routing topology and then compose measurements of links and path segments.

This structural approach enables iPlane to predict multiple path properties, such as latency





and loss rate.

My evaluation of iPlane shows that iPlane’s predictions of paths and path properties

are accurate, significantly better than previous approaches for some of the sub-problems

that iPlane tackles. Also, I used information from iPlane to drive path selection in three

representative distributed applications—content distribution, peer-to-peer filesharing, and

voice-over-IP. In each case, the use of iPlane helped significantly improve application per-

formance.
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Chapter 1

INTRODUCTION

Over the last few years, several new applications have emerged on the Internet that are

distributed at a scale previously unseen. Peer-to-peer filesharing systems, such as BitTor-

rent [16], eMule [23], and Kazaa [42], have enabled millions of users to share files with each

other. Content distribution networks like Akamai [1] replicate content across thousands of

servers distributed worldwide. Voice-over-IP applications like Skype [77] enable any arbi-

trary pair of users to talk to each other over the Internet. All of these applications are in

stark contrast to the typical client-server architecture where a client communicates with a

single server or with one among a cluster of servers at a given location.

There are a common set of features that characterize this new class of large scale dis-

tributed applications.

• These applications typically have one-to-many or many-to-many communication pat-

terns. So, there exist multiple paths over which any communication can be performed.

For example, multiple peers can have identical pieces of a file in BitTorrent and mul-

tiple Akamai servers might be hosting the same content.

• The option of multiple communication paths permits the choice of a good path based

on prevalent network conditions. However, since the Internet exports only a best-effort

packet forwarding interface, an application needs to explicitly measure the network to

discover the properties of a path. The typical scale of distributed applications implies

that the number of candidate paths can be large and so, measuring all of them would

be infeasible.

• An application’s metric for determining a good path for communication is typically a
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combination of several network-level metrics. For example, in a content distribution

network, the replica that is best for a client is determined by the TCP throughput

between the client and the replica, and TCP throughput depends on latency, loss

rate, and available bandwidth. While latency could possibly be measured when the

communication is initiated, measuring other properties such as loss rate and band-

width requires several packets to be sent along a path. The measurement overhead

can nullify the benefits of choosing a good replica.

• Further, the communication path between a pair of end-hosts may traverse other end-

hosts over which they have no control. For example, Skype enables calls between a

pair of end-hosts, both behind NATs, by routing the calls through a third end-host

that serves as a relay node. The choice of relay node can largely determine end-to-

end performance [68]. Thus, the two ends of the call need to be able to estimate

properties of the path through each candidate relay node, even without being able to

issue measurements from the relay nodes.

All of these application characteristics imply that the new generation of distributed applica-

tions can benefit from having a priori access to information about the properties of Internet

paths—information that the Internet currently does not provide.

In this dissertation, my goal is to bridge the information gap between what the Internet

provides and what large scale distributed applications need. I present work that I have done

to develop, build, and evaluate an information plane for the Internet, called iPlane. iPlane

can provide information about the properties of the path through the Internet between any

two arbitrary end-hosts. Applications can query iPlane for this information, and use it to

optimize their performance. Conventional client-server applications too can benefit from

information about the properties of the path between the client and server, e.g., the bitrate

of a video stream can be reduced if the available bandwidth is low. However, I restrict my

focus in this dissertation to large-scale distributed applications.

The problem of providing information about path properties to applications without

explicit measurement has been studied previously. There has been work in this direction

for providing estimates of both latency [24, 56, 18] and loss rate [13, 107]. The techniques
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for estimating latency typically try to model the Internet as a coordinate space. Every end-

host is assigned a coordinate in an Euclidean metric space and the latency between a pair

of end-hosts is computed as the distance between their coordinates. While this abstraction

is simple and elegant, it is fundamentally handicapped in modeling latency detours [73]

because triangle inequality is not violated in an Euclidean metric space. This intrinsically

limits the accuracy with which latency can be estimated. On the other hand, techniques to

infer loss rates are not scalable as they rely on being able to gather measurements from a

number of end-hosts with the same order as the total number of end-hosts in the Internet.

In contrast to the above solutions that treat the Internet as a blackbox and rely only

on end-to-end measurements, I pursue a structural approach to estimate the properties of

unmeasured paths. From several hundred vantage points distributed around the Internet, a

number several orders of magnitude smaller than the number of end-hosts, I issue measure-

ments to discover the Internet’s routing topology and infer the properties of links and path

segments in the measured structure. I synthesize these measurements to build an annotated

atlas of the Internet. I then compose relevant parts of the atlas and apply inferred routing

policy to estimate the route as well as the path properties between any arbitrary pair of

end-hosts. Any end-host can further improve the accuracy of estimates for paths from it to

others by augmenting the atlas with a small number of local measurements. The system I

build, iPlane repeats the above process to keep the information up-to-date and exports an

interface by which applications can query for the properties of paths between any arbitrary

pair of end-hosts.

1.1 Reasons to Build an Information Plane

Before I present the challenges in building an information plane and the techniques I have

developed in doing so, I first answer the following question: why build an Internet-wide

information plane?

1.1.1 An Information Plane is Better than a Library

An alternative approach to building an information plane would be to put together a library

that applications can link. This library would essentially be a measurement toolkit. When
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applications request for the properties of any particular path, the library would trigger

appropriate measurements of the Internet to discover these properties. Though this would

solve the need for information about the network by applications, having each application

independently discover the network’s state would be an inefficient solution.

On the other hand, a single information plane for the Internet can optimize for both

measurements and query processing workload across applications. Measurements and pro-

cessing necessary to determine the properties of any particular (source, destination) path

need be performed only once, instead of once for each application. Moreover, an information

plane can take advantage of commonalities of workloads across applications. For example, it

can selectively refresh its information about paths used by several applications by triggering

relevant measurements more frequently. More generally, an information plane can assim-

ilate measurements made on behalf of all of its clients as well as incorporate information

reported by clients to develop a more comprehensive model of Internet behavior over time.

1.1.2 Make Information Available Now, not Later

My approach in building an information plane is to orchestrate measurements of the network

from a subset of end-hosts, and use these measurements to make predictions of properties on

unmeasured paths. I take this approach, as opposed to proposing changes to the Internet’s

design, because my goals are practical rather than visionary.

Several modifications to the Internet’s architecture have been proposed in the last two

decades to improve it along several dimensions, such as scalability [99], security [101], inflex-

ibility due to middleboxes [93], and quality-of-service [6, 5]. Almost all of these proposals

have not seen the light of day. The reason for failure of most proposals for change is that

any path through the Internet typically traverses multiple Internet Service Providers (ISPs),

and the benefit of the new architecture can be realized only by cooperation amongst these

competing ISPs. A lack of incentive to be the first-mover prevents any ISP from incorpo-

rating the new architecture into its network. Hence, a new Internet architecture proposal

that enables the network to export information about its state to applications is unlikely to

find favor with ISPs.



5

iPlane, the result of this dissertation, is a real system that applications on the Internet

can use right now. This system has been built with neither any modification to the network,

nor by having the network provide more information than what it previously did. Updates

from the network, e.g., when any significant change occurs, can help iPlane maintain more

up-to-date information about the Internet. However, the system I present in this dissertation

does not rely on such information.

1.1.3 Can Leverage Work on Measuring the Internet

To discover information about the network’s state from end-hosts, I leverage the large body

of work done in the area of Internet measurement. Ever since Paxson’s seminal work [63] on

analyzing Internet routing, researchers have built a slew of tools that help end-hosts discover

properties of the network. Protocols used in the Internet include several features to enable

debugging and troubleshooting. Most Internet measurement tools exploit these features in

novel ways to discover information that these features were not originally intended to reveal,

such as bandwidth capacity. However, use of Internet measurement tools at scale requires

careful design, else they can appear as attacks [82]. As a consequence, the extent to which

developers of distributed applications have tapped work done by the Internet measurement

community has been limited.

Building a single information plane for all applications helps harness all work on Internet

measurement in a single system. Having each application developer worry about how to

measure the network is both redundant as well as inefficient. Instead, an information plane

provides applications with a simple interface—they only need to issue queries to discover

information. Moreover, the information plane can ensure that the latest measurement tools

are used as tools evolve.

1.2 Challenges and Goals

In this section, I lay down the various challenges associated with building an Internet-

wide information plane. These challenges arise because of the Internet’s current design and

implementation, and because of practical considerations in building a real system that can

be widely used. Addressing these challenges are implicitly the goals of my work.
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1.2.1 Predictions between Arbitrary End-Hosts: Internet-wide coverage

To be able to serve the needs of large scale distributed applications on the Internet, it is

essential for the information plane to have information about the path through the Internet

between any pair of end-hosts. Each application can run on any arbitrary subset of all the

end-hosts in the Internet, and realistically, every application developer’s goal is to have this

subset constantly growing in size. Therefore, if the information plane provides informa-

tion for only some fixed set of paths, its value to applications is limited. The application

developer then has to build into the application the ability to discover information about

paths not covered by the information plane. In such a case, the developer might as well

discover information about all paths used by the application, rather than make use of the

information plane. Thus, the adoption of the information plane can be severely hurt if it

does not provide Internet-wide coverage.

The goal of Internet-wide coverage is however made tougher by the practical restriction

that the information plane work without having control over every end-host in the Internet.

As of today, the primary way to get a piece of software on to almost all end-hosts is to

have it become an essential component of all widely-used operating systems or to have it be

bundled with a popular software package such as a web browser. However, any piece of code

will be incorporated into operating systems or widely used software packages only if that

code is deemed vital, e.g., the TCP/IP networking stack. If I were to go down such a route,

my goal of building an information plane will likely reach fruition only after several years.

For the same reasons outlined above on why I do not propose changes to the Internet’s

design, I do not take this approach. Therefore, I need the information plane to provide

information between any arbitrary pair of end-hosts without possibly having control over

either the source or the destination, i.e., be able to make predictions where measurement is

infeasible.

1.2.2 Accurate estimation of multiple path properties: Topology-aware and Accurate

My objective in building an information plane is to provide information about the network

to applications, so that applications can use this information to choose between paths.
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Therefore, information provided by the information plane would not be of much use if it

were not accurate. Further, the information plane must be able to provide estimates of

multiple path properties along any given path. This requirement is because of the following

two reasons.

1. Performance of different applications can be impacted by different path properties,

e.g., download times for short Web transfers are driven by latency, whereas download

times for bulk updates are driven by bandwidth.

2. Application performance is typically determined by a combination of path properties,

e.g., TCP performance [61] depends on both latency and loss rate.

This need for accurate information on multiple path properties is compounded by the

previous goal of being able to provide information on paths that cannot be measured. The

problem of using measured path properties to estimate properties along unmeasured paths

has received much attention. However, each piece of work focuses on a particular path

property, e.g., latency [56, 76], or available bandwidth [33], and how any of these can be

extended to infer other path properties is not apparent. The lack of extensibility of existing

approaches to infer path properties is because they do not model key aspects of Internet

routing. For examples, a popular approach to estimate latency is to embed end-hosts in the

Internet into a Euclidean coordinate space, an approach that is not extensible to loss rate.

Instead, it is desirable to have a structural model of the Internet that synthesizes per-

formance predictions based on network topology and routing. Such a model has many

strengths by virtue of being able to capture and incorporate the effects of the underlying

network structure. A structural model could be used to determine the effect of network

topology changes, is likely to be more robust to failures, can be used to pinpoint causes

of reduced levels of performance, suggest alternate detour routes, and assist in application

server placement. It is also amenable to gradual and further refinement: for example, a

disagreement between the path latency estimate provided by the model and observed path

latency may trigger further measurement to refine the model.
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It is however rather challenging to develop a structural model with good predictive

abilities. All of the above mentioned strengths stem from having access to details of the

internals of the Internet. As it is both infeasible and unscalable to obtain fine-grained data

about the entire Internet, one has to operate with incomplete and coarse-grained information

without compromising the predictive abilities of the model. I seek to strike the right balance

between scalability and accuracy.

1.2.3 Minimizing measurement traffic: Efficient and Unobtrusive

The information plane is unlikely to remain in operation for long if the measurement traffic it

sources significantly impacts normal application traffic. If the measurement traffic imparts

severe load on the network, this traffic will soon be filtered by network administrators.

Therefore, it is critical that the rates of measurement traffic both arising from any end-host

that the information plane uses for measurement and targeted at any particular network

element be low. This translates into the requirement that the information plane smooth out

its measurement traffic over time. However, the goal of providing Internet-wide coverage

and the need to constantly refresh information about the network due to the flux in the

Internet’s characteristics over time make the orchestration and synthesis of Internet-wide

measurements non-trivial.

Apart from the need to ensure that the information plane is not obtrusive, minimizing

measurements is desirable from the standpoint of efficiency. The information plane must

be able to provide information about paths between arbitrary end-hosts. This leads me

to the underlying scientific question: what is the minimum set of measurements that the

information plane needs to be able to provide this information?

1.2.4 Compatible with the growth of measurement vantage points: Scalable

The information plane’s view of the network will only improve with the addition of more

end-hosts from which it can perform measurements. This is because actual measurement

of a path can be expected to be more accurate than estimation of the same. Further,

some properties of the structure of the network local to an end-host may not be visible via
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measurements from other end-hosts. Given these benefits, the information plane should both

incent more end-hosts to help in performing measurements and be able to scale accordingly.

End-hosts are likely to contribute measurements to the information plane only if they

have an incentive to do so. The information plane can provide this incentive by ensuring

that any end-host will be able to obtain significantly more accurate information about paths

from it in return from measurements. The fact that the information plane will be able to do

so is not readily apparent because even if an end-host is capable of providing measurements,

measuring paths from that end-host to the rest of the Internet may not always be feasible,

e.g., if the end-host has dialup Internet connectivity.

In order for the information plane to scale with the addition of measurement hosts, the

measurement traffic sourced from each end-host should not significantly increase when more

end-hosts actively participate. This would not only help the information plane sustain the

increased load but is also desired from the perspective of efficiency.

1.2.5 Summary

In summary, the above set of challenges translate into the following goals in building an

information plane: Internet-wide coverage, topology-awareness, accuracy, efficiency, and

scalability.

1.3 Thesis and Contributions

In this dissertation, I support the following thesis: it is practical to build a scalable system

that measures the Internet from end-hosts and synthesizes these using a topology-aware

methodology to estimate the latency and loss rate between arbitrary end-hosts on the Internet,

with accuracy sufficient to improve the performance of distributed applications.

The work presented in this dissertation makes the following contributions:

Algorithms for predicting the route through the Internet between arbitrary

end-hosts. I develop algorithms that predict the route through the Internet between any

arbitrary pair of end-hosts given a few measurements of the Internet’s routing topology

from the source and/or from the destination. I present and evaluate algorithms for doing
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so in two scenarios—first, when the input is a set of Internet routes, and second, when the

input is a set of links that capture the Internet’s structure. The two scenarios present a

trade-off in accuracy versus the size of input. My algorithms for predicting routes do so at

the right granularity required by the information plane—at the granularity that captures

Internet performance, clustering together portions of the Internet are similar from a routing

and performance perspective.

Scalable techniques for measuring the properties of Internet links. I develop

measurement techniques for estimating the latencies of links in the Internet. Like existing

Internet measurement tools, these techniques exploit properties of protocols in the Internet

in novel ways. I also construct a simple algorithm that distributes the measurement load

across end-hosts from which the information plane can issue measurements.

Design and implementation of iPlane, an Internet-wide information plane. I

construct an information plane, iPlane, that is usable today by applications. iPlane con-

stantly issues measurements from over 200 PlanetLab [65] nodes and over 500 public tracer-

oute servers [92] to maintain a daily updated snapshot of the Internet’s structure annotated

with link metrics. iPlane exports an interface that end-hosts can use to contribute mea-

surements and an interface that applications can use to query for information about path

properties.

Demonstration of iPlane’s benefit to distributed applications. My evaluation of

the benefit of information provided by iPlane uses three representative applications—content

distribution, peer-to-peer filesharing, and voice-over-IP. For each of these applications, I

demonstrate that application performance significantly improves when information about

the network is available from iPlane.

1.4 Organization

The remaining chapters of this dissertation are organized as follows. In Chapter 2, I provide

an overview of the terminology used in this dissertation that is specific to literature related
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to the Internet, and I use this background to motivate my work. I present prior work in

the areas of Internet measurement and overlay systems, areas of work that I build upon,

in Chapter 3. In Chapter 4, I present my approach to predicting paths between arbitrary

end-hosts by composing observed paths through the Internet. In Chapter 5, I then refine the

path prediction algorithm to develop a model restricted to information on links seen across

all observed paths. The focus of Chapter 6 is to outline the techniques I use to measure

the latencies and loss rates of Internet links. I describe the Internet-wide information

plane I built using the techniques presented in prior chapters and evaluate its utility in

improving application performance in Chapter 7. I conclude in Chapter 8, summarizing

the contributions of this dissertation and outlining the main areas of future work that can

improve and build upon the work presented herein.
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Chapter 2

BACKGROUND AND MOTIVATION

In this chapter, I introduce the Internet-related terminology that I use in the remaining

chapters for describing the work presented in this dissertation. I breakdown the introduction

of terms into three sections—describing the Internet’s structure, the mechanisms by which

routing works, and how both of these, together with traffic workload, determine path prop-

erties. I conclude by presenting the motivation for the problem I tackle in this dissertation

and arguing for why this problem is hard.

2.1 Internet Topology

The basic goal of the Internet is to provide connectivity between end-hosts. Any end-host

connected to the Internet should be able to communicate with any other end-host, except

when communication with a particular end-host is actively filtered as a matter of policy.

This global connectivity between end-hosts is enabled by networks administered by several

thousand organizations, called Autonomous Systems (ASes).

Figure 2.1 shows the high-level overview of the Internet’s structure. End-hosts are

connected to ASes at the Internet’s edge. They do so by means of access links, which are

typically of much lesser bandwidth capacity than links that are within an AS (intra-AS

links) or are between ASes (inter-AS links). The Internet is designed to make it efficient to

statistically multiplex many users on to a smaller number of core links and routers. While

ASes at the edge connect end-hosts to the rest of the Internet, ASes that are in the Internet’s

core connect other ASes with each other. Examples of ASes at the edge are Comcast and

Verizon, whereas AT&T and Level3 are in the core.

The structure of a typical AS is shown in Figure 2.2. Every AS comprises routers and

links connecting routers. A router has multiple router interfaces and a link connects a

pair of router interfaces on two different routers. The function of a router is to forward a
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Figure 2.1: The Internet’s structure comprises a graph of Autonomous Systems (ASes).

End-hosts connect to ASes at the edge via access links, and ASes in the core provide

connectivity between ASes.

packet it receives on one of its interfaces out on to the link connected with one of its other

interfaces. All the interfaces on a router are said to be aliases of each other. Routers could

be spread across several locations within an AS. Each location in which an AS has routers

constitutes a Point of Presence (PoP) of the AS.

The Internet’s connectivity is extremely rich. There are often many AS paths between

two end-hosts. Two neighboring ASes can connect with each other at multiple PoPs, thus

resulting in multiple possible PoP-level paths corresponding to the same AS path. Even

within an AS, several paths typically exist between any two PoPs [88]. Moreover, end-

hosts can opt to multi-home [2]—connect to multiple edge ASes. As a result of this rich

connectivity, almost always, several paths exist connecting any two end-hosts. This had led
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Points of Presence (PoPs)

Routers

Figure 2.2: An AS can have routers in multiple locations. Every location in which the AS

has routers constitutes a Point of Presence (PoP) of the AS.

to proposals to modify the Internet so as to enable either end-hosts [100] or the network

itself [98] to take advantage of this redundancy.

2.2 Routing in the Internet

Routing serves the role of determining which of the myriad paths available between any

pair of end-hosts should be used for communication between them. A router talks to its

neighbors to determine which path to use for each packet; routing in the Internet is largely a

function of the destination, though there has been some recent evidence [4] to the contrary.

To setup the next-hop to every destination in each router, routing protocols are run in the
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Internet at two-levels—inter-AS and intra-AS.

As shown in Figure 2.1, traffic between a pair of end-hosts may have to traverse multiple

ASes. The routing protocol that ASes use to talk to each other, Border Gateway Protocol

(BGP), announces the existence of paths to a particular destination only at the level of

ASes. This is primarily due to two reasons. First, propagation of routes at the granularity

of ASes ensures the Internet’s scalability by isolating local routing decisions from affecting

the global network. Second, since each AS is under a different administrative domain with

ASes competing with each other for business, ASes do not want to reveal much about the

structure of their network.

A simplified overview of how BGP works is as follows. For every destination, each AS

receives an AS path from each of its neighbors. Based on a combination of these AS paths

and the AS’s policy-based decisions, the AS picks one of its neighbors as the next hop AS

towards the destination. The AS then prepends itself to the AS path it had received from

the chosen neighbor, and announces this modified AS path to some subset, possibly all,

of its neighbors. An AS filters propagation of routes to its neighbors based on its export

policy. In the absence of any changes to the Internet, this process would eventually converge

resulting in a chosen AS path from every AS to every destination in the Internet.

However, an AS path alone does not precisely determine how the packets sent from a

source end-host will be forwarded on to the intended destination. Routers are the enti-

ties forwarding packets, and hence, the route from a source to a destination needs to be

determined at router-level. The router-level path corresponding to an AS path is made

ambiguous by the facts that neighboring ASes can connect with each other at multiple

locations and even within an AS, there can be multiple paths between a pair of routers.

Therefore, every AS needs to run a routing protocol within its network to determine the

route from each of its routers to the next hop AS for every destination.

The goal of routing protocols that run within an AS, referred to as Interior Gateway

Protocols (IGPs), is to setup a forwarding table within each router. This forwarding table

contains, for every destination, the address of the next hop router. The forwarding tables

are typically computed so as to either minimize the latency experienced by packets while

traversing the ISP or to load balance the expected traffic across all links in the ISP’s network.
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Figure 2.3: Routes chosen from Src1 and Src2 to Dst when AS1 performs early-exit routing.

Solid lines show links between routers, and dashed lines indicate the links along which

packets destined to Dst are forwarded. The AS path “AS1 AS2” is used for traffic from

Src1 to Dst because the ingress router A is closer to the egress router C. Whereas, the AS

path “AS1 AS3” is used between Src2 and Dst because the ingress router D is closer to the

egress router E.

Examples of IGPs are OSPF and IS-IS.

Note that the outcomes of BGP and IGP are tightly linked to each other. It is not the

case that an AS uses BGP to choose the AS path to a destination and then determines the

router-level path using IGP. To the same destination, an AS can choose to forward traffic

along different AS paths from different parts of its network. For example, many ASes choose

to implement early-exit routing [89, 80]. In early-exit routing, every router in the AS chooses

to forward traffic towards the closest edge router of the AS from where an AS path to the

destination is available. An AS can be connected to different neighboring ASes at different
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edge routers. Therefore, as a result, all routers within an AS need not necessarily forward

traffic to a destination to the same next AS. Figure 2.3 shows an illustrative example of

how early-exit routing can lead to different AS paths from different sources to the same

destination.

Internet routes can also be asymmetric; the route, both at the granularity of ASes as

well as routers, from a source to a destination need not necessarily be the reverse of the

route back from the destination to the source. This is because each AS has its own routing

policies, and it chooses the next AS or router towards any destination independent of the

choices made by other ASes. So, for example, in Figure 2.3, even though AS1 forwards

traffic from Src1 to AS2 on the way to Dst, AS2 might choose to forward the traffic back

from Dst via some AS other than AS1. Paxson found more than half the routes he measured

to be asymmetric [63].

Note that I have so far presented routes as being per-destination to simplify the dis-

cussion. In reality, end-hosts are grouped into address blocks called IP prefixes. A prefix

comprises all IP addresses with p as their first n bits typically written as p/n. Routers

maintain routes per-prefix. When a router receives a packet destined to a particular desti-

nation, it determines the most selective prefix that this destination belongs to, i.e., among

the p/n’s that the destination address matches, the one with maximum value of n. The

router then forwards the packet along the route associated with this prefix.

Further, prefixes can be grouped together into BGP atoms [7]. Though routers compute

routes at the granularity of prefixes, it has been observed that prefixes can be clustered into

groups such that the AS path to each of the prefixes in a group is the same from any given

vantage point. Such groups of prefixes are called atoms.

2.3 Path Properties

Application traffic workload on the Internet is constantly in flux. As a result, the amount of

bandwidth consumed on each link in the Internet varies over time. ISPs monitor the usage

of links in their network and tune their intra-AS and inter-AS routing policies to ensure

any part of their network does not get congested. Routes through the Internet can change

as ISPs tweak their routing policies under the constraints imposed by the structure of their
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networks. Hence, the properties of the path between any pair of end-hosts—determined by

the route between them and properties of the links on the route—depends on a complex

combination of structure, routing, and traffic workload of the Internet.

I focus mainly on two path properties in this dissertation—latency and loss rate.

The latency between a source and a destination is defined as the time taken by a packet

sent from the source to reach the destination and for the response to then come back to

the source. I only consider the latency experienced by packets in traversing the Internet.

Though the latency seen from an application’s perspective may depend on other factors

such as processing load on end-hosts, which can cause packets to be queued in the kernel

on the source or the destination, such factors are outside the scope of my work.

Latency through the Internet has several components. First, a packet undergoes trans-

mission delay on each link along the path. This is the time taken to send the packet from

a router’s queue out on to one of its links. Transmission delay is computed as (size of the

packet) / (bandwidth of the link). Second, the packet is subjected to propagation delay on

each link—the time taken for the packet to travel from one end of the link to the other end.

Propagation delay has a lower bound of (distance covered by the link) / (speed of light in

the physical medium used by the link). Third, the queueing delay on packets as they wait in

packet buffers on routers adds to the latency. Lastly, each router along the path also adds

a store-and-forward delay, which is usually minimal. In this dissertation, I restrict latency

to be the sum of propagation and queueing delays. My assumption of ignoring transmission

delay is largely fine since the ubiquitous deployment of high bandwidth links ensures that

transmission delay is insignificant compared to the other components of latency, though this

does not necessarily hold true for access links [20].

Loss rate along a path is the probability that a packet sent from the source will not reach

the destination. Packets may be dropped in between due to numerous reasons. The failure

of a router or link can result in there being no path between the source and destination.

Even after failed routers/links are repaired or if an alternate path is available, it can take

a while for routing to converge [43]. In the meanwhile, packets can be dropped due to the

absence of a route to the destination. Further, even when a route exists, some packets

might be dropped enroute due to lack of space in some router’s packet buffer or due to
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transmission error, e.g., in wireless networks. In this dissertation, I focus on measuring and

estimating the loss rate caused by this last factor—loss that occurs on a path because of

competition with traffic of other applications using routers/links along the path.

2.4 Need for an Information Plane

Applications would prefer to use paths with low latencies and low loss rates for communi-

cation. Lower latency implies faster exchange of packets between source and destination.

Lower loss rate reduces the need to retransmit packets and the timeouts necessary to recog-

nize the need for retransmissions. However, the Internet currently does not provide latency

and loss rate information to applications. Instead, applications themselves need to measure

the properties of paths, and choose paths with better properties for communication. As I

argued previously in Chapter 1, this status quo is inefficient and also onerous on applica-

tions.

The goal of my work in this dissertation is to build a common information plane for

the whole Internet that can provide latency and loss rate information to applications. My

approach for estimating the path properties between a pair of end-hosts is two-stage—

predict the route between them and then compose the properties of links on the predicted

route. End-to-end latency is a summation of link latencies. Assuming packet loss on different

links occurs independently, end-to-end loss rate can be computed using link loss rates based

on the property that the probability of a packet not being dropped along a path is equal to

the probability the packet is not dropped on any of the links on the path.

Both predicting routes and measuring link properties are hard. There are multiple paths

to choose from between any pair of end-hosts and which one of these is chosen depends

on the undisclosed routing policies of several ISPs. Moreover, routes are not constant;

they can change due to changes in the Internet’s structure, router failures, or changes

in traffic workload. These causes for flux in the Internet also make it hard to measure

link properties. Link properties need to be measured often enough to keep up with these

changes. Measurement of link latencies is made challenging because of path asymmetry. In

the remaining chapters of this dissertation, I describe how I tackle these challenges to build

an Internet-wide information plane.
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Chapter 3

RELATED WORK

In this chapter, I present the existing work that this dissertation builds upon. My work

leverages work in two broad areas—measuring the Internet and building overlay systems—

and I outline the related work in these areas. I also describe prior work towards building an

Internet-wide information plane and distinguish the contributions of my work from these.

3.1 Internet Measurement

The Internet provides best-effort forwarding of packets. It does not provide any guarantees

on its performance nor does it support querying for the performance it can currently provide.

Therefore, measuring the Internet is important from the perspective of both applications

and ISPs. Large-scale distributed applications, which have many potential paths to choose

from for any given communication, need to measure the network to distinguish good paths

from bad paths. ISPs need measurements both for accounting as well as for monitoring

their networks. Measurements of the Internet are also necessary to drive the design of

the next-generation Internet and its applications. Given the various benefits of Internet

measurement, this topic has received a lot of attention in the research community over the

past decade.

Research in the area of Internet measurement can be classified into three categories—

devising new techniques and building new tools to measure the network, using these to

perform large-scale studies that characterize the Internet’s properties, and building systems

that use measurements to monitor the Internet.

3.1.1 Measurement tools and techniques

The Internet is not designed to provide support for measurement. The Internet’s control

plane, which includes protocols such as SNMP, only enables ISPs to monitor their own
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networks. However, the networking community has managed to leverage features of Internet

protocols in novel ways to develop tools and techniques that enable end-hosts to measure

various properties of paths or even individual links.

ping [55] and traceroute [38] are the basic tools for Internet measurement. ping sends

several packets as probes to a specified destination and reports 1) the number of probes for

which responses were received, and 2) the latency from the probing source to the destination.

Thus, ping can be used both to measure latency and loss rate of path. If ping is used to

send a large number of probes and if it does not receive responses for any of the probes it

sends, it implies that the destination is unreachable or unavailable for communication.

Traceroute measures the router-level path to a destination. The Internet Protocol (IP)

has a Time-To-Live (TTL) field that is supposed to be decremented by every router when

it forwards a packet. When a router receives a packet with a TTL value of 1, it drops the

packet and returns a response indicating an error to the source of the packet. The original

intent of the TTL field was to ensure packets do not oscillate inside the network forever.

Instead, traceroute utilizes the fact that sending out a packet with TTL set to k will elicit

either a response from the kth router on the path to the destination or a response from the

destination if it is within k hops away. The standard implementation of traceroute sends

three probes for each TTL value to tolerate packet losses. It starts off with a TTL value

of 1 and increments the TTL until either the destination is reached or an error response is

received that the destination is unreachable.

Figure 3.1 shows the output of a sample execution of traceroute. Each pair of successive

lines in the output provides two pieces of information. For example, consider the lines

corresponding to hops 10 and 11 in Figure 3.1. First, discounting for load-balancing [4]

and route changes during the traceroute, this indicates the presence of a link between the

routers with addresses 69.28.172.41 and 206.223.119.104. Second, the output also yields

the information that on receipt of packets destined to the address 194.102.253.138, the

router 69.28.172.41 forwards the packets to 206.223.119.104. Thus, traceroute discovers

both structure and routing information.

Ping and traceroute help measure the latency and route to any destination. Similarly,

many other properties of the network can be determined by actively sending out coordinated
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traceroute to usis.kappa.ro (194.102.253.138), 64 hops max, 40 byte packets

1 acar-atg-02-vlan76.cac.washington.edu (128.208.3.102) 8 ms 1 ms 3 ms

2 uwcr-ads-01-vlan3805.cac.washington.edu (205.175.108.21) 0 ms 0 ms 0 ms

3 uwcr-ads-01-vlan1839.cac.washington.edu (205.175.101.157) 0 ms 0 ms 0 ms

4 uwbr-ads-01-vlan1802.cac.washington.edu (205.175.101.10) 0 ms 0 ms 0 ms

5 iccr-sttlwa01-02.infra.pnw-gigapop.net (209.124.188.132) 0 ms 0 ms 0 ms

6 pnwgp-cust.tr01-sttlwa01.transitrail.net (137.164.131.186) 0 ms 0 ms 0 ms

7 te4-3--301.tr01-sttlwa01.transitrail.net (137.164.131.185) 0 ms 0 ms 0 ms

8 137.164.129.3 (137.164.129.3) 51 ms 51 ms 51 ms

9 llnw-peer.chcgil01.transitrail.net (137.164.130.166) 61 ms 51 ms 51 ms

10 ve6.fr3.ord.llnw.net (69.28.172.41) 61 ms 51 ms 61 ms

11 us-chi01a-ri1-ge-0-0-0.aorta.net (206.223.119.104) 61 ms 61 ms 61 ms

12 213.46.190.89 (213.46.190.89) 81 ms 81 ms 81 ms

13 uk-lon02a-rd1-so-4-0-0.aorta.net (213.46.160.205) 153 ms 153 ms 153 ms

14 uk-lon01a-rd3-ge-2-0.aorta.net (213.46.174.33) 157 ms 157 ms 156 ms

15 de-fra01a-rd1-pos-2-0.aorta.net (213.46.160.9) 170 ms 170 ms 170 ms

16 de-fra01a-rd2-ge-3-1.aorta.net (213.46.160.58) 192 ms 192 ms 192 ms

17 ro-cj01a-rc1-10ge-2-1.astralnet.ro (213.46.170.70) 192 ms 192 ms 192 ms

18 ro-buh01a-rd1-v800.astralnet.ro (193.230.240.150) 281 ms 213 ms 213 ms

19 xcr1-BR-175.b.astralnet.ro (194.102.255.65) 206 ms 206 ms 206 ms

20 ns.usembassy.ro (194.102.253.138) 214 ms 216 ms 219 ms

Figure 3.1: Output of traceroute from the University of Washington to the US embassy

in Romania. Each line corresponds to one hop with the DNS name and IP address of the

router at the hop, and the latencies experienced by the three probes to that hop.
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packets as probes into the network and monitoring the responses received. Tools that

perform active measurements have been built to measure several path properties, among

which are loss rate, bandwidth capacity, and available bandwidth.

Tulip [49] attempts to measure the loss rate on links on the path to any destination.

It can also detect instances when the packet probes it sends out to measure loss are either

queued or reordered. Tulip measures the loss rate resulting from packet loss on the round-

trip path to the destination and back, and it uses periodic ICMP or UDP packets as probes

to measure the aggregate loss rate over a period of time. In contrast, Sting [72] uses TCP

probes to distinguish between loss on the forward and reverse paths, and Badabing [78]

issues probes at a non-uniform rate to detect packet loss episodes.

Tomography infers the presence of a common link between paths from a source to two

destinations by observing that any change in the properties on the path to one of the

destinations is reflected on the path to the other. Padmanabhan et al. [62] used this ap-

proach to measure link loss rates by passively monitoring traffic at a webserver. The MINC

project [66, 8] used multicast probes to measure link latencies and loss rates. They later

extended [22] their work to infer loss rates using striped unicast probes—probes sent out to

different destination with no inter-probe spacing. My approach to measuring link properties

is more direct than network tomography. I measure the presence of a link using traceroutes

and then measure the link’s properties such as latency and loss rate.

Passive monitoring of real traffic can also help measure several properties of the network.

TRAT [104] monitors TCP traffic to determine RTTs to destinations contacted. Passive

inspection of traffic received at a webserver was used to determine link loss rates [62].

PlanetSeer [103] detected failures in the network by passively monitoring traffic received

by the CoDeeN [94] content distribution network. Recently, Casado et al. [11] have also

proposed the use of spurious traffic such as worms and spam for passive measurement of

the Internet.

My focus in building an information plane is to leverage this large body of existing work

for measuring a diverse set of path properties, rather than develop new measurement tools

or techniques. As the Internet measurement community improves on existing measurement

techniques, the information plane can keep abreast by using the most accurate and efficient
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tools available.

A couple of key techniques I leverage from prior work are alias resolution—discovering

which router interfaces correspond to the same router—and the clustering of routers into

PoPs. To discover candidate router interface pairs that could be aliases, I reuse two existing

techniques. First, I use the insight from Mercator [30] that UDP probes to interfaces on

the same router elicit responses with the same source address. Second, I discover interfaces

potentially on the same router using the fact that interfaces on either end of a link are

usually in the same /30 prefix [102]. I then use a combination of known alias resolution

techniques [79] to determine which of the alias candidates are indeed on the same router.

To cluster routers into PoPs, I use Rocketfuel’s undns [81] utility to map DNS names of

interfaces to geographic locations. Using all of the above known techniques in the literature,

in combination with a few modifications of my own, I generate a coarse-grained map of

the Internet’s structure annotated with routing policies and properties of links and path

segments.

3.1.2 Measurement studies

Empowered by ping, traceroute, and other measurement tools, there have been several

efforts to measure the network at scale. Paxson’s work [63] on monitoring routes between

nodes on the NIMI testbed was one of the seminal pieces of work on Internet measurement.

Paxson repeatedly performed traceroutes between 37 NIMI sites over a couple of two-month

long periods, once in 1994 and once in 1995, to study various characteristics of routing—

routing pathologies, stability of routes, and routing asymmetry. His main findings included:

1) the likelihood of a major routing pathology increased from 1.5% to 3.3% from 1994 to

1995, 2) two-thirds of routes were stationary across days and even weeks, and 3) at least

half the routes were asymmetric. Though these numbers might have changed over the past

decade with the rapid growth of the Internet, the existence of significant routing stability

and routing asymmetry provides some guidance in building an information plane.

Rocketfuel [81] orchestrated measurements from several hundred public traceroute servers

to discover the physical topology of many ISPs. The primary challenges that Rocketfuel
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tackled in discovering maps of ISP structures were accuracy, i.e., processing traceroutes to

detect the correct nodes and links, given that routes can change during traceroute, and

efficiency, i.e., minimize the number of measurements necessary to infer the correct topol-

ogy. Mercator [30] had similar objectives but issued measurements from a single vantage

point. My work extends beyond Rocketfuel’s and Mercator’s goals in three directions: 1)

I strive to measure the PoP-level structure of the whole Internet, and not just that of a

few specific ISPs, 2) I go beyond structure and measure the properties of every link, and 3)

the information plane I build, iPlane, refreshes the measured structure annotated with link

properties continually.

There have been numerous other measurement studies—too many to be comprehensively

listed here. I mention here the few that are either closely related to this dissertation, or

whose insights I use in this work. Zhang et al. [105] studied the stationarity of routing and

of path properties such as loss rate and TCP throughput, and Rexford et al. [69] showed

that BGP paths to popular destinations are remarkably stable compared to overall BGP

stability. Donnet et al. [21] demonstrated the significant redundancy in measurements when

traceroutes are performed from several vantage points to a large number of destinations.

They showed that routes near the sources and near the destinations are redundantly probed

several times over and proposed reducing this redundancy by staging the TTL ranges for

each traceroute.

My work leverages the insights gained by the measurement community in these and other

efforts to build an information plane that continually monitors paths and path properties

on the Internet.

3.1.3 Measurement systems

Apart from measuring the Internet to study its properties, several systems have also been

built that continually measure and monitor either portions of the Internet or networks

internal to a particular organization. Several efforts have looked at building information

planes that monitor end-host performance and at optimizing the query processing engine of

the information plane. Examples include Sophia [95], PIER [35], IrisNet [29], SWORD [60],
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HP’s OpenView [59], and IBM’s Tivoli [91]. The Scalable Sensing Service (S3) [44, 74]

monitors the properties of paths between PlanetLab nodes. S3 measures the latency, loss

rate, bandwidth capacity, and available bandwidth between every pair of PlanetLab sites

once every four hours.

All of these systems have a different focus than mine. They manage information about

nodes (e.g., PlanetLab nodes, routers in an ISP, or sensors), and paths between these nodes,

under control of the system. In contrast, I target estimation of path performance at Internet-

scale. Hence, I study the prediction of properties along paths where I either do not have

control over the source, or over the destination, or possibly both. While the vision of how

to go about building an Internet-wide information plane has been discussed before [15, 84],

I present a realization of this vision in the form of iPlane.

Like the information plane I present in this dissertation, there have been several other

Internet-wide measurement systems built recently,but with objectives different from mine.

Hubble [41] monitors reachability of all Internet hosts to detect instances when packets do

not reach a destination even when a BGP path to it exists. Hubble attempts to diagnose and

classify the cause of reachability problems that it detects. Zhang et al. [106] use collaborative

probing from a set of end-hosts to diagnose routing disruptions in specific ISPs. Netdiff [50]

measures path performance from backbone ISPs to the rest of the Internet so that this

information can be used by other ISPs in making decisions related to peering.

Several systems have also been built with the sole goal of maintaining an up-to-date map

of Internet routes. RouteViews [53] constantly gathers BGP routing updates from several

ISPs around the world providing a current map of the Internet’s AS-level routing topology.

Skitter [9] continually performed traceroutes to destinations in all routable prefixes and

made these traceroutes available for other researchers. DIMES [75] provides a measurement

agent that users can download and run on their computers. The central DIMES node

orchestrates pings and traceroutes from all agents, gathers these measurements, and then

synthesizes them to construct maps of the Internet’s topology. iPlane goes beyond explicit

measurement and makes predictions of routes and path properties along unmeasured paths.

iPlane’s approach of reasoning about the Internet after discovering its structure has also

been used to improve the ability to identify the geographic location of hosts on the Inter-
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net. Initial work at mapping IP addresses to geographic locations relied solely on latency

measurements from vantage points to end-hosts. Katz-Bassett et al. [40] and the Octant

system [97] have shown that the hop-by-hop latency constraints introduced by discovering

the Internet’s routing topology help significantly improve the accuracy of IP geolocation.

The focus of my work is different—to estimate path properties on the Internet.

3.2 Prior Work towards an Information Plane

In several measurement systems, some measurements will need to be inferred from others.

This could be due to one of three reasons—1. to minimize the number of measurements the

system performs, 2. the scale of the system may make it infeasible to perform all necessary

measurements, or 3. measurement overhead may not be affordable at the time when the

result of some measurement is needed.

The measurement inference problem has received a fair bit of attention recently, specif-

ically with regard to latency. The objective is to infer latencies between all pairs of a set

of end-hosts given latencies for a subset of these pairs. IDMaps [24] is an early example

of a network information service that tackles this problem by using a small set of van-

tage points as landmarks. Subsequently, GNP [56] pioneered the approach of embedding

end-hosts in a low-dimensional Euclidean space. Several following works such as NPS [57],

Lighthouse [64], Lim et al. [45], Tang et al. [86], Vivaldi [18], and PIC [17] have built

on top of this basic approach to provide decentralization [57, 18], improved computational

efficiency [86], resilience to measurement error [17, 18], security [17], and accuracy. The

techniques used to minimize error range from Simplex minimization [17, 57] to Principal

Component Analysis (PCA) [45, 86] to spring relaxation [18] algorithms. Approaches to

embed Internet distances into non-metric spaces, such as using hyperbolic coordinates [76]

and using matrix factorization [51], have also been attempted. A popular metric used for

demonstrating the accuracy of these approaches is the absolute relative error, which the

study by Lua et al. [46] suggests does not necessarily indicate usefulness of the estimate for

various applications.

I next explain a couple of these latency inference techniques in more detail—IDMaps [24],

because it uses measurements from vantage points similar to iPlane, and Vivaldi, one of the



28

best of the various coordinate-based approaches. IDMaps issues pings from a bunch of

vantage points to all participating end-hosts and also measures latencies between all pairs

of vantage points. To estimate the latency between a pair of end-hosts S and D, it first

identifies the vantage points VS and VD with the lowest latencies to S and D, respectively.

IDMaps then computes the end-to-end latency between S and D as the sum of latencies

along paths (S, VS), (VS , VD), and (VD, D). This technique is based on the assumption that

a vantage point can be found close to any end-host, which would make the path between the

vantage points representative of the path between the source and destination. However, for

this to work at Internet-scale, millions of end-hosts would be required, which would make

the measurement of latencies between all pairs of vantage points infeasible. iPlane uses a

similar approach of issuing measurements from a set of vantage points but replaces pings

with traceroutes. First, beyond latency, iPlane also predicts the route between a pair of

end-hosts S and D and the other path properties such as loss rate. Second, rather than

relying on having vantage points with negligible latency to S and D, iPlane relies on having

a vantage point with a route to D that’s similar to the route from S.

Vivaldi [18] is a fully distributed coordinate system. Vivaldi models nodes as being at

a certain height above a plane in order to reflect the impact of the first hop. The distance

between two nodes is the sum of their heights plus the distance along the plane. Vivaldi

adjusts coordinates to minimize error. Every pair of nodes in the system is modeled as

connected by a spring. The spring connecting two nodes is in a stretched or compressed

state corresponding to when the distance predicted between them by their coordinates over-

estimates or under-estimates the actual latency. Each node computes its own coordinates to

minimize the local error in its neighborhood. Vivaldi’s modeling of the Internet delay space

with an Euclidean metric leads to systemic inaccuracies because it cannot capture triangle

inequalities, a commonly known occurrence [73, 3] in the Internet. iPlane gets around such

inaccuracies by using a structural approach.

Systems that tackle the latency estimation problem in specific contexts such as deter-

mining the closest among a set of nodes to a particular end-host [26, 96], or determining

the central leader among a set of nodes [96] have also been developed. Though most of the

above techniques and systems are simple to implement, it is not apparent how any of them



29

can be extended to other path properties such as loss rate or bandwidth capacity.

BRoute [33] is a system for available bandwidth estimation that scales linearly with the

number of nodes. Chen et al. [13] and Zhao et al. [107] use an algebraic formulation to

determine the minimum subset of paths that need to be measured to estimate loss rates.

However, these systems require control over all end-hosts on paths for which properties are to

be inferred. Since an Internet-wide information plane will not have access to measurements

along the path between every pair of end-hosts, I develop a structural prediction technique

that uses available measurements of the Internet’s structure to predict the path between

arbitrary end-hosts. I use this predicted path to estimate end-to-end latency and loss rate.

Inference of paths has also been studied, predominantly at the AS-level. Mao et al. [52]

describe a structural inference approach called RouteScope to infer AS-level paths. They use

constrained optimization to model aspects of interdomain policy routing such as valley-free

routing and the preference of customer ASes over peers over providers, and use additional

measurement techniques to observe routes from multihomed prefixes. Muhlbauer et al. [54]

attempt to develop a hybrid model of Internet routing that lies in between a blackbox and

a structure inference approach. They introduce “quasi-routers” to model the presence of

multiple border routers in an AS based on an observed set of routes. Their approach can

predict the training set exactly and achieves 50% prediction accuracy for unobserved routes.

There has also been work towards inferring the intra-AS [48] and inter-AS [80] policies that

drive routing. In this dissertation, I advance the state of the art in this domain by presenting

algorithms that infer the PoP-level paths between arbitrary end-hosts on the Internet.

3.3 Overlay Systems

A potential approach towards the goal of my dissertation—providing information about

path properties on the Internet to applications—is to modify the Internet’s control plane

such that the Internet itself continuously monitors its path properties and end-hosts can

query for this information (a la knowledge plane [15]). However, any single ISP does not

have an incentive to incorporate such a modification into its network until all other ISPs do

so. The networking community’s experience over the last decade has shown that research

proposals rarely make it into operational networks in such situations. Hence, the approach
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I take in building an information plane is to monitor the Internet by issuing measurements

from end-hosts.

This approach is similar to prior work that implement new functionalities at the applica-

tion layer even though these solutions theoretically could be incorporated into the Internet

itself. Such systems that implement functionality over the network are called overlay sys-

tems. ESM [14] and Overcast [39] implement multicast by having end-hosts participating

in the system serve as intermediate relays, rather than have routers relay traffic like in IP

Multicast. The Detour [73] project demonstrated that the path performance between a pair

of end-hosts on the Internet could be improved in some instances by detouring the traffic

from the source to the destination via another end-host. RON [3] implemented the vision

of Detour on a testbed of 30 or so nodes. Every node in the RON testbed continually moni-

tors reachability and performance to every other RON node, and detours its traffic through

another RON node when its measurements indicate that the detour path can yield benefits

over the default Internet path. RON’s necessity to constantly measure paths through all

possible detour options limits its scalability. SOSR [31] addressed this limitation by demon-

strating that most of the reliability benefits of RON can be obtained by instead detouring

traffic through four randomly chosen detour nodes. OverQos [85] enhanced the Internet’s

quality of service by routing traffic through an overlay network. Instead of requiring the

reservation of resources on links in the Internet, OverQos routes traffic through paths that

have predictably good properties.

While all of these overlay systems attempt to provide a layer over the Internet on top of

which applications can be built, my work is targeted at large-scale distribution applications

built over the Internet. These applications are overlays themselves, since they run on end-

hosts and their communication patterns define a logical network on top of the Internet.

iPlane is intended to provide information about Internet paths to help applications setup

edges in their overlay network such that application performance is optimized.
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Chapter 4

PATH PREDICTION BY COMPOSING PATHS

In this chapter, I seek to develop a model that uses measurements of the Internet’s

structure and routing topology to predict the route between any pair of Internet hosts. In

subsequent chapters, I present how to use this structural model of the Internet to estimate

path properties—data that the information plane needs to provide.

4.1 Overview

In pursuing a structural approach towards building an information plane, I implement the

following methodology. To estimate the path properties between any arbitrary pair of end-

hosts, I first predict the routes between these end-hosts, both in the forward and reverse

directions. I separately predict the path in the forward and reverse directions to reflect the

prevalence of asymmetric routing in the Internet [63]. I then compose the inferred properties

of either links or path segments along the predicted forward and reverse routes to derive an

estimate for the end-to-end path property.

In this chapter, I address the first piece necessary to implement the above methodology—

predicting routes between end-hosts. The technique that I employ to predict routes between

a pair of nodes is to compose partial segments of known Internet paths. I refer to this tech-

nique hereafter as the path composition technique. The paths used in path composition are

obtained from an atlas of the Internet that is measured and maintained by a set of geo-

graphically distributed vantage points—end-hosts which can perform measurements. The

atlas comprises the topology of the Internet core and some selected portions of the edge, and

it also includes round-trip latency measurements from the vantage points to the mapped

portions. When an end-host joins the infrastructure, the atlas is augmented with a few

paths from the joining node. The entire set of paths is then used during path prediction.

The basic principle underlying the path composition approach is to exploit similarity
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of routes. Since the Internet predominantly uses destination based routing, routes from

sources that are close by will tend to converge when heading to the same destination. For

example, when both sources are in the same AS, early convergence of routes will occur

in the case of both early exit (both take the same nearest exit) and late exit (both take

the exit nearest the destination). So, my hypothesis is that, given a sufficient number of

geographically distributed vantage points, the route from any source to a destination will

have a significant overlap with some path segment from one of the vantage points. I make

accurate route predictions by maximizing this overlap, subject to the optimization of key

routing metrics, such as AS path length, hop counts, and latency values.

Gathering a comprehensive atlas of the Internet from a limited number of vantage points

is however infeasible given the Internet’s size. Therefore, the path composition technique

has to work with an incomplete view of the Internet’s topology. In fact, my evaluation

will show that a comprehensive router-level atlas of the Internet is not required to make

accurate predictions of path performance. I operate at the right granularity to capture

path performance by clustering together portions of the Internet similar from a routing and

performance perspective. I do this by by first grouping together multiple router interfaces

on the same router and then identifying all routers in the same Point of Presence (PoP) in

an AS.

The path composition technique however can yield several candidate paths between a

pair of end-hosts. This is a result of the rich connectivity of the Internet; there do exist

several physical paths between a pair of hosts. One among the set of paths is chosen by

the Internet’s routing protocols based on the routing policies enforced by ASes. Therefore,

I attempt to infer routing policy information from the set of observed routes gathered to

build the Internet atlas. I use this routing policy information to distinguish amongst the

different potential paths returned by the path composition technique.

In this chapter, I first present my goals in developing a path prediction technique and

the sources of measurements I use. I then describe each of the three pieces that make path

prediction work—path composition, clustering, and inference of routing policy. A summary

of the various techniques presented in this chapter is listed in Table 4.1.
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Table 4.1: Summary of techniques employed in constructing an atlas of Internet routes and

using it to predict paths between end-hosts.

Technique Description Goal Section

Traceroutes

from vantage

points

Paths to all prefixes/atoms are measured

from a large number of geographically

distributed vantage points

Build router-level

atlas

Section 4.3

BGP snap-

shot from

RouteViews

The BGP snapshot available from Route-

Views is used to infer the origin AS of

each router interface and to partition all

routable prefixes into BGP atoms

Partition routers

based on policy

and routing

Section 4.3

and 4.5

Path compo-

sition

Observed routing segments from a source

and to a destination are composed to pre-

dict a path between the source and des-

tination

Predict end-to-

end paths

Section 4.4

Alias resolu-

tion

Determine if router interfaces are on the

same router

Cluster router

interfaces into

routers

Section 4.5

Location

mapping

Map router interfaces to locations based

on DNS names

Cluster routers

into PoPs

Section 4.5

Return TTL

clustering

Router interfaces that return similar

TTLs to a large number of vantage points

are clustered together

Cluster routers

into PoPs

Section 4.5

Shortest AS

path and

early-exit

Choose among path segments that can be

composed

Model default

routing policy

Section 4.6.1

AS three-

tuples

Gather all sequences of three successive

ASes seen in observed paths

Capture path ex-

port policies

Section 4.6.2
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4.2 Goals

I seek to develop a technique for predicting paths with the following three main goals in

mind.

• Accuracy: My primary goal is to make accurate predictions of routes. In my struc-

tural approach, the path properties between a pair of end-hosts are computed by

composing the properties of links and path segments along the predicted route be-

tween the hosts. Therefore, getting route prediction right is critical for my whole

methodology to work.

• Efficiency: I seek to predict routes while minimizing the number of measurements

required as input. My aim is to get at the underlying scientific question: what is the

minimum set of measurements required to make Internet-wide prediction of routes?

• Scalability: Path prediction needs to work using measurements predominantly from

a limited number of vantage points with only a few measurements from every end-

host. This is necessary not only to ensure that I can build an Internet-wide information

plane usable by applications today without waiting for worldwide deployment but also

to ensure the information plane is scalable. If the information plane were to rely on a

comprehensive set of measurements from every end-host, the system would not scale

to the whole Internet.

4.3 Building an Atlas

The path composition approach works by splicing together segments of observed paths to

predict routes along unmeasured paths. Hence, I accumulate an atlas of Internet routes. I

gather route information from two sources—1) traceroutes from vantage points and 2) AS

paths from BGP feeds.

My primary tool for building the atlas is traceroute, which allows me to identify

the network interfaces on the forward path from the probing entity to the destination.
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traceroute also provides me with hop-by-hop round-trip times, which I use to model some

aspects of routing policy, e.g., early-exit routing.

I need geographically distributed vantage points in order to map the Internet topology

and obtain a collection of observed paths. PlanetLab servers, located at over 300 sites around

the world, serve as the primary vantage points. Probes can be issued from PlanetLab nodes

at a reasonably fast rate; a traceroute probe every second translates to measurement traffic

of about 4KB/s, a modest load on the PlanetLab nodes. I also enlist the use of around

500 public Looking Glass/Traceroute servers for low-intensity probing. I issue probes from

these vantage points to representative IP addresses in routable prefixes, sometimes choosing

just one IP address for a collection of prefixes, thereby minimizing the measurement load.

BGP snapshots, such as those collected by RouteViews [53], are a good source of probe

targets. To achieve a wide coverage for the topology mapping process, I obtain the list of

all globally routable prefixes in BGP snapshots and choose within each prefix a target .1

address that responds to either ICMP or UDP probes. A .1 address is typically a router

and is hence more likely to respond to probes than arbitrary end-hosts. Of all of the targets

discovered in a prefix, one is chosen at random as the representative end-host for that prefix.

Measurement load can be reduced further by clustering IP prefixes into BGP atoms [7]

for generating the target list. A BGP atom is a set of prefixes, each of which has the same

AS path to it from any given vantage point. BGP atoms can be regarded as representing the

knee of the curve with respect to measurement efficiency—probing within an atom might

find new routes, but it is less likely to do so [7]. However, in this dissertation, I consider

the atlas to comprise traceroutes to one target in every prefix.

I use the PlanetLab nodes to perform traceroutes to all the representative targets. In

addition, I schedule probes from each public traceroute server to a small random set of

BGP prefixes, making a few hundred measurements from each server. The public traceroute

servers serve as a valuable source of information regarding local routing policies. Note that

in the long run, a functioning information plane may actually serve to decrease the load on

the public traceroute servers as the information plane, rather than the traceroute servers

themselves, can be consulted for information on the Internet topology.
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4.4 Path Composition

I first consider a setting where the source and destination nodes are passive, but known to

the atlas. In other words, the atlas contains observed paths from the vantage points to both

nodes, but not from the nodes.

Figure 4.1(a) depicts how I predict the path from a source S to a destination D using

paths from all vantage points to S and D. I seek to determine a path from one of the

vantage points to D that has a significant overlap with the actual path from S to D. To

this end, I would like a path that originates at S and intersects with one of the paths going

into D. In the absence of outwards path from S, I estimate the paths out of S by reversing

paths from the vantage points into S. Thus, I traverse paths going into S backwards until

I find an intersection I with one of the paths going into D. The predicted path from S to

D is obtained by splicing the segment from S to I with the segment from I to D .

The atlas gathered by the vantage points includes traceroutes to only one destination in

each routable prefix. Hence, when predicting the path between a pair of end-hosts, the atlas

may not include paths to either end-host. In such cases, I approximate the path between S

and D with the path predicted between the representative end-hosts in the same prefixes

as S and D.

However, predicting outward path segments near the source by reversing paths from the

vantage points to the source is not always accurate. A significant fraction of Internet paths

are known to be asymmetric [80, 81]. Internet routing is controlled by ISP policy, and ISPs

are not constrained to using symmetric policies.

To account for routing asymmetry, I next consider a setting where the source issues

a small number of traceroute probes in order to integrate itself into the Internet atlas

constructed by the vantage points. A client can be asked to issue probes to a random

subset of the vantage points or to representative targets in a small randomly chosen set of

BGP atoms. I choose the latter alternative in order to be more representative. As shown

in Figure 4.1(b), path segments from these probes are then composed with path segments

from vantage points to destinations to obtain the predicted forward path. Of course, since I

want to predict path properties from a source to any arbitrary destination, an active client
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Figure 4.1: The route from S to D is obtained by composing either (a) a route going into

BGPS , a host in the same BGP prefix as a passive client S, or (b) a route contributed by an

active client S with a route to BGPD, a host in the same BGP prefix as D, from a vantage

point close to S (V1).
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only helps the forward path—I use passive techniques for the reverse path in the absence

of traceroutes from the destination in the atlas.

4.5 Clustering Routers

The path composition method has a few potential problems. The atlas comprising measure-

ments from vantage points to one destination in each prefix and a few measurements from

sources does not comprehensively capture Internet routing. As a result, path composition

may not always be able to identify intersections between paths. First, the paths obtained

using a small number of source probes may not intersect with paths going into the desti-

nation. Second, even if a path from the source intersects with a path from a vantage point

to the destination at a physical router, the two paths may not appear to intersect. The

reason is that traceroutes return information at the granularity of network interfaces, so two

paths entering and exiting a router through different network interfaces will appear to not

intersect in the resulting graph. It is even harder to determine intersection when two paths

pass through the same PoP but through different routers. As a result, the composition

method may obtain a grossly inflated path, e.g., a path going back from the source all the

way to a vantage point and then following the path going into the destination, similar to

the IDMaps [24] method.

While one approach to fix the above problems would be to gather a more comprehensive

atlas, I instead argue that routing information at a coarse granularity suffices to capture

Internet performance. Striving for efficiency, I attempt to model Internet routing at the

granularity that enables the path composition technique to work without information loss.

For this, I leverage the property that the path composition technique allows intersections

between paths to be determined at various granularities. Declaring two paths to have

intersected only if the same network interface address is seen on both is almost certainly

too strict for the reasons outlined above. On the other hand, declaring an intersection if both

paths traverse a common AS is prone to significant prediction error. Thus, intersections

need to be determined at a level coarser-grained than network interfaces but finer-grained

than ASes.

I address these problems using a clustering method that groups network interface ad-
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dresses that are “nearby” from a routing perspective. My objective is to partition all

observed router interfaces into clusters and declare an intersection between two paths only

if they go through the same cluster. The clusters represent routers that are similar from a

routing perspective, e.g., aliased network interface addresses belonging to the same router,

routers belonging to the same PoP, and routers that belong to the same AS and are also

geographically nearby. To avoid incorrectly predicting transit between ASes, I only cluster

routers that belong to the same AS. There is a trade-off between the utility of clusters and

their accuracy. Increasing cluster sizes initially improves prediction accuracy by detecting

missed intersections but subsequently degrades accuracy by predicting non-existent paths.

My clustering algorithm attempts to hit the peak of this curve.

4.5.1 Alias resolution

Every router has multiple router interfaces, which are called aliases of each other. Packets

received on any of these interfaces are forwarded using the same routing table. Hence, all

interfaces on a router are identical from a routing perspective.

I cluster router interfaces into actual routers by resolving aliases. Interfaces that are

potential alias candidates are identified using two different techniques. Employing the Mer-

cator [30] technique, UDP probes are sent to a high-numbered port on every router interface

observed in traceroutes. When a router receives a probe destined to one its interfaces, a

response is sent back with the source address set to the address of the interface on which

the response is sent out. Therefore, interfaces that return responses with the same source

address are considered as possible aliases. This also implies that the same router can re-

turn responses with different source addresses when probed from different vantage points.

Responses other than port-unreachable ICMP error messages, the expected response to

my probes, and those with the source addresses in private prefix ranges (192.168.0.0/16,

10.0.0.0/8, 172.16.0.0/12, and 169.254.0.0/16), because such addresses are valid only locally,

are discarded. I then construct a graph with an edge between each router interface that

returned a valid response and its associated source address. Every pair of interfaces in the

same connected component in this graph are potentially on the same physical router. Some-
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times two interfaces return responses with the same source address to UDP probes but are

not aliases; this can occur with incorrectly implemented firewalls that return a ICMP PORT

UNREACHABLE error message with their own address, instead of spoofing the address of

the host that is being probed.

In addition to the Mercator technique, I also identify candidate alias pairs using the fact

that interfaces on either end of a long-distance link are usually in the same /30 prefix [32,

102]. More concretely, given two successive IPs x and y along a path, I consider the IP that

is in the same /30 prefix as y to be potentially aliased to x.

Finally, I test all the candidate pairs yielded by the above two techniques to determine

if they are indeed aliases. Pairs that respond with similar IP-ID values to UDP probes and

also respond with similar TTLs to ICMP probes are deemed to be aliases.

In one of my typical measurement runs, of the 4.6M alias candidate pairs yielded by the

Mercator technique, 960K pairs were determined to be aliases. The 388K additional alias

candidate pairs obtained using the /30 heuristic yielded another 100K alias pairs.

4.5.2 Intra-AS clustering

Apart from different router interfaces on the same router, multiple routers that are geo-

graphically nearby are also likely to have similar routing tables. Different routers in the

same PoP within an AS will be typically connected to each other with low-latency high-

bandwidth links. As a consequence, ASes would assign low IGP weights to intra-PoP links,

which would result in multiple routers in the same PoP to compute similar routing tables

for themselves. Therefore, in my quest to cluster together routers similar from a routing

perspective, I group routers that reside in the same PoP.

I use two different techniques to cluster geographically nearby routers within every AS.

First, I determine the DNS names assigned to as many network interfaces as possible.

I then use two sources of information—Rocketfuel’s undns utility [81] and data from the

Sarangworld project [71]—to determine the locations of these interfaces based on their DNS

names. This step alone does not suffice for clustering geographically co-located interfaces

because: 1) several interfaces do not have a DNS name assigned to them, 2) rules for
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inferring the locations of all DNS names do not exist, and 3) incorrect locations are inferred

for interfaces that have been misnamed. For IPs whose locations can be inferred from DNS

names, I validate the locations by determining if they are consistent with the measured

delays from traceroutes [40]. I probe every interface using ICMP ECHO packets, and deem

interfaces that have an RTT smaller than what would be required if packets travel at 4
9

th

the speed of light, a threshold empirically determined in [40], to have incorrectly determined

locations.

Second, to cluster interfaces for which a valid location was not determined, I develop an

automated algorithm that clusters router interfaces based on the responses received from

them when probed from a large number of vantage points. I use the TTL value in the ICMP

ECHO-REPLY received in response to my probes. I estimate the number of hops on the

reverse path back from a router to the vantage point by guessing the initial TTL value used

by the router. As in [52], I estimate the initial TTL corresponding to a received TTL value

of TTL1 to be TTL0 = min{255, 32 · dTTL1/32e}, and then estimate the number of hops

on the reverse path as (TTL0 − TTL1 + 1).

I hypothesize that routers in the same AS that are geographically nearby will take similar

reverse paths back to the vantage point from which I probe them, and routers that are not

co-located will not display such similarity, e.g., routers in adjacent PoPs at either end of

a long-distance link. I verify this hypothesis as follows. Each interface is associated with

a reverse path length vector that is the vector with as many components as the number of

vantage points, and the ith component is the length of the reverse path from the interface

back to the ith vantage point. I then determine the L1 distance between the reverse path

length vectors of aliases that I determined. Note that the L1 distance between two vectors

is the sum of absolute differences between corresponding components. I call the L1 distance

divided by the number of components, i.e., the normalized L1 distance, as the cluster

distance.

Figure 4.2 shows that less than 2% of alias pairs have a cluster distance greater than

1. This result is expected because irrespective of which interface on a router is probed,

the routing of the response is done based on the same routing table. Some error is to be

expected because the data for this graph was obtained by probing interfaces over the course
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Figure 4.2: Comparison of reverse path length vectors between pairs of interfaces that

I determined to be aliases. The reverse path length vector of an interface contains the

estimated lengths of the reverse paths back from the interface to all vantage points. The

similarity between two vectors is computed as the L1 distance normalized by the number

of components.

of a day, rather than instantaneously. The high similarity between reverse paths of aliases

implies that route changes over the course of a day are minimal.

Encouraged by the above result, I then analyzed different routers that belong to the same

AS and are known to be in the same city. Using Rocketfuel’s undns utility [81], I determined

the locations of as many router interfaces as possible. I then chose AS 701 (UUNET) for

my analysis, and considered the router interfaces in this AS that were reported by undns

to be in Los Angeles, New York, and Seattle. After discarding interfaces which were not

within a few milliseconds from PlanetLab nodes in these locations, I obtained 216, 254 and

64 routers in Los Angeles, New York and Seattle, that belonged to AS 701.

I computed the cluster distance for every pair of routers in the same city, considering
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one sample router interface per router and then repeated the computation for every pair of

routers in different cities. Figure 4.3(a) shows the distribution of cluster distances computed

in each of these cases. For almost all pairs of routers in different cities, the cluster distance

is greater than 1. On the other hand, more than half the router pairs within each city have

a cluster distance less than 1.

Next, I repeated the above analysis using a different notion of cluster distance defined

as the maximum component-wise difference between the corresponding pair of reverse path

length vectors. Figure 4.3(b) shows that there is a marked difference between distributions of

the cluster distance when routers are in the same city compared to when they are in different

cities. Less than 20% of the router pairs in Seattle and LA have a cluster distance greater

than 5, whereas for pairs in different cities fewer than 10% are less than that threshold.

I believe this clean separation does not hold for routers in NY because of the presence of

multiple POPs in that city.

Based on similar results obtained with analysis of reverse path length vectors of routers

in other cities, I use thresholds of 1 and 5 for the average and maximum component-wise

differences in my clustering algorithm. Though these thresholds were determined using the

sample data presented for UUNET and for a couple other ASes, I assume these thresholds

are representative of all ASes. Routers within an AS are grouped into clusters such that

any pair of routers in the same cluster have cluster distances of at most 1 and 5 respectively

using the two definitions. Although these thresholds split some router pairs in the same

city into different clusters, even in the cases considered in Figure 4.3, this is in keeping with

my principle of erring on the side of accuracy.

Of the 3M router interfaces observed in all of my traceroutes, aliases were determined

for 286K of them. These 286K interfaces were grouped into 67K routers. Further, 1.9M

interfaces yielded DNS names, of which locations could be determined and validated for

700K of them, given the DNS name to location mapping rules that I used. By enforcing

the constraints imposed by aliases and DNS based locations and then applying TTL-based

clustering, 2.3M interfaces were grouped into 134K clusters; the remaining did not yield

a DNS name and did not respond to any probes. 475K interfaces are in 215 clusters of

size greater than 1000, 1.4M interfaces are in 3.7K clusters of size greater than 100, 2M
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(a)

(b)

Figure 4.3: Comparison of reverse path length vectors between pairs of interfaces in the

same AS but either in the same or in different cities. The similarity between two vectors

is computed as (a) the L1 distance normalized by the number of components and (b) the

maximum difference between corresponding components.
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interfaces are in 26K clusters of size greater than 10, and 56K interfaces are in singleton

clusters.

4.6 Path Selection

While clustering improves the fidelity of the path composition technique, many pairs of

path segments can be composed to predict the end-to-end path. Which path should one

pick? Ideally, you would want to choose the path thats models how Internet routing works

in practice. To appreciate this claim, consider a naive scheme that composes a pair of path

segments whose combined latency is the least. This scheme predicts paths whose latencies

are similar to those predicted by coordinate-based systems; the predicted end-to-end path

will be shorter than any detour path through the vantage point, resulting in an incorrect

model that does not permit detours.

To model Internet routing, I use information obtained from traceroute probes in combi-

nation with basic BGP information. I use BGP tables to determine the origin AS for each IP

address encountered on a path segment. Each path segment is then assigned a path length

in AS hops, a path length in IP hops, and a latency estimate. These metrics are known

to largely determine paths used in the Internet. For example, inter-domain routing prefers

shorter AS paths over longer ones in the absence of conflicting locally preferred policies,

and intra-domain routing uses latency of paths within the AS to determine the appropriate

exit point.

4.6.1 Modeling Default Routing Policy

The basic problem at hand is to figure out a scheme to choose among the several intersections

between path segments. I considered a handful of schemes that were in keeping with my

hypothesis of route similarity and with the normal understanding of how routing works in

the Internet. Here, I discuss the two schemes that worked best.

1. Min predicted AS path length, min RTT to source:

Choose the intersection that minimizes the AS path length along the predicted path.

Among those, choose the one that has the minimum RTT from the source. Minimizing
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overall AS path length approximates BGP’s default objective function; by default,

BGP chooses the shortest AS path. Minimizing RTT from the source, an indicator

of the intersection being geographically close to the source, captures the principle of

route similarity.

2. Min predicted AS path length, early exit:

Choose the intersection that minimizes the AS path length along the predicted path.

Among those, choose the one that results in the minimum RTT from the source to

the exit point from the source’s AS. This policy directly emulates early exit routing,

a common intra-AS routing policy.

4.6.2 Export Policies

I also attempt to model routing policy more directly by inferring export policies of ASes

from the atlas of observed paths. For instance, if I observe a path that traverses the ASes

Cogent, AT&T, and Sprint in succession, I know that AT&T exports paths from Sprint to

Cogent.

I incorporate these inferred export policies into the path composition technique using the

3-tuple check. I explicitly store the list of all 3-tuples corresponding to three consecutive

ASes observed in traceroutes as well as BGP feeds (discounting prepending). Ideally, I

would consider a candidate intersection as yielding a valid path only if the 3-tuple (AS

preceding the intersection, AS of the intersection cluster, AS succeeding the intersection)

is present in the list of observed 3-tuples; all other sequences of ASes need not be verified

since the path segments used for composition were both observed. This implementation of

the 3-tuple check ensures that a candidate path is considered only if the export policy of

the intersection AS permits it.

However, since visibility into ASes at the edge is limited, I might fail to observe all of the

export policies for the edge ASes. I thus perform this check only for 3-segments in which the

degree of the intersection AS in the Internet’s AS-level graph, obtained from inter-AS edges

observed in traceroutes and BGP feeds, is greater than a threshold. I find a threshold value

of 5 to be a sweet spot in accounting for the lack of observations while ensuring enforcement
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of export policies.

I also assume commutativity among triples, so that if I observe (AS1, AS2, AS3), I

include (AS3, AS2, AS1) as well in the list of 3-tuples. This is because AS paths give the

path only in one direction and I have two orders of magnitude fewer vantage points than

there are ASes in the Internet.

4.7 Optimization of Atlas Size

The size of the raw atlas of traceroutes gathered from vantage points to destinations in all

prefixes is typically of the order of 1-2GB after compression. When loaded into memory,

the size of the atlas inflates further to around 4GB because of the overhead of the data

structures into which the atlas is read.

To optimize the storage and representation of the atlas, I present a simple algorithm,

CLUSTER-TREE, which leverages the property that the path composition technique only

needs path information at the cluster granularity. CLUSTER-TREE stores cluster-level

trees to each destination. It leverages the insight from Doubletree [21] that paths from

vantage points to a common destination share many links due to the destination-based

nature of Internet routing. Storing cluster-level trees instead of complete routes to each

destination does not affect the accuracy of the path composition algorithm. However, the

size of the cluster-level tree is just 300MB compared to 3GB for the raw atlas—an order of

magnitude reduction in size.

4.8 Evaluation

In this section, I describe the results of the experiments I performed to evaluate the algo-

rithms presented in this chapter. First, I outline the measurements I performed to gather

an Internet atlas and to cluster the router interfaces observed in this atlas. Thereafter, I

present results validating the paths predicted by the path composition technique. The ac-

curacy of path prediction is crucial for accurate estimation of path properties since these are

computed by composing properties of links and path segments along the predicted route.
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4.8.1 Measurements

I use nodes in PlanetLab [65], and several hundred public traceroute and Looking Glass

servers to perform my measurements. My dataset consists of two distinct sets of mea-

surements: one for building the atlas that my model uses for prediction and the other for

evaluating the model. There are no end-to-end paths that are common between the two

sets.

The measured atlas comprises measurements made from 158 PlanetLab nodes to a wide

range of destinations. I obtained the list of all globally routable prefixes from the BGP

snapshot gathered by RouteViews [53]. In each of these prefixes, I determined a .1 address

that responded to either ICMP or UDP probes. I compiled a list of 87334 destinations,

with no two of them being in the same prefix. On 3 February 2006, I performed traceroutes

from 158 PlanetLab nodes to all these destinations, to the public traceroute and Looking

Glass servers, and to the PlanetLab nodes themselves.

To evaluate my model, I use a validation set comprising paths measured from the public

traceroute and Looking Glass servers. On 3 February 2006, I performed traceroutes from

each of these traceroute servers to 100 other randomly chosen traceroute servers and to

destinations in 200 random prefixes chosen from the prefix list. In these traces as well as in

those gathered from PlanetLab, I ignore all paths that either did not reach the destination

or had a router-level loop. I note once again that this validation set shares no paths with

the routes measured from PlanetLab nodes that I use to build the atlas; however, I do use

these traceroutes to understand in detail why my path predictions are accurate/inaccurate.

Using paths measured from PlanetLab nodes as my atlas, I evaluate path prediction on the

paths measured from traceroute and Looking Glass servers.

4.8.2 Path Composition: Feasibility Analysis

The path composition technique yields several candidate paths between a source and a

destination. I first evaluate how closely any of these candidates matches the observed

path. Though the path composition technique returns paths at the granularity of clusters,

comparison of cluster-level paths is non-trivial. This is because my clustering is not perfect;
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two router interfaces in different clusters could in fact be in the same PoP of an AS but I

could have failed to identify them as being so. Therefore, I restrict my evaluation of path

prediction to AS-level paths, leaving the comparison of cluster-level paths for future work.

To compare the actual and predicted AS paths, I define an AS path similarity metric

that is similar to the RSIM metric used in [34]. I define the similarity metric between two

AS paths to be the ratio of the size of the intersection, to the size of the union, of the sets

of ASes in each of the paths. The maximum value this metric can take is 1, which is when

both paths pass through the same set of ASes.

For each source-destination pair, I considered all intersections obtained using the basic

technique of intersecting paths from/to the source with paths to the destination in the atlas.

I refer to the policy that chooses (using the validation data set) the intersection such that

the predicted path passing through it maximizes the AS similarity metric as the optimal

policy. Figure 4.4 plots the distribution of the similarity metric for this optimal policy. The

policy Optimal (k) evaluates the scenario with k paths from each validation source present

in the atlas.

Figure 4.4 shows that, in the absence of any paths from the source, around 40% of paths

are such that none of the candidate paths yielded by path composition has the same AS

path as the actual path. This implies that irrespective of the policy I use to choose among

intersections between paths going into the source and into the destination, in a large fraction

of cases, I cannot predict a path that has the same AS path as the actual path.

A potential reason for this is that paths going into the source may not be representative

of paths coming out from it. To confirm this hypothesis, I evaluate the feasibility of finding

the actual path in the case of active clients wherein the atlas contains a few paths originating

from each end-host. I chose a few paths from each Looking Glass server at random and

moved these paths from my validation set into the atlas. For each of the paths remaining

in the validation set, I considered intersections of the chosen few paths from the source

with all the paths from PlanetLab nodes to the destination. In cases where there was no

intersection, I fell back to the passive client model and used paths going into the source.

Figure 4.4 shows that using a few paths originating from the source significantly improves

the number of cases in which at least one of the candidate paths yielded by path composition
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Figure 4.4: Evaluation of the feasibility to predict AS paths using the path composition

technique. Optimal (k paths) is an oracle that determines the path most similar to the

actual path between a source and a destination using the path composition technique, given

the presence of k paths from the source in the atlas. The similarity between two AS paths

is computed as the ratio of the size of the intersection, to the size of the union, of the sets

of ASes in each of the paths.

has an AS path identical to the actual path. Availability of 10 paths from the source to

random destinations increases the fraction of paths for which the optimal policy could get

the AS path exactly right from just over 60% to over 80%. This shows that adding a few

paths from the source to the atlas significantly improves the likelihood of the actual path

being one of the candidate paths obtained with path composition. Figure 4.4 also shows

that the marginal increase in the ability to perform AS path prediction with the use of more

than 10 paths is small. So, for the rest of the evaluation, I assume that I have 10 paths

from each source.
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Figure 4.5: Evaluation of the Min AS path, min RTT and Min AS path, early exit policies for

selecting among the candidate paths yielded by path composition. The AS path prediction

accuracy of both policies is compared against the optimal.

4.8.3 Path Prediction

The previous results just demonstrate that it is possible to predict the actual path when

I have access to a few paths from the source. I next evaluate how well my incorporation

of routing policy into the path composition technique helps choose the actual path among

candidate options, if it exists at all.

How does default routing policy perform?

First, I consider the two schemes that I use to model default routing policy—Min AS path,

min RTT and Min AS path, early exit. The accuracy with which these schemes help in

finding the correct AS path, for the case when I have 10 traceroutes from the source, is

shown in Figure 4.5. While neither is perfect, approximating BGP’s shortest AS path

policy and early exit routing helps identify the correct AS path in more than 65% of cases.
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Minimizing the AS path length is more likely to choose a policy compliant path, and by

choosing an intersection close to the source I minimize the number of routing policy decisions

that I predict, and hence, am likely to make fewer incorrect routing choices. Since the path

segment from the point of intersection to the destination is an observed one, there cannot

be any incorrect decisions made along that segment.

Do predicted paths violate AS relationships?

Since my model does not involve use of inferred AS relationships, the paths I predict could

violate policy routing. To see if this is a problem, I applied Gao’s AS relationship inference

algorithm [27] on AS paths observed in all my traceroute measurements as well as on AS

paths obtained from the RouteViews [53] BGP dump. I then computed how many of the

AS paths in my validation set, and how many of the predicted AS paths (using the min AS

path, min RTT policy), violate valley-free routing. Of the 42028 paths in the validation set,

valley-free routing was violated in 119 of the observed AS paths and in 212 of the predicted

AS paths. This demonstrates that my incorporation of routing policy into the composition

technique does usually manage to find policy-compliant paths. As noted earlier, the choice

of an intersection close to the source minimizes the number of routing policy decisions

my model must predict. This result also implies that constraining my model by explicitly

inferring AS relationships and enforcing valley-free routing using these relationships on the

candidate paths will not decrease its predictive ability.

I leave the evaluation of the benefit of incorporating AS export policies into the path

composition technique for Chapter 5 since I also use them in the graph-based path prediction

model that I develop in that chapter.

4.9 Summary

The ability to predict paths between arbitrary end-hosts on the Internet is one of the key

pieces towards building an Internet-wide information plane using a structural approach.

In this chapter, I proposed a model for path prediction using an atlas of Internet routes

gathered from several hundred geographically distributed vantage points. The key technique

I use to predict routes is to compose segments of observed paths. The path composition
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technique is based on the principle of route similarity—routes from nearby sources to the

same destination are similar.

I recognize and demonstrate that this path composition technique can work without re-

quiring the atlas to comprehensively capture all routing information in the Internet. First,

I minimize the measurement load on the vantage points by restricting traceroutes to one

representative end-host in every prefix or every BGP atom. Second, I cluster router inter-

faces that are similar from a routing and performance perspective. Figure 4.4 shows that

these techniques to account for the lack of comprehensiveness of the atlas enables the path

composition technique to yield an AS path identical to the actual path in over 80% of cases.

However, composing path segments can yield several candidate paths between a source

and a destination. To choose among these candidates, I both model default routing policy

and enforce routing export policies of ASes inferred from observed paths. This enables the

path composition technique to predict the AS path between end-hosts exactly right in more

than 60% of cases, with the addition of as few as 10 paths from each end-host into the atlas.
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Chapter 5

GRAPH-BASED PATH PREDICTION

Prediction of paths by composition of path segments requires as input an Internet atlas

of observed paths. The size of such an atlas is proportional to the number of vantage

points times the number of destinations probed times the average path length. My atlas

comprising paths from all PlanetLab nodes to all BGP prefixes is over 1GB in size even

after compression. As more vantage points contribute measurements, the accuracy of paths

predicted by composing path segments should increase, but at the cost of blowing up the

size of the atlas.

In this chapter, I develop a path prediction model that makes predictions by composing

observed links, in contrast to techniques presented in the previous chapter that compose

measured path segments. Stitching together path predictions at the link granularity has

the potential to result in maps with size proportional to the number of observed links, as

opposed to the number of measured paths, enabling a more compact representation. The

compact size lowers storage costs and distribution bandwidth overheads, making it feasible

to distribute daily maps to low bandwidth clients.

My approach towards developing a model for predictions at link granularity is to start

off with the Internet graph seen in union across all path measurements in my atlas of

paths. Since routing in the Internet is destination-based, it should be possible to encode

data as decisions at each node in the graph. I start with a very simple model of router

behavior based on commonly properties of Internet routing. I then augment this behavior

by extracting routing policy from observed paths and storing this policy in a compactly to

improve prediction accuracy without sacrificing efficiency.

However, such a fine-grained approach has its downsides. In order to predict an end-to-

end path accurately, I need to accurately model the routing behavior at every router along

the path, a particularly challenging task for backbone routers with a diversity of network
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connections. The challenge, therefore, is to preserve prediction accuracy under fine-grained

link composition.

5.1 The Problem: Modeling Internet Routing

The problem of predicting Internet routes would be trivial if routers used shortest path

routing. Even if the weights used in a shortest path calculation are unknown, one could

infer them by making a sufficient number of observations of actual routing behavior, as

has been done with intra-domain OSPF weights in [48]. However, Internet route selection

includes a number of factors, such as monetary costs, coarse-grained path metrics, and local

performance considerations. More importantly, these factors vary from ISP to ISP, and are

often expressed in a policy language that allows for many special cases. The issue is further

complicated due to the interaction between intro-domain and inter-domain routing policy

(as shown in Chapter 2).

Thus, the challenge is to develop a model of Internet routing that captures most of

its complex behavior while working on a link-level representation of the Internet atlas.

Fortunately, previous work on reverse-engineering the routing decision process aids me in

this effort, as does the body of knowledge the research community has accrued on how

Internet routing works in practice.

My goal is to develop a procedure that incorporates the following commonly accepted

principles regarding how routing works on the Internet.

1. Policy preference: ASes use local preferences to select routes. Typically, an AS prefers

routes through its customers over those through its peers, and either of those over

routes through its providers. Further, ASes do not export all of their paths to

their neighbors; for instance, ASes do not export paths through their peers to other

peers/providers. Commonly used export policies and AS preferences are believed to

result in valley-free Internet routes [27], in which any path that traverses a provider-

to-customer edge or a peer-to-peer edge does not later traverse a customer-to-provider

or peer-to-peer edge.

2. Shortest AS path: After considering local preferences, if a router has multiple candi-
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date paths that it prefers equally, the default behavior is to select the route containing

the fewest ASes. Typically, several paths may have the same AS path length.

3. Early-exit vs. Late-exit: Among these, routes are chosen so as to meet intradomain

objectives, e.g. by choosing the nearest exit point into the next AS on a remaining

path (referred to as early-exit or hot potato routing). In certain cases, especially

when the same economic entity owns adjacent ASes, ASes might instead collaborate

to reduce their combined costs (typically referred to as late-exit) or to accomplish

other goals, such as to reroute traffic to reduce congestion.

I develop an algorithm using the classic dynamic programming technique that underlies

various forms of shortest path computation. The algorithm incorporates the above criteria

to compute an on-demand route, based on a graph representation of the atlas. My first

attempt, Graph, reduces the representation size by over two orders of magnitude, but has

poor prediction accuracy compared to path composition techniques. I then present a series

of refinements designed to address Graph’s shortcomings and arrive at a technique that

stores only a little more information than Graph, yet yields prediction accuracy comparable

to the path composition approach. Table 5.1 summarizes the various techniques I employ

in predicting paths using an atlas of links.

5.2 Graph: A first cut

Setting: As with the path composition technique, a distributed set of vantage points

issues traceroute probes to various prefixes. Instead of storing the set of observed routes,

Graph stores the IP-level graph corresponding to the Internet’s observed routing topology.

The nodes of the graph are IP addresses, and its undirected edges are the observed edges

in the traceroutes.

In addition, I use data from BGP feeds, such as RouteViews [53] to store a mapping

from IP prefixes to their origin AS. I also use the data put together in the previous chapter
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Table 5.1: Summary of techniques employed to develop datasets and algorithms used for

predicting paths between end-hosts using a link-based atlas.

Technique Description Goal Section

Traceroutes

from vantage

points

Paths to all prefixes/atoms are measured from

a large number of geographically distributed

vantage points

Gather graph

of inter-IP

links

Section 4.3

Dijkstra-style

algorithm

with two-

tuple cost

Every node in the graph is associated with a

two-tuple cost (AS path length, intra-AS la-

tency), and path to the destination is found

that minimizes cost

Enforce

shortest AS

path and

early-exit

Section 5.2

Two-plane

atlas

Links discovered from paths from end-hosts

and from paths to all prefixes/atoms are sep-

arated out into two graphs

Account

for routing

asymmetry

Section 5.4

AS three-

tuples

Gather all sequences of three successive ASes

seen in observed paths

Capture

path export

policies

Section 5.5

AS prefer-

ences

Compare observed paths with alternate

policy-compliant paths that were not chosen

Detect local

preferences

Section 5.6

Provider

mapping

Store provider ASes for prefixes/ASes that do

not have all their upstream ASes as providers

Account

for traffic

engineering

Section 5.7

that identifies which sets of IPs can be clustered together.

Algorithm: I present the algorithm in multiple steps. I first provide a dynamic program-

ming technique (similar to Dijkstra’s shortest path algorithm) that captures the preference

for short AS paths, with early-exit deployed between every pair of ASes. I then briefly

describe how I tweak the algorithm to model late-exit when necessary. I conclude the al-
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Graph(s, d):

N ′ ← {d}

for each v ∈ G

if v is a neighbor of d, then D(v) = c(v, d);

else D(v) = [∞,∞] ;

Do

Pick w /∈ N ′ such that D(w, d) is a minimum

N ′ ← N ′ ∪ {w};

for each neighbor v of w

if D(v, d) > D(w, d)⊕ c(v, w), then

D(v, d) = D(w, d)⊕ c(v, w);

P (v, d) = v.P (w, d);

until N = N ′

Figure 5.1: The Graph algorithm to predict a route from s to d in a graph G.

gorithm description by outlining the modifications required to incorporate common export

policies and local preferences for selecting routes.

Figure 5.1 shows the pseudocode for Graph, an algorithm that predicts the route be-

tween a source s and a destination d. It chooses the shortest AS path between s and d,

while performing early-exit at every AS. The algorithm is similar to Dijkstra’s shortest path

algorithm. Unlike conventional Dijkstra however, the route computation 1) backtracks from

the destination to all sources and 2) uses a two-tuple cost metric.

The cost of a route from each node to the destination is a strictly ordered two-tuple

[number of AS hops to the destination, cost to exit the current AS], with the first component

considered as the more significant value. For two adjacent nodes v and w connected by a

link of latency l(v, w), c(v, w) is defined as [0, l(v, w)] if v and w are in the same AS, and as

[1, 0] otherwise. The ⊕ operator in the algorithm resets the second component to 0 upon

crossing an AS boundary as follows. If v and w belong to the same AS, D(w, d) ⊕ c(v, w)

is defined as D(w, d) + [0, l(v, w)]. If v and w belong to adjacent ASes, D(w, d) ⊕ c(v, w)
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is defined as [D(w, d)[1] + 1, 0]. It is straightforward to verify that this definition of cost

preserves the invariant that if a node u ∈ N ′, then P (u, d) is a shortest path from u to d.

I then incorporate constraints corresponding to common export policies. I infer AS rela-

tionships, such as which are peers and which have paid customer/provider transit, using a

combination of CAIDA’s inferences [19] and Gao’s technique [27]. I model the default export

policy in which an AS advertises any paths through customer ASes to all its neighbors, and

it exports its paths through peers and providers to only its customers. It is well-known that

this export policy leads to valley-free routes, and I modify the algorithm to compute only

valley-free routes to a given destination. To compute valley-free routes, instead of having a

single node for each IP address i, I instead introduce two nodes in the graph: an up node

upi and a down node downi, and Graph computes the path from ups to downd.

The idea is that the construction of edges will force every path to transition from up

nodes to down nodes at most once, thereby guaranteeing the path is valley-free. Let i and

j be two IP addresses observed as adjacent. If i and j belong to the same AS, there is

an undirected edge between upi and upj and one between downi and downj . If i’s AS is a

provider of j’s AS, there is a directed edge from upj to upi and another directed edge from

downi to downj . Essentially, this configuration captures that a customer will not provide

transit between two providers. If i and j belong to peer ASes, there is a directed edge

from upi to downj and from upj to downi. These edges capture that i’s AS will use paths

through j only for itself and its customers (and similarly for j’s AS and paths through i).

For each IP address i, there is a directed edge from upi to downi. All routes in the graph

are therefore valley-free by construction.

I conclude the algorithm development by modifying the technique to take into account

local preferences in adopting AS paths. In particular, I assume that an AS prefers paths

through its customers over those through its peers, which are in turn preferable to paths

through provider ASes. To simulate this, instead of calculating paths to the destination

from all ASes and all routers in a batch, I stage the computation. I first limit the graph

to contain only the set of down nodes, along with the edges connecting them, and compute

the optimal paths from these nodes to the destination. This reaches precisely the routers

in those ASes that get paid for providing transit to the destination. Once all such nodes
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Figure 5.2: Predicting the path from S to D in keeping with customer<peer<provider

preferences. Blue nodes are down nodes, and pink nodes are up nodes. Bold lines go from

customers to their providers, dashed lines connect peers, and faded lines go from providers

to their customers. Graph traverses all the customer-to-provider edges in the first phase to

finalize routes from 3, 4, and 6 to D. Only peering links are traversed in the second phase

making 2 choose a path through 3 over a shorter one via 6. Finally, edges from providers

to their customers are traversed.

have been visited and their best paths discovered, I then allow the algorithm to reach any

additional nodes that can be reached only using peering; by construction, only one peering

is traversed. Finally, I allow the algorithm to use any link (e.g., provider links) to reach all

remaining addresses. This procedure enforces the preference of any AS to attempt to first

route through one of its customers, then through one of its peers, and finally through one

of its providers. Figure 5.2 illustrates these three phases.
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Evaluation: As I show in detail in Section 5.8, Graph—despite taking into account many

aspects of default routing behavior—correctly predicts only 30% of the AS paths for my

measured dataset, compared with 70% using the path composition technique on the same

data. 30% accuracy in predicting AS paths is consistent with results in [67].

On the other hand, the storage overhead of Graph is directly proportional to the number

of observed Internet links. In practice, as I demonstrate in the evaluation section, this is

two orders of magnitude more compact than the path composition approach. Thus, the

challenge is improving Graph’s accuracy while keeping its storage advantages.

5.3 Sources of Prediction Error

Graph’s inaccuracies arise partly from its failure to model certain aspects of Internet rout-

ing behavior and partly from errors in inferred AS relationships. In particular, Graph’s

deficiencies are due to the following reasons:

1. Asymmetry: A significant fraction of Internet routes are asymmetric [63]. While

Graph reflects some asymmetry, e.g., due to early exit routing, it does not capture

the full range of asymmetric policy behavior.

2. Inaccurate export policy: If Graph fails to identify a peer-to-peer relationship between

a pair of ASes, then it would allow an overly lenient export policy, predicting non-

existent routes that will be filtered in practice.

3. Incorrect local preferences: An AS’s customer may be a provider for specific paths,

and incorrect local preferences could result in an AS selecting a less preferable route,

e.g., via a customer.

4. Traffic engineering: ASes may engineer routes so as to ensure that their customer

traffic use better routes, e.g., to avoid congestion.

The next four sections describe how I address each of these challenges to improve upon

Graph.
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5.4 Addressing asymmetry

In the previous chapter, due to the asymmetric nature of Internet routing, I observed

that path prediction accuracy significantly improves with the addition of paths originating

from the source to the atlas. Similarly, in this case, I add links observed on paths from

end-hosts to the graph atlas. To reduce the likelihood of predicting non-existent routes,

I split the graph into two subgraphs: TO DST consists of all directed links observed on

traceroutes from vantage points to all prefixes, and FROM SRC consists of all directed

links on traceroutes from participating sources. For each IP address, I introduce a directed

edge from its corresponding node in FROM SRC to its corresponding node in TO DST. I

then predict the route using the Dijkstra-style algorithm used in Graph that backtracks

from the destination node in TO DST to the source node in FROM SRC. If I fail to find

such a route, a likely scenario if the atlas lacks sufficient paths from the source prefix,

then I attempt to find a path from the destination node in TO DST to the source node

in TO DST. For both the source and the destination, their absence from either plane is

handled by considering an IP address in the same prefix instead.

The technique described above transitions between the two planes only at a single IP,

but I also allow transitions between two IPs on the same router or in the same PoP since in

a given AS, routers in a PoP typically have similar routing. For this, I use the clustering of

router interfaces described in the previous chapters and introduce directed edges between

pairs of IPs belonging to the same cluster. For each pair of nodes x and y such that x

belongs to FROM SRC and y belongs to TO DST and x and y are in the same cluster,

there is a directed edge from x to y. It is straightforward to verify that, by construction,

routes in this graph transition from FROM SRC to TO DST at most once. In the current

implementation, I limit any route to at most one unobserved transition within any cluster.

This can be further extended by representing each cluster as a single graph vertex. Figure

5.3 illustrates the two-plane approach.
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Figure 5.3: Atlas of links is divided into two planes to account for routing asymmetry. One

plane comprises links measured on paths from vantage points to all prefixes and the other

contains links seen on paths contributed by end-hosts.

5.5 Export Policies

As mentioned above, Graph suffers from the problem of predicting some non-existent

routes, especially routes that would be filtered given accurate AS relationships. Therefore,

instead of explicitly distilling the AS relationships from the observed routes, I instead use

the export policies inferred in Section 4.6.2. The three-tuple check that incorporates the

inferred export policies is enforced as follows. During path prediction, I backtrack from AS2

to its neighbor AS1 only if AS2’s already determined successor towards the destination, say

AS3, is such that the three-tuple (AS1, AS2, AS3) was seen on one of the observed paths.
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5.6 AS preferences

Recall that I infer AS relationships and incorporate the customer<peer<provider preference

order in the route prediction algorithm. Unfortunately, AS relation inference by itself is

difficult and error-prone. For example, AS relationship inference based on Gao’s algorithm

[27] predicts that half of the edges observed between the top hundred ASes ranked by degree

correspond to sibling relationships, which seems rather implausible. The 3-tuple check by

itself is not sufficient; although it ensures that predicted routes consist only of observed

tuples, it does not take AS preferences into account when multiple options are available.

I use a relationship-agnostic method to infer AS preferences based only on observed

routes. I infer these preferences using the entire set of observed paths, but I include only

the results of the inferences within the compressed link-level representation of the atlas.

The technique works as follows. For each observed AS route r, let r1, . . . , rm be the set of

alternative routes available from the source (I discuss how to compute the alternatives in

the next paragraph). For each alternate route ri, if r and ri share the first k ASes but differ

at the (k + 1)’th AS, then the k’th AS is said to prefer the (k + 1)′th AS on r over the

(k+1)′th AS on ri. Each alternative route in the set r1, . . . , rm similarly yields a preference.

I generate the set of alternative routes by leveraging the path composition technique

and applying it to the set of observed routes. Given an observed path from a source to a

destination, I ignore the observed path and generate alternative routes by composing path

segments. Comparing the actual route with the alternative routes that are of the same AS

length yields a count on the number of times I observed ASi preferring a route through a

neighbor ASj over a route through ASk.

I store the preferences obtained above as 3-tuples (AS1, AS2 > AS3), where AS1 prefers

a route through AS2 over a route through AS3 when both routes are of the same length.

In Figure 5.4, the path 1 − 2 − 3 − 4 is selected over the path 1 − 5 − 3 − 4 because of a

preference (1, 2 > 5). In some cases, I observe both 3-tuples (AS1, AS2 > AS3) and (AS1,

AS3 > AS2). So, I include the preference (AS1, AS2 > AS3) only if it was observed at least

three times as often as the preference (AS1, AS3 > AS2). If not, I ignore both preferences;

I conjecture that such wavering preferences are likely due to load balancing by AS1.
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Figure 5.4: Predicting the path from S to D. Thicker lines show preferences, dotted lines

show non-provider links, and dark lines show the prediction. The path 1− 5− 4 cannot be

chosen because the 3-tuple does not appear and 1− 7− 4 cannot be chosen because 7 is not

a provider for 4. 1− 2− 3− 4 is predicted because of 1’s preference for 2 over 5.

AS preferences could also be independent of AS path length, i.e., an AS might prefer a

path through one of its neighbors over another even if the path through the former is longer.

My path prediction algorithm, which emulates Dijkstra’s shortest path algorithm, cannot

model such preferences. Incorporating such AS preferences into the model would necessitate

a prediction algorithm that closely tracks BGP. Not only would such an algorithm incur

a longer runtime to predict routes, because unlike the shortest path algorithm every edge

might be traversed multiple times, but also my evaluation in Section 5.8 shows that my

model seldom predicts an incorrect AS path length.

5.7 Incorporating traffic engineering

In many cases, I observe an edge from AS1 to AS2 on some route in the atlas, but never

see this edge on a route terminating at AS2, i.e., when the destination is in AS2. In other

words, the path segment (AS1, AS2, AS3) is seen on routes but never does a route end



66

with the segment (AS1, AS2). The optimizations described above, the 3-tuple check and

AS preferences, are insufficient to handle such cases.

To address this problem, I explicitly maintain information about provider ASes. For each

AS, I determine its upstream neighbor ASes, i.e., the set of ASes observed immediately prior

to this AS in the atlas. I also determine the set of providers for each AS, i.e., the set of

ASes observed upstream of this AS when it is the origin. For the latter, I use both AS

paths corresponding to the observed paths measured from my vantage points as well as

BGP snapshots provided by RouteViews [53], RIPE [70], GEANT [36], and Abilene [90].

For 1,352 ASes out of a total of 27,515 ASes in the atlas, I find the set of providers to be

a proper subset of the set of upstream neighbors. In these cases, the previous algorithms

could give the wrong path. I refine the approach further to determine the provider set and

upstream neighbor set on a per-prefix basis. In Figure 5.4, the path 1 − 7 − 4 cannot be

selected, even though it is shorter, because 7 is not a provider for 4.

I store the above information as follows. For ASes with identical provider and upstream

neighbor sets, nothing needs to be stored. For each AS that has the same set of providers for

all of its prefixes, the set of providers for the AS is explicitly stored. For each AS for which

the set of providers varies across its originated prefixes, I partition the prefixes into disjoint

sets such that the prefixes within a partition have the same provider set and explicitly store

this provider set.

5.8 Evaluation

In this section, I evaluate the accuracy of the graph-based path prediction algorithm and

study the contribution that each of the algorithm’s components makes towards its predictive

ability. I also quantify the storage requirements of the graph-based atlas and the other data

required by the prediction algorithm, the stationarity of this data across days, and how the

atlas would grow with additional vantage points.

5.8.1 Measurement data

I again leverage PlanetLab nodes as vantage points for gathering the atlas. The atlas I

use in this evaluation comprises traceroutes from 197 PlanetLab nodes to one destination
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Table 5.2: Breakdown of sizes of different components of graph-based atlas.

Dataset Number of entries Size on disk (in MB)

Inter-IP links 905K 3.27

IP to cluster mapping 234K 0.61

Prefix to AS mapping 247K 1.44

Inter-cluster links 309K 2.69

AS three-tuples 2.15M 1.76

AS preferences 9K 0.03

Provider mappings 20K 0.60

Total 10.40

each in 142K prefixes. All of these traceroutes were gathered over the course of a day.

234K distinct IP addresses are present in the atlas, with 905K links between them. These

addresses and links map to 84K clusters with 309K inter-cluster links. The dataset obtained

by combining these inter-IP links with inter-cluster links annotated with latencies and loss

rates (I deal with measuring properties of inter-cluster links in Chapter 6), observed AS

3-tuples, inferred AS preferences, and the mapping of ASes to their providers is roughly

10MB in size. Table 5.2 shows the size associated with each of these components of the

dataset; the inter-IP links constitute most of this data.

From the 197 vantage points, I choose a subset of 37 at random as representative end-

hosts. I pick 100 random traceroutes performed from each of them. After discarding paths

that did not reach the destination or have AS-level loops, I am left with a validation set of

2816 paths. To predict the paths from one of the 37 sources, I include all traceroutes from

the remaining 196 vantage points in the TO DST plane and 100 other randomly chosen

traceroutes from this source in the FROM SRC plane.
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Figure 5.5: AS path prediction accuracy for measured traces as components are incorporated

into the path prediction algorithm. Graph is the algorithm described in Section 5.2, and

path-based is the path composition algorithm without the three-tuple check.

5.8.2 Can the algorithm predict AS paths accurately?

I evaluate the accuracy of the graph-based algorithm’s ability to predict AS paths in my

validation set. Figure 5.5 shows the improvement in accuracy of AS path prediction as

each optimization is incorporated into the Graph algorithm. The fraction of paths for

which I predict the AS path exactly right increases from 31% with Graph to 70% with

all components of the algorithm included. Each of the four techniques added to Graph

significantly improves its ability to predict paths. In fact, my final predictive model achieves

the same AS path accuracy as the path composition technique without the three-tuple check,

which uses a path-based dataset two orders of magnitude larger than the link-based atlas.

Furthermore, the graph-based path prediction outdoes path composition in this setting in

the ability to predict AS path length.
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Figure 5.6: Increase in size of Internet atlas with addition of traceroute measurements

from end-hosts. The core set of vantage points (PlanetLab nodes) issue traceroutes to

destinations in 140K prefixes each. One end-host in each of the 100K edge prefixes is

assumed to contribute 100 traceroutes.

As in Chapter 4, I leave the evaluation of path prediction accuracy at cluster-level for

future work.

5.8.3 Does the atlas scale with end-host measurements?

Path prediction relies on measurements from end-hosts for improved prediction accuracy.

This is borne out by the improvement in path prediction accuracy seen in Figure 5.5 when

routing asymmetry is accounted for in the prediction algorithm. However, adding in more

measurements could significantly inflate the size of the atlas. This would put into question

the basic tenet of path prediction using an atlas of links—is the atlas still tractable if it

includes end-host measurements?

To study this question, I use the DIMES measurement infrastructure [75]. The DIMES

project runs an Internet measurement agent on a few thousand end-hosts distributed world-
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wide. I issued traceroutes from 845 DIMES agents to 100 randomly chosen destinations each

over the course of a week in August 2007. This is representative of how we envision end-

hosts integrating themselves into the information plane—end-hosts in each prefix contribute

a few traceroutes to augment the comprehensive measurements gathered from PlanetLab.

As stated previously, measurements from PlanetLab find approximately 900K links.

Figure 5.6 plots the number of inter-IP links in the atlas as measurements from new vantage

points are incorporated into it. The first 197 vantage points in the figure are the PlanetLab

nodes I use to build the atlas and DIMES agents account for the remaining. Including the

measurements from the 845 DIMES agents into the atlas added approximately 30K links

in total. Extrapolating, including traceroutes from end-hosts in all 100K prefixes at the

Internet’s edge would increase the number of links in the atlas from 900K to approximately

4M, a five-fold increase.

5.8.4 How stationary is the atlas over time?

My goal in developing an algorithm for path prediction on a graph-based atlas of the Internet

is to enable distribution of a map of the Internet to end-hosts so that they can make

performance predictions. Since routing in the Internet is not static, end-hosts would need

to refresh their local atlas periodically.

To evaluate how often this refresh is necessary, I generated a daily atlas for 15 successive

days. I then compared the atlas for each day during this period with that gathered on the

first day. Figure 5.7 shows the difference in the set of inter-IP links observed across days;

as seen in Table 5.2, other components of the atlas—the set of AS 3-tuples, AS preferences,

and provider AS mappings—are significantly smaller and are stationary over long periods.

The difference between a pair of atlases is computed as the union of the set of links removed

from the first atlas and the set of new links added to the second one. I did not measure the

stability of link properties.

A 20% change is observed between the atlases of the first and second day, but the flux

in atlases observed thereafter is lesser. I believe the change in atlases between successive

days is predominantly due to load-balancing within ASes. This is borne out by the fact
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Figure 5.7: Fractional increase in number of inter-IP links on ith day compared to the atlas

on the first day.

that approximately 90% of the new links observed between any pair of consecutive days is

constituted by intra-AS links.

5.8.5 Improved Path Composition Technique

The techniques discussed in this chapter are also applicable to the path prediction approach

that works by composing path segments. I incorporate these techniques into the path

composition algorithm to improve the accuracy of prediction using an atlas of paths. When

two path segments are being spliced together, I check whether the sequence of ASes prior to,

at, and after the point of intersection exists in the database of 3-tuples. I also ensure that

the AS preferences detected are enforced when multiple candidate intersections pass the

3-tuple check. Figure 5.8 shows that these modifications to the path composition technique

increase its ability to predict AS paths from 70% to 81%.
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Figure 5.8: AS path prediction accuracy of the path composition technique with the Min

AS path, Min RTT policy after incorporating inferred routing policies for ASes.

5.9 Summary

Path prediction by composition of path segments requires as input an atlas of measured

paths, whose size will blow up as measurements are contributed by more vantage points.

The size of a path-based atlas is proportional to the number of vantage points times the

number of destinations probed times the average path length. With my current set of

vantage points and destinations, the size of such an atlas is over 1GB after compression. As

more vantage points contribute measurements, path prediction accuracy will increase, but

at the cost of blowing up the size of its atlas.

Instead, in this chapter, I developed a model of path prediction that operates on an

atlas of Internet links. The prediction algorithm that implements commonly known facets of

Internet routing—shortest AS path, valley-free AS paths, and early exit routing—predicts

AS paths with only 30% accuracy. To improve the prediction accuracy, I augment the

algorithm and its input with four optimizations—1) I account for routing asymmetry by
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differential treatment of links observed on paths measured from end-hosts as opposed to

those observed on paths from vantage points to all destinations, 2) I account for observed

routing behavior by storing all sequences of three successive ASes seen on measured paths,

3) I detect every AS’s preferences amongst its neighbors, and 4) I store for every AS,

the subset of its upstream neighbors that serve as its providers. Incorporation of these

changes significantly improves the AS path prediction accuracy obtained with the graph-

based algorithm.
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Chapter 6

MEASURING LINK METRICS

The communication between a pair of end-hosts on the Internet typically involves an

exchange of packets between the hosts. Packets travel from the source to the destination, and

responses travel back from the destination to the source. Thus, the quality of communication

depends on the properties of the links traversed on the forward path through the Internet

from the source to the destination and on the reverse path back. In Chapters 4 and 5, I

described the algorithms I developed to predict the path between arbitrary end-hosts. In

this chapter, I examine the remaining piece of the puzzle for predicting path performance—

estimating properties of links.

6.1 Overview

The impact of intra-PoP links on path performance is minimal. Packets incur sub-millisecond

latencies while traversing links between routers in the same PoP. Also, intra-PoP links are

typically significantly over-provisioned compared to long distance links, and so packets are

rarely dropped or subjected to queueing delays on such links. Therefore, I focus on measur-

ing the properties of inter-PoP links. I use the algorithms described previously in Section 4.5

to cluster together router interfaces in the measured topology that belong to the same PoP

in an AS and measure the properties of inter-cluster links thus discovered. Table 6.1 sum-

marizes the various techniques employed to measure link properties such as latency, loss

rate, and bandwidth capacity.

The latency inference techniques I use when paths are predicted using the path com-

position approach and using the graph-based approach are different, and I describe these

separately. I then outline the measurement techniques I employ to measure loss rates of

links. The techniques for measuring latencies and loss rates of individual links are also

applicable to path segments. I follow up with a description of the setup I use to orchestrate



75

Table 6.1: Summary of techniques employed to measure latency and loss rate of links and

path segments.

Technique Description Goal Section

Traceroutes

from vantage

points

Traceroutes launched for gathering topol-

ogy information also provide latencies to

intermediate hops

Measure latencies

of path segments

Section 6.2

Record-route

enabled

probes

Perform record-route enabled traceroutes

and compare first hop on reverse path to

last-but-one hop on forward path

Detect symmetry,

Measure link la-

tency

Section 6.3.1

UDP probes Send UDP probes and compare the

source address of the response with the

address probed

Detect symmetry,

Measure link la-

tency

Section 6.3.1

IP timestamp

probes

Send ICMP probes with IP timestamp

enabled to detect the presence of an in-

terface on the reverse path

Detect symmetry,

Measure link la-

tency

Section 6.3.1

Pings be-

tween van-

tage points

Issue pings between all vantage points,

log timestamps at the source and desti-

nation of every ping, and compare the

forward and reverse one-way delays

Synchronize

clocks of vantage

points

Section 6.3.2

Spoofed

probes

Probe interface with source address set to

another vantage point which has a sym-

metric path to the interface

Measure one-way

path latency

Section 6.3.2

Large ICMP

probes

Send 100 1KB ICMP probes from vantage

points to an interface

Measure one-way

path loss rate

Section 6.4.1

Frontier

search

Perform breadth-first search on measured

topology from all vantage points

Distribute link

measurements

Section 6.4.2
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the measurement of link properties from my vantage points. I conclude this chapter with

an evaluation of my ability to estimate path properties using the measured link properties

and the path prediction techniques described in previous chapters.

6.2 Measuring path segment latency

Recall that the path composition approach for predicting the route from a source S to a

destination D works by splicing a path segment S.I with a path segment I.D. To estimate

the one-way latency of S.I.D, i.e., the latency that a packet would incur while traversing

the path, I estimate the latency along the segments S.I and I.D and sum them up.

The path segment I.D is considered in the path composition technique only when it

has been observed on a traceroute from some vantage point V . Thus, the traceroute from

V that contains the segment I.D would include RTTs from V to I and D. Using these

RTT measurements, I estimate the latency from I to D as RTT(V,D)/2 − RTT(V, I)/2.

Note that this implicitly assumes that the path from V to D is symmetric (or at least the

portion of the path that spans from I to D), which is not always true. To account for the

error introduced by path asymmetry into the latency estimate for a path segment I.D, I

leverage the observation that the same path segment may have been observed on traceroutes

from multiple vantage points to D. Some of these traceroutes may correspond to symmetric

paths, and others may not. Every traceroute on which the path segment was observed yields

a sample based on the formula above for the segment’s latency. I estimate the latency of

the path segment as the median of these samples so as to discard outliers introduced due

to path asymmetry.

Similarly, the path segment S.I is observed either on a traceroute from a vantage point to

a passive client, or on a traceroute from an active client. The former case is identical to that

of estimating the latency of the segment I.D as above. In the latter case, each traceroute

from S on which the segment S.I was observed yields a latency sample RTT(S, I)/2, and I

consider the median of such samples as the estimate for the segment’s latency. Even with

access to traceroutes from the source of the path segment S.I, it is hard to estimate the one-

way latency along the segment because traceroute records only round-trip measurements of

latency.
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Note that the output of traceroute contains RTTs to each router interface on a path,

but the path composition technique identifies intersections at the granularity of clusters.

Hence, when a measured route traverses multiple router interfaces in the same cluster, I use

the RTT to the cluster to be the minimum of the RTTs measured to the interfaces in this

cluster. Since routers in the same cluster are typically geographically co-located, RTTs to

interfaces in a cluster from the same vantage point are usually similar.

6.3 Measuring link latency

Predicting route metrics, especially latency, is much harder with a graph representation

of the atlas, as compared to storing the original set of measured routes. The graph-based

approach for path prediction maintains an atlas of inter-IP links. In this case, I estimate

the latency along a predicted path by summing up the latencies of all the links on the path.

To enable this, I store latency estimates for the corresponding inter-cluster links—several

inter-IP links map to the same inter-cluster link. In this section, I focus on performing

measurements to accurately determine latencies of inter-cluster links.

Unfortunately, because of the high variance seen across the latency estimates for a link

when it is observed along multiple traceroutes, the error introduced by adding up latency

estimates for individual links is significantly higher than that obtained by adding latency

estimates for longer segments. As I later show in Section 6.5, 40% of links display a variance

of more than 20ms, with several links showing a variance greater 100ms!

I apply the following heuristic to reject outliers: if a link (x, y) occurs on a traceroute

from s, and the RTT from s to y is t, then the latency of link (x, y) can be at most t. If a

traceroute from another source or to another destination traverses the same link and yields

a link latency estimate greater than t, I discard that sample when computing the median

latency for the link. Although the constraint improves prediction accuracy, the absolute

error is still high, making the case for more accurate measurement of link latencies.

To enable accurate measurement of link metrics, I supplement the above heuristic with a

two pronged approach. First, I use several complementary techniques to identify symmetric

paths—paths for which I can more easily get accurate data using round-trip measurements.

Second, I measure the latencies of other links that do not appear along symmetric routes,
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Symm trace(P, x):

1. Perform traceroute and record-route enabled pings from P to x.

2. If x is within 8 hops of P , obtain the the first hop on the reverse route from x to P

using the IP record-route option (usable up to 9 hops).

3. If the first hop on the reverse route is in the same cluster as the last-but-one hop on

the forward route, declare the last link to be traversed symmetrically on the route to

x.

Figure 6.1: Procedure to identify symmetry using traceroute and IP record-route.

Symm UDP(P, x):

1. Send a probe from P to x such that its TTL expires at x. The ICMP response will

contain the outgoing interface d on the reverse route.

2. If d is the same as the last interface observed on the traceroute from P to x, we know

that the last link is symmetric

Figure 6.2: Procedure to identify symmetry using TTL-limited UDP probes.

by leveraging measurements of symmetric paths.

6.3.1 Identifying symmetric links in routes

I combine three separate novel procedures to identify which links are traversed symmetri-

cally. The procedures each rely on a different type of probe: 1) record-route enabled ICMP

probes, 2) UDP probes, and 3) timestamp enabled probes. Each of the three works only

in some cases, due to protocol and router configuration limits. However I show that, in

combination, they serve as a useful toolkit to identify symmetric links.

Record-route ICMP Probes: An ICMP probe with the record route IP option enabled

records the interfaces encountered by the probe along its forward and reverse paths. IP

limits the number of recorded interfaces to be 9. So as long as the far end of a probed link is

within 8 hops of a vantage point, I can use the technique shown in Figure 6.1 to determine
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Symm timestamp(P, x):

1. Let d be the last-but-one hop from P to x. Send a probe from P to x with the IP

timestamp prespec option enabled for d, x, and d in that order.

2. If all three timestamp fields are filled, we know that d lies on the forward route from P

to x because d filled in its timestamp before x. We also know that d is on the reverse

route from x to P since d filled in its timestamp after x, thus implying that the link

between d and x is traversed in a symmetric manner.

Figure 6.3: Procedure to identify symmetry using the IP timestamp option.

whether the link is traversed in a symmetric way.

The caveat of this technique is that from each vantage point, only a fraction of clusters

will be reachable within record route’s limit of 9 hops.

UDP Probes: A router responding to UDP probes fills in the IP address of the outgoing

interface in its response. On the other hand, when a router receives a TTL-expired message,

e.g., as part of a traceroute, it fills in the IP address of the incoming interface in its response.

I can use these pieces of information in the technique shown in Figure 6.2 to identify when

the first link on the reverse path is the same as the last link along the forward path.

This technique suffers from the caveat that many routers do not respect the requirement

of responding to UDP probes with the outgoing interface. I restrict this technique to those

routers that fill in different outgoing interface values for probes from different vantage points.

Probes to query router timestamps: IP allows probes to query the timestamps of a

set of specific routers along a path. I use timestamp query probes in the technique shown

in Figure 6.3 to again identify symmetric traversal of links.

Many ISPs however not only configure their routers to ignore the IP timestamp option

but also drop packets with this option turned on.

All of the above techniques identify links (x, y) that packets traverse in a symmetric

manner. For symmetric links, I estimate the latency of (x, y) as half the difference of the

round trip delays RTT (P, x) and RTT (P, y) along the route to D. Whenever I identify a

particular link as symmetric in at least one route, I consider only identifiably symmetric
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Clock diff(A,B):

1. Ping B from A, and receive the reply to measure the RTT d.

d = d1 + d2 + c3 − c2 (6.1)

2. Let c1 be the value of the clock on A when the ping probe was sent out and c2 be the

value of the clock on B when the probe is received.

c2 = c1 + d1 + δ (6.2)

3. Let c3 be the value of the clock on B when the ping-reply was sent out and c4 be the

value of the clock on A when the ping-reply is received.

c4 = c3 + d2 − δ (6.3)

4. By the definition of RTT, we have:

d = c4 − c1 (6.4)

5. If equations 6.1, 6.2, 6.3, and 6.4 remain consistent after adding the constraint d1 = d2,

compute the corresponding value of δ. Else, return ⊥.

Figure 6.4: Procedure to measure clock difference between vantage points A and B.

measurements of that link (which may be from different vantage points) when calculating

the median to assign as the link latency. The techniques complement each other in that

a link is symmetric if any of the techniques is successful. A path segment is symmetric if

every link along it is symmetric.

6.3.2 Measuring link latencies using spoofed probes

I now propose a distributed technique to measure link latencies, as well as one-way delays

of Internet routes, even for asymmetric links. To do so, I use measurements to synchronize

clocks across the vantage points, issue probes with spoofed source address values, and

estimate one way delays by taking into account measurements of known symmetric paths.
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A B

c2 = c1 + d1 +  

c1

c3

c4 = c3 + d2 -  

d = d1 + d2
 + c3 - c2 

δ

δ

PING

PING-REPLY

Figure 6.5: Computing the clock difference between nodes A and B connected by a sym-

metric path. δ is the clock skew between A and B. If d1 = d2 and all the equations remain

consistent, δ = c2−c1+c3−c4
2 .

I first outline how I synchronize clocks across vantage points and then describe how I use

spoofed measurements to determine one-way delays.

Synchronizing clocks

Let A and B be two end-hosts whose clocks need to be synchronized. Let the clock difference

between them be δ. Let the one-way delay from A to B be d1 and that from B to A be d2.

The procedure in Figure 6.4 exactly computes δ when feasible. The timing diagram in

Figure 6.5 illustrates the algorithm. Although equations 6.1, 6.2, 6.3, and 6.4 in Figure 6.4

have three unknowns d1, d2, and δ, they are not linearly independent. However, if the

equations remain consistent with the additional constraint d1 = d2, then I can solve for

δ and know that d1 was indeed equal to d2. On the other hand, if d1 were not equal to
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d2, then the equations become inconsistent and I can not compute δ. Thus, if the one-way

delays in either direction are equal, Clock diff infers as much and also computes the clock

difference, using just one ping! To minimize error in δ, I repeat Clock diff five times and

use the value returned only if multiple trials return values within 5 ms of each other. Since

Clock diff does not depend on router support, its implicit determination of symmetry

along a path works much more often than explicitly trying to determine symmetry using

the techniques described earlier.

By iteratively applying Clock diff, one can compute the clock difference between pairs

of vantage points even if they have an asymmetric route. Let C and D be one such pair. If

there exists some vantage point A such that both A,C and A,D have symmetric forward

and reverse path delays, then it is straightforward to compute the clock difference between

all three nodes. My use of clock skew only if consistent across multiple trials minimizes

propagation of error across nodes. Of the 203 PlanetLab sites I used in a sample run of

clock synchronization, Clock diff helped synchronize clocks between 177 sites.

Spoofing technique to determine one-way latency

Finally, I need to determine the one way latency along routes. Let (x, y) be a link observed

from some vantage point P . The latency of (x, y) is the difference between the one-way

delays L(P, x) and L(P, y). Figure 6.6 gives the procedure to measure (P, x) by first syn-

chronizing clocks on the vantage points and then leveraging round-trip measurements of

previously identified symmetric paths. The technique is also illustrated in Figure 6.7.

Note that the technique outlined above handles the general case where the vantage point

P ′ is not capable of issuing spoofed probes. This generalization is motivated by the fact

that only a few vantage points can issue spoofed probes. For example, some of the nodes

on the RON testbed permit spoofing, while none of the PlanetLab nodes do so.

6.3.3 Putting latency samples together

For each link, I combine latency samples from multiple sources as follows. First, I consider

the latency samples obtained from symmetric traversals of the link. If there are multiple
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Latency(P, x):

1. Synchronize clocks between as many vantage points as is feasible (§ 6.3.2).

2. Identify a vantage point P ′ that has a symmetric route to x (§ 6.3.1). Measure the

one-way delay L(x, P ′) as half of RTT(P ′, x).

3. Pick a vantage point R from which spoofed probes can be sent and that is synchronized

with P ′. Send a probe from R to x with the source spoofed as P ′ to measure L(R,P ′) =

L(R, x) + L(x, P ′). Subtract the known value of L(x, P ′) to obtain L(R, x).

4. Send a probe from R to x with the source address spoofed as P to measure L(R,P ) =

L(R, x) + L(x, P ). Subtract the known value of L(R, x) to obtain L(x, P ).

5. Measure RTT(P, x). Subtract the known value of L(x, P ) to obtain L(P, x) =

RTT(P, x) + L(R,P ′)− L(R,P )− RTT(P ′,x)
2 .

Figure 6.6: Procedure to measure one-way latency from a vantage point P to a router

interface x.

paths on which the link was traversed in a symmetric manner, I consider the median of the

link latency estimates obtained from all of such paths as the link latency. In the absence

of any symmetric traversals of the link, I consider the link’s latency to be that measured

using spoofed probes. Finally, if the link’s latency could not be measured using spoofed

probes, e.g., because vantage points with symmetric paths to either end of the link could

not be identified, I fall back to the median of the latency samples obtained from traceroutes,

throwing out samples that violate the heuristic bound.

6.4 Measurement of other link attributes

I next outline the details of how loss rate is measured. Previous research has proposed

several ways to measure each of these properties; my goal is not to evaluate the various

approaches but rather to integrate these techniques into a useful prediction system. These

techniques are amenable to replacement as the state-of-the-art is advanced by the Internet

measurement community.
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x

P'

R
3. Spoof as P to 

measure L(R,x) + L(x,P)

1. Ping x to
measure 

L(x,P') = RTT(P',x) / 2

2. Spoof as P' to 
measure L(R,x) + L(x,P')

4. Ping x to
measure 

L(P,x) + L(x,P)

Normal probe

Spoofed probe

Figure 6.7: Spoofing technique to measure one-way latency from P to x. P ′ is known to have

a symmetric path to x, and hence, L(P ′, x) = L(x, P ′). R is able to send source-spoofed

probes.

6.4.1 Measuring Loss Rate

Any link in my atlas is one observed on the path measured from one of my vantage points

to some destination. In my measurement of link loss rates, I assume that packet loss

is independent across links. Therefore, the key challenge to inferring the loss rate on a

particular link is to measure loss rates along the forward paths from the vantage point from

which the link was observed to routers at either end of the link. These one-way loss rates

can then be used to infer the link loss rate.

To determine the loss rate of a link (x, y) observed on the path from vantage point P to

destination D, I measure the one-way loss rates along the path segments (P, x) and (P, y). I

then estimate the loss rate that can be attributed to link (x, y) using the fact that a packet

is not dropped on the path segment (P, y) if the packet is dropped on neither (P, x) nor

(x, y), i.e., (1− loss(P, y)) = (1− loss(P, x)) · (1− loss(x, y)).

I perform loss rate measurements along path segments from vantage points to routers



85

in the core by sending out probes and determining the fraction of probes for which I get

responses. I use the simple method of sending TTL-limited singleton ICMP probes with a

1000-byte payload. When the probe’s TTL value expires at the target router, it responds

with a ICMP error message, typically with a small payload. When a response is not received,

one cannot determine whether the probe or the response was lost, but there is some evidence

from previous studies that small packets are more likely to be preserved even when routers

are congested [49]. I therefore currently attribute all of the packet loss to the forward path;

the development of more accurate techniques is part of future work. To account for noise

in measurements, I measure the loss rate along a path segment by sending out 100 probes

along the segment and recording how many are lost.

6.4.2 Orchestrating the Measurement Tasks

After topology measurements have been gathered from all vantage points, I operate on a

compact routing topology, where each node in the topology is a cluster of interfaces and

each link connects two clusters. I then seek to determine the latency and loss rate of each

inter-cluster link that can be used to predict path performance. To achieve this goal, a

centralized agent is used to distribute the measurement tasks such that each vantage point

is assigned to repeatedly measure only a subset of the inter-cluster links. The centralized

agent uses the compact routing topology to determine the assignments of measurement

tasks to vantage points, communicates the assignment, and monitors the execution of the

tasks.

There are three objectives to be satisfied in assigning measurement tasks to vantage

points. First, I want to minimize the measurement load by measuring each link attribute

from only a few vantage points (I employ more than one to correct for measurement noise).

Second, the measurement should be load-balanced across all vantage points, i.e., each van-

tage point should perform a number of measurements proportional to its capacity. Third,

in order to measure the properties of each link as accurately as possible, links are preferably

measured from the vantage point that is closest to it.

I have developed a “frontier” algorithm to perform the assignment of tasks to vantage
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points. The algorithm works by growing a frontier rooted at each vantage point and having

each vantage point measure only those links that are at its frontier. The centralized agent

performs a Breadth-First-Search (BFS) over the measured topology in parallel from each of

the vantage points. Whenever a vantage point is taken up for consideration, the algorithm

performs a single step of the BFS by following one of the traceroute paths originating at the

vantage point. If it encounters a link whose measurement task has been assigned already

to k other vantage points (k is a threshold chosen based on desired level of redundancy), it

continues the BFS exploration until it finds a new link that has not been seen before. This

process continues until all the link measurements have been assigned to some vantage point

in the system. Improving the frontier algorithm to account for factors such as variation in

access link bandwidth paths across vantage points and preferentially measuring a link along

a symmetric path is future work.

The centralized agent uses the above algorithm to determine the assignment of tasks

and then ships the tasklist to the respective vantage points. Each target link is identified

by the traceroute path that the vantage point can use to reach the link and by its position

within the traceroute path. If a vantage point is no longer capable of routing to the link

due to route changes, the vantage point reports this back to the centralized agent. The

centralized agent accounts for changes in routing by assigning every link to be measured by

multiple vantage points.

6.5 Evaluation

In this section, I evaluate my estimates of link metrics and path properties. First, I evaluate

the relative improvement in link latency estimates obtained using the proposed latency mea-

surement techniques. Second, I use the measured link latencies and loss rates in combination

with the path prediction techniques described in previous chapters to estimate end-to-end

latency and loss rate, and evaluate the accuracy of these estimates. All of my validation is

performed on paths between PlanetLab nodes; in the future client measurements, e.g., from

DIMES [75], can be used to broaden the validation set. The number of PlanetLab nodes

used varies with each experiment because of the variable availability of some nodes.
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Figure 6.8: Spread in link latency samples when using my latency measurement techniques

as opposed to using latency samples from traceroutes. Only links with multiple latency

samples are considered, and the spread in samples is computed as the standard deviation

from the median.

6.5.1 Accuracy of link latency estimates

First, I examine the relative improvement in link latency estimates brought about by my

measurement techniques presented in Section 6.3. Figure 6.8 compares the spread in the

latency samples that I consider for a link (those from the most preferred technique that ap-

plies) with the spread observed across all samples, plotting the standard deviation from the

median of the samples. My measurement techniques (Section 6.3) yield multiple estimates

for a link either when a link has multiple symmetric traversals or when I fall back on the

median of samples that satisfy the heuristic bound. The latency samples obtained using

my techniques display significantly less variance. The median standard deviation decreases

from 16ms to 5ms.
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Figure 6.9: Accuracy of end-to-end latency estimates for known intra-PlanetLab paths with

respect to the fraction of links with a symmetry- or spoofing-based latency estimate.

6.5.2 Accuracy of latency estimates for known paths

To evaluate the accuracy of my link latency estimates, I issued traceroutes from each Plan-

etLab node to every other node and considered those node pairs for which I was able to

measure the route in both directions. I estimate the latency between each pair of nodes by

summing up the latencies of links on both the forward and reverse routes. For each path, I

compute the fraction of links for which I had a latency estimate using spoofing or symmetric

traversal. I bin together all paths that have a similar value for this fraction. Figure 6.9 plots

the 95th percentile error in end-to-end latency estimates in each bin, using a bin size of 0.05.

The more my techniques apply to a path, the better my end-to-end latency estimate. The

accuracy of my latency predictions does not show any correlation with the actual latency,

thus ruling out the alternative explanation that paths with a greater fraction of symmetric

links are shorter.
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Figure 6.10: Accuracy of end-to-end latency estimates along paths to arbitrary destinations.

Latency estimates when paths are predicted using both prediction techniques are compared

with estimates obtained with Vivaldi.

6.5.3 Accuracy of latency estimates for predicted paths

Next, I evaluate my ability to estimate latencies along unknown paths, where techniques

from earlier chapters are used to predict the route. With both path composition and

graph-based path prediction strategy, I estimate the latency between a pair of end-hosts by

predicting the forward and reverse routes between these hosts and summing up the latency

estimates of links on these routes. While using the path composition technique described

in Chapter 4 to predict paths, I estimate the latencies of path segments as outlined in

Section 6.2. I then estimate the latency along a predicted path by summing up the latencies

of the segments that are spliced together to produce that path. On the other hand, I estimate

the latency along a path predicted using the graph-based technique (Chapter 5) by summing

up my estimates for the inter-cluster links on the path. Incorporating link latencies from

symmetric traversal of links into the path composition technique is future work.
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I use the same measurement dataset as used in Section 5.8—paths from 37 PlanetLab

nodes chosen at random to destinations in 100 random prefixes each—for evaluation of my

path latency estimates. Figure 6.10 shows the errors in latency estimates obtained using

either path prediction technique. The median latency estimation error with graph-based

path prediction is 11ms. The path composition technique yields an even lower median error

of 6ms, since estimates of latencies along path segments tend to be more accurate than

those of individual links.

I also compare my latency estimation accuracy with that of one of the best existing

coordinate-based systems, Vivaldi [18]. Feeding in the latencies of all paths in the measured

atlas into Vivaldi, I generate 2-dimensional Euclidean coordinates with height vector for all

end-hosts present in the evaluation dataset. I use these coordinates to estimate the latencies

of all paths in the validation set. Figure 6.10 compares the latency estimates obtained

using Vivaldi with the estimates obtained using my techniques. My latency estimates,

both in terms of relative and absolute error, are often better than those yielded by Vivaldi’s

coordinates. For example, 73% of predictions obtained using the path composition approach

are within 20 ms of actual latency, while only 49% of Vivaldi’s are.

6.5.4 Accuracy of path loss rate estimates

I next consider how well I can predict loss rates. I measured the loss rate along each of

the validation paths, and I also estimated the loss rate of each inter-cluster link in the

atlas. I then estimate the loss rate along a path by composing the loss rates of the links

along the predicted path. If the predicted path between a source s and a destination

d goes through a sequence of clusters c1, c2, . . . , ck, then I estimate the end-to-end loss

rate L(s, d) using the link loss rates L(c1, c2), L(c2, c3), . . . , L(ck−1, ck) as (1 − L(s, d)) =

(1 − L(c1, c2)) · (1 − L(c2, c3))...(1 − L(ck−1, ck)). In other words, the probability a packet

is not dropped on the path is equal to the product of the probabilities that the packet

is not dropped on any of the links along the path. Figure 6.11 plots the accuracy of

loss rate estimates obtained. Since coordinate systems, such as Vivaldi, can only estimate

latency, I restrict my evaluation to estimates obtained using both of my approaches for path



91

Figure 6.11: Accuracy of loss rate estimates along paths predicted using both prediction

techniques to arbitrary destinations.

prediction. The loss rate estimates obtained using either approach are reasonably accurate

for the dataset I examine—the fraction of paths with less than 5% error is more than 85%

with the path composition approach, and more than 68% with the graph-based technique.

6.5.5 Accuracy of application-level metrics

Applications such as peer selection and detour routing benefit from the ability to discern

which destinations have low latency from a source. I therefore also assess latency estimation

from the perspective of ranking different destinations in terms of latency from a common

source. To quantify each technique’s predictive ability on this criterion, I use the following

metric. From each source, I determine the 10 closest nodes in terms of actual measured

RTT. I then do the same using estimated latencies and compute the intersection between

the actual and predicted sets of 10 closest nodes. Figure 6.12 plots the cardinality of

this intersection for each source in the validation set used in Section 5.8—paths from 37



92

Figure 6.12: On the dataset comprising paths from 37 PlanetLab nodes chosen at random

to destinations in 100 random prefixes each, accuracy of both path-prediction techniques

and Vivaldi in predicting 10 closest destinations (in terms of delay).

PlanetLab nodes chosen at random to destinations in 100 random prefixes each. My ability

to rank paths using either path prediction technique is significantly better than that of

Vivaldi.

Detecting better latency detours is one of the several applications enabled by my pre-

diction model. To evaluate how well my latency estimates preserve detours, I consider all

measured paths from 35 randomly chosen out of 158 PlanetLab nodes and compute the

benefits that can be obtained for these paths by taking a one-hop detour through any of

the remaining 123 nodes. I estimate the latencies for every path from the chosen 35 nodes

assuming the atlas consists of traces gathered from all other PlanetLab nodes plus paths to

10 random prefixes from this node. In this experiment I use the path composition approach

to make predictions. I then determine for each path the best latency detour path via the

remaining 123 PlanetLab nodes.



93

(a)

(b)

Figure 6.13: (a) Benefits and (b) Losses of choosing detours using predicted latencies. Both

graphs evaluate detours from 35 PlanetLab nodes to arbitrary destinations via 123 other

nodes. Note that both graphs have a log-scale y axis.
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Figure 6.13 compares the predicted detour benefits against the true benefits that exist.

First, the actual detour benefits on the paths I chose for evaluation are comparable with

the benefits cited in [47]. Second, my latency estimates closely model the ground truth.

For significant ratios of detour benefit, the fraction of paths that I predict to have such a

benefit closely matches the actual number. Though I predict a detour that does not exist

for 10% of the paths, only for 1% of all paths the chosen detour stretches the latency of the

path by more than 30%.

Further, I evaluated how predictive of path performance are my estimates of latency

and loss rate in combination. The desired property of these estimates is that they help

distinguish between paths with good and bad performance. I compared the order of all

measured paths from each PlanetLab node in terms of measured and predicted performance.

For each node, I ranked all other nodes in terms of TCP throughput, considering throughput

to be inversely proportional to latency and the square root of loss, using the standard

formula for TCP throughput [61]. These rankings were computed independently using

measured path properties and using my predictions for these properties. Figure 6.14 plots

the correlation coefficient between the actual and predicted rankings across all PlanetLab

nodes. For 80% of the nodes, the correlation coefficient is greater than 0.7. I consider

rank correlation coefficient rather than the simple correlation coefficient for this experiment

because the value of iPlane to distributed applications is more in ordering paths in terms

of performance than producing precise estimates of path properties.

6.6 Summary

Once the forward and reverse paths between a pair of end-hosts has been predicted, one

can estimate the performance between these hosts by composing the properties of the links

on these paths. However, measuring the properties of all links in the Internet involves two

challenges—path asymmetry and scalability.

In this chapter, I proposed and implemented techniques for scalably measuring the la-

tency and loss rates of all inter-cluster links in the measured Internet atlas. My evaluation

showed that my latency measurement techniques that account for path asymmetry yield

significantly better link latency estimates than those obtained with the straightforward ap-
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Figure 6.14: Rank correlation coefficient between measured and predicted TCP throughput

for paths between PlanetLab nodes.

proach of subtracting RTTs from traceroutes. Also, using the measured link latencies and

loss rates in combination with the path prediction techniques outlined in previous chap-

ters, I obtained reasonably accurate estimates of path properties, outperforming popular

coordinate-based systems such as Vivaldi. My estimates for latency and loss rate were seen

to be particularly effective at ranking paths from a source to various destinations and at

identifying the latency benefits that detour routing can provide.

All of the evaluation results in this chapter are however limited to the validation datasets

I consider. Almost all my validation of latency and loss rate estimates are from PlanetLab

nodes. The number of PlanetLab sites—around 300—is orders of magnitudes smaller than

the roughly 100K prefixes at the Internet’s edge, and most PlanetLab nodes are hosted at
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well-provisioned educational institutions. Therefore, since the validation set is not neces-

sarily representative, my results cannot necessarily be generalized. Investigating the appli-

cability of my results on a wider scale is future work.
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Chapter 7

IMPLEMENTATION AND EVALUATION OF iPlane

In this chapter, I put together all the pieces developed in previous chapters to build and

evaluate iPlane, an Internet-wide information plane. First, I provide an overview of iPlane’s

implementation and evaluate its practicality. Second, I describe the interfaces exported by

iPlaneand how applications can use these interfaces to get information about path properties

on the Internet. Finally, I use three example distributed applications—content distribution,

peer-to-peer filesharing, and voice-over-IP—to demonstrate that information from iPlane

can help improve application performance.

7.1 iPlane: An Information Plane

iPlane is a prototype Internet-wide information plane that I have been running and main-

taining since June 2006. iPlane uses BGP paths from RouteViews [53], RIPE [28], GEANT [36],

and Abilene [90] to determine the set of routable prefixes in the Internet. Once every six

months, iPlane refreshes its list of prefixes and probes the .1 address in every /24 address

range covered by these prefixes to discover targets for its measurements. Only addresses

responsive to probes are considered targets. Currently, of the 275K prefixes observed in

iPlane’s database of BGP paths, iPlane has targets in 142K prefixes.

iPlane daily performs traceroutes from every PlanetLab site to a .1 in a random /24 in

each of 142K prefixes. It also performs traceroutes to a random subset of these targets from

each of around 500 public traceroute servers. All of these traceroutes together constitute the

Internet atlas for iPlane’s path predictions both in the path composition and graph-based

models of prediction. The measurements necessary to cluster the interfaces observed into

PoPs are performed once every few months. A typical day’s traceroutes span around 67K

clusters and 400K inter-cluster links.

iPlane also performs daily measurements of the loss rates of the inter-cluster links ob-
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served on the traceroutes issued that day. It performs frontier search on the gathered

atlas, and it distributes the measurement tasks across the PlanetLab nodes. In the cur-

rent deployment, iPlane’s centralized agent schedules and monitors roughly 2700K loss rate

measurements per day, a management load that a single centralized agent can easily bear.

A similar setup is used to collect measurements of link latencies, but those measurements

are performed only once every few months because unlike loss rate, link latency does not

depend on the workload borne by the link. Fault tolerance of the central node is an issue

in distributing and coordinating these measurements across PlanetLab nodes. This can be

addressed by a simple failover mechanism to a standby controller.

7.2 Evaluation

I next evaluate iPlane from two perspectives. First, I study the stationarity of path proper-

ties over time to evaluate if it suffices for iPlane to refresh its map of the Internet once a day.

Second, since iPlane can be feasible only if the measurement load it imposes on its vantage

points is reasonable, I evaluate the rate at which iPlane sources measurement traffic.

7.2.1 Stationarity of Measurements

iPlane’s measurements change over time with changes in the routes in the Internet and

the traffic they carry. I use PlanetLab data to estimate whether it suffices for iPlane to

update its map once a day. Evaluating the stationarity of path properties for non-PlanetLab

destinations is future work.

Over a period of 2 days, I measured the latency and loss rate between PlanetLab nodes

once every 30 minutes. For this study, I used a dataset of 174 PlanetLab sites spanning 29

countries. In every interval, I computed for each node the ranking of all other nodes in terms

of TCP throughput, considering throughput to be inversely proportional to latency and

square root of loss rate. To evaluate the flux in path properties over a 30 minute timescale,

I compared these rankings between adjacent 30 minute intervals. For each PlanetLab node,

I computed the correlation coefficient between the ranking vectors from adjacent intervals

as well as computed the intersection between the top 10 nodes in these ranking vectors. To

compare this with the flux in measurements over longer timescales, I also performed these
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(a)

(b)

Figure 7.1: Stationarity of measurements over different intervals over the course of a day.
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computations across intervals 1 hour, 2 hours, 4 hours, 8 hours, 16 hours and 24 hours

apart.

Figure 7.1(a) shows that the median correlation coefficient between the rankings is

greater than 0.8 across all intervals from 30 minutes to a day. Similarly, Figure 7.1(b) shows

that in the median case, 7 of the top 10 nodes in this ranking are identical on timescales

from 30 minutes to a day. Though these results are only for paths between PlanetLab

nodes, they seem to indicate that there is little value in updating the map more frequently

than once a day, compared to once every 30 minutes. I evaluate stationarity in terms of

ranking of paths rather than stationarity in terms of actual measured or predicted values

because the information from iPlane is primarily intended to help distributed applications

differentiate between good and bad paths.

7.2.2 Scalability

I now discuss the measurement load required for iPlane to generate and maintain a

frequently refreshed map of the Internet. Even though the current deployment refreshes

path and link properties once a day, with the clustering and latency measurements executed

even less often, I quantify the measurement load that iPlane would impose if the refresh

frequency of link properties, such as loss rate, is increased to once every 6 hours.

The measurement tasks performed by iPlane have two primary objectives—mapping of

the Internet’s cluster-level topology and determination of the properties of each link in the

measured topology. Measurement of link properties incurs higher measurement overhead

when compared to the probe traffic needed to perform a traceroute, but scales better. With

more vantage points, the topology discovery traffic per node remains the same, but the

overhead per node for measuring link metrics scales down, allowing the same fidelity for less

overhead per node. This is even though the total number of links discovered would scale

up with increase in vantage points. The measurement load associated with each technique

in iPlane’s measurement apparatus is summarized in Table 7.1, assuming the availability

of 400 PlanetLab nodes at 200 sites. These numbers show that iPlane can produce an

updated map of the Internet’s routing topology every day with as little as 10Kbps of probe

traffic per vantage point, and update the map of link-level attributes once every 6 hours
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Table 7.1: Complexity of measurement techniques used in iPlane, based on the following

assumptions. A UDP/ICMP probe is 40 bytes. A traceroute incurs a total of 500B on aver-

age. The per-link loss rate measurements require 100KB of probe traffic. Topology mapping

measurements are performed from one node in each of the 200 PlanetLab sites typically up,

and loss rate measurements are performed from all the PlanetLab nodes (roughly 400) at

these sites. One node each at 100 PlanetLab sites suffice for clustering measurements.

Measurement

Task

Tool / Technique Frequency Probing rate / node

Topology

Mapping

traceroute Once a day 200 vantage points

× 150K prefixes ×

500B/measurement

— 7Kbps

Clustering UDP probes for source-address-

based alias resolution, ICMP-ECHO

probes for reverse TTLs

One day ev-

ery week

100 vantage points

× 800K interfaces ×

80B/measurement

— 6Kbps

Latency mea-

surements

“frontier” algorithm applied to

cluster-level topology for path as-

signment, UDP, IP timestamp, and

record route probes for symmetry,

spoofed probes for one-way delays

One day ev-

ery week

400 vantage points

× 4000 links ×

160B/measurement

— 0.06Kbps

Loss rate

measure-

ments

“frontier” algorithm for path assign-

ment, TTL-limited probes for loss

rate

Continuous

(every 6

hours)

400 vantage points

× 4000 links ×

100KB/measurement

— 150Kbps
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with around 150Kbps of probe traffic per vantage point. This shows that iPlane imposes

minimal overhead on the vantage points in its current deployment and suggests that iPlane

can refresh the Internet map more frequently.

Note the measurement overhead numbers presented above are without any optimizations.

For example, properties of largely static portions of the Internet need to be probed less often.

However, I currently do not attempt to identify and implement such potential optimizations.

7.3 Query Interface

The query interface exported by iPlane must be carefully designed to enable a diverse range

of applications. My current implementation of the query interface exposes a database-like

view of path properties between every pair of end-hosts in the Internet. For every source-

destination pair, the interface returns a row with iPlane’s predicted path between the hosts

and the predicted latency and loss rate along this path. Any query to iPlane involves an

SQL-like query on this view – selecting some rows and columns, joining the view with itself,

sorting rows based on values in certain columns, and so on. The database view is merely

an abstraction. iPlane does not compute a priori the entire table comprising predictions for

every source-destination pair; instead it derives necessary table entries on-demand.

For example, a content distribution network (CDN) can determine the closest replica to

a given client by selecting those rows that predict the performance between the client and

any of the CDN’s replicas. A suitable replica can then be determined by sorting these rows

based on a desired performance metric. To choose a good detour node for two end-hosts to

conduct VoIP, the rows predicting path properties from the given source can be joined with

the set of rows predicting path properties for the given destination. A good detour is one

that occurs as the destination in the first view and as the source in the second view, such

that the composed performance metrics from these rows is the best. These queries can be

invoked in either of the following two ways.

Query an iPlane Server: Applications that do not wish to incur the costs of download-

ing the annotated map and keeping it up-to-date, can query a remote iPlane service node.

To support such applications, iPlane replicates the annotated map of the Internet across
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a bunch of machines and then provides an RPC interface to the data. Further, as some

applications might need to make multiple back-to-back queries to process iPlane’s measure-

ments, we assist the application in lowering its overheads by allowing it to upload a script

that can make multiple local invocations of iPlane’s library. The current implementation

requires that this script be written in Ruby, as Ruby scripts can be executed in a sand-

boxed environment and with bounded resources [83]. The output of the script’s execution

is returned as the response to the RPC.

The iPlane query server implements the path composition technique for predicting routes

and path properties. I evaluated the overhead of the query server by issuing queries for 1000

source-destination pairs. I issued the queries via RPC from the machine hosting the server

so as to rule out overhead introduced by network latency. When the query server uses the

raw atlas of traceroutes, it has to read portions of the atlas from disk on-demand because

the size of the raw atlas is of the order of gigabytes and cannot be loaded into memory. On a

commodity machine with 4GB of memory, when using an atlas of paths from all PlanetLab

nodes to all BGP prefixes, the average time taken to process a query for a source-destination

pair is of the order of a second. A more complete atlas will only further increase the query

overhead. However, the CLUSTER-TREE algorithm enables the query server to load the

atlas into memory and, as a result, reduces the average overhead per query to the order of

a millisecond.

Download the Internet Map and Process Locally: I have also implemented a library

that provides an interface to download the current snapshot of the entire annotated Internet

map, to process the annotated map, and to export the above SQL-like view. An application

simply links against and invokes the library locally.

The library implements the graph-based prediction technique so as to minimize the size

of the Internet map that a client needs to download. I repeated the same experiment as

above to evaluate the latency overhead of the library. In this setting, the average time taken

to process the query for a source-destination pair is of the order of 500ms. The high overhead

compared to the query server, even though the memory footprint of the graph-based atlas

is significantly smaller, is due to the Dijkstra-style path prediction algorithm. The graph-
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based prediction algorithm traverses most of the nodes in the atlas in predicting the path

between any pair of end-hosts, whereas the path composition technique only considers nodes

on paths to and from the source and destination. Reducing the query overhead of the library

is future work. However, even the current overhead of several hundred milliseconds might

suffice since the library is intended for the setting where each end-host processes its queries

locally, whereas the query server receives remote queries.

7.4 Application Case Studies

My evaluation in Section 6.5 showed that my estimates of path properties such as latency

and loss rate are reasonably accurate. However, since the proof is in the pudding, the

real test for iPlane’s estimates is in whether it improves the performance of distributed

applications. Rather than being perfectly accurate in estimating individual path metrics,

iPlane’s accuracy needs to be good enough to help applications. Arguably, since iPlane’s goal

is to help any end-host in a distributed application differentiate good paths from bad paths,

it is crucial for iPlane to get right its predictions from the end-host to nearby destinations

rather than to precisely predict metrics to destinations far away.

In this section, I show that several popular applications can benefit from using iPlane.

I evaluate three representative distributed services for potential performance benefits from

using iPlane—peer-to-peer filesharing, content distribution, and voice-over-IP.

7.4.1 BitTorrent

I next show how iPlane can enable informed peer selection in popular swarming systems like

BitTorrent. In current implementations, a centralized BitTorrent tracker serves each client

a random list of peers. Each client enforces a tit-for-tat bandwidth reciprocity mechanism

that incents users to contribute more upload bandwidth to obtain faster downloads. The

same mechanism also serves to optimize path selection at a local level—peers upload to many

random peers and eventually settle on a set that maximizes their download rate. Because

reasoning about peer quality occurs locally at each client, each client needs to keep a large

pool of directly connected peers (60–100 for typical swarms) even though at any time only a

few of these (10–20) are actively engaged in data transfer with the client. This overhead and
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Figure 7.2: Comparison of BitTorrent download completion times with and without in-

formed peer selection at the tracker. Informed peer selection is performed both using

iPlane’s estimates of latency and loss rate, and using Vivaldi’s estimates of latency.

consequent delayed convergence is fundamental: with only local information, peers cannot

reason about the value of neighbors without actively exchanging data with them. iPlane’s

predictions can overcome the lack of prior information regarding peer performance and can

thus enable a clean separation of the path selection policy from the incentive mechanism.

I built a modified tracker that uses iPlane for informed peer selection. Instead of return-

ing random peers, the tracker uses iPlane’s loss rate and latency estimates to infer TCP

throughput. It then returns a set of peers, half of which have high predicted throughput

and the rest randomly selected. The random subset is included to prevent the overlay from

becoming disconnected (e.g., no US node preferring a peer in Asia).

I used my modified tracker to coordinate the distribution of a 50 megabyte file over 150

PlanetLab nodes. I measured the time taken by each of the peers to download the file after

the seed was started, with iPlane predictions against those of peerings induced by Vivaldi
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coordinates [18] and an unmodified tracker. Figure 7.2 is the result. Informed peer selection

causes roughly 85% of the peers to have lower download times than default BitTorrent and

around half the peers do significantly better when using latency and loss rate from iPlane

than just latency from Vivaldi.

These performance improvements in BitTorrent could however be specific to the partic-

ular setting of my experiment. In real swarms, peers arrive and leave independently. Also,

unlike PlanetLab nodes, end-hosts participating in BitTorrent typically are behind broad-

band access links, which have significantly lower bandwidth than on PlanetLab and have

access links with highly variable queueing delays. I would need to explicitly measure and

incorporate properties of access links, e.g., using BitProbes [37], into iPlane’s prediction

model to perform peer selection in BitTorrent in such settings.

7.4.2 Voice-over-IP

Voice over IP (VoIP) is a rapidly growing application that benefits from using paths with

low latency, loss, and jitter. Several VoIP implementations such as Skype [77] use relay

nodes to connect end-hosts behind NATs/firewalls. Choosing the right relay node is crucial

to providing acceptable user-perceived performance [68]. Reducing end-to-end latency is

important since humans are sensitive to delays above a threshold. Low loss rates improve

sound quality and reduce throughput consumed by compensating codecs. Measures of user-

perceived sound quality such as mean opinion score [87] have been shown to be highly

correlated with loss rate and end-to-end delay. Thus, VoIP applications can benefit from

iPlane’s predictions of latency and loss rate in choosing the best possible relay node.

To evaluate iPlane’s ability to successfully pick good relay nodes, I emulated VoIP traffic

patterns on PlanetLab. I considered 384 pairs of PlanetLab nodes, chosen at random, as

being representative of end-hosts participating in a VoIP call. Between each pair, I emulated

a call by sending a 10KBps UDP packet stream via another PlanetLab node chosen as the

relay node. I tried 4 different relay options for each pair chosen based on (i) iPlane’s

estimates of latency and loss rate, (ii) latency to the source, (iii) latency to the destination,

and (iv) random choice. The iPlane-informed choice was obtained by first querying for the
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(a)

(b)

Figure 7.3: Comparison of (a) loss rate and (b) jitter with and without use of iPlane for

end-to-end VoIP paths.
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10 relay options that minimize end-to-end loss and then choosing the one that minimized

end-to-end delay among these options.

Each emulated call lasted for 60 seconds, and the end-to-end loss rate and latency were

measured. Figure 7.3(a) shows that significantly lower loss rates were observed along relay

paths chosen based on iPlane’s predictions. Additionally, Figure 7.3(b) shows that iPlane

also helps to reduce jitter, which I computed as the standard deviation of end-to-end latency.

These results demonstrate the potential for the use of iPlane in VoIP applications.

7.4.3 Content Distribution Network

Content distribution networks (CDNs) such as Akamai, CoDeeN, and Coral [1, 94, 25]

redirect clients to a nearby replica. The underlying assumption is that distance determines

network performance. However, there is more to network performance than just distance,

or round trip time. TCP throughput, for example, depends on both distance and loss

rate [61, 10]. Even for small web documents, loss of a SYN or a packet during slow start

can markedly inflate transfer time. A CDN using iPlane can track the RTT and loss rate

from each replica to the rest of the Internet. The CDN can then arrange for its name servers

to redirect the client to optimize using the model of its choice.

I emulate a small CDN comprising 30 randomly chosen PlanetLab nodes. Each node

serves 3 files of sizes 10KB, 100KB, and 1MB. I use 141 other PlanetLab nodes to emulate

clients. Each client downloads all 3 files from the replica that provides the best TCP

throughput as predicted by the PFTK model [61] using iPlane’s estimates of RTT and loss

rate, and from the replica closest in terms of actual measured RTT. Figure 7.4 compares

the download times experienced by the clients, excluding the latency of redirecting to the

replica. Choosing the replica for optimized TCP throughput based on iPlane’s predictions

provides slightly better performance than choosing the closest replica.

7.5 Summary

I put together the path prediction and link measurement techniques from previous chap-

ters to build iPlane, an Internet-wide information plane. iPlane builds an Internet atlas

by performing traceroutes daily from several hundred geographically distributed vantage
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Figure 7.4: Comparison of download times from replicas in the CDN chosen by iPlane

and from replicas closest in terms of latency. Each download time is the median of 5

measurements.

points—PlanetLab nodes and public traceroute servers—to destinations in several hundred

thousand prefixes. It hosts a query server that implements the path composition approach

to provide predictions of routes and path properties between arbitrary end-hosts. iPlane

also implements a library that enables end-hosts to download the graph-based atlas and

process queries locally.

My evaluation of iPlane demonstrated that use of iPlane’s estimates for path selection

in distributed applications can improve performance. In a BitTorrent swarm for a 50MB file

over 150 PlanetLab nodes, 85% of peers had faster download times than default BitTorrent

when using iPlane’s latency and loss rate estimates to choose peers. In voice-over-IP, iPlane

helped choose detour paths with significantly lesser latency and jitter than choosing at

random. In a content distribution network, use of iPlane’s estimates to choose replicas

performed as well as choosing replicas assuming a priori knowledge of latencies, and in

many cases even better.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this chapter, I summarize the work presented in this dissertation, review the thesis

it supports and the contributions made, and outline some lines of future work that would

build upon this dissertation.

8.1 Thesis and Contributions

In this dissertation, I supported the following thesis: it is practical to build a scalable

system that measures the Internet from end-hosts and synthesizes these using a topology-

aware methodology to estimate the latency and loss rate between arbitrary end-hosts on the

Internet, with accuracy sufficient to improve the performance of distributed applications.

The work presented in this dissertation made the following contributions:

Algorithms for predicting the route through the Internet between arbitrary

end-hosts. I develop algorithms that predict the route through the Internet between any

arbitrary pair of end-hosts given a few measurements of the Internet’s routing topology

from the source and/or from the destination. I present and evaluate algorithms for doing

so in two scenarios—first, when the input is a set of Internet routes, and second, when the

input is a set of links that capture the Internet’s structure. The two scenarios present a

trade-off in accuracy versus the size of input. My algorithms for predicting routes do so

at the right granularity required by the information plane—at the granularity that helps

capture Internet performance. I do so by clustering together portions of the Internet are

similar from a routing perspective.

Scalable techniques for measuring the properties of Internet links. I develop

measurement techniques for estimating the latencies of links in the Internet. Like existing

Internet measurement tools, these techniques exploit properties of protocols in the Internet
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in novel ways. I also construct a simple algorithm that distributes the measurement load

across end-hosts from which the information plane can issue measurements.

Design and implementation of iPlane, an Internet-wide information plane. I

construct an information plane, iPlane, that is usable today by applications. iPlane con-

stantly issues measurements from over 200 PlanetLab nodes and over 500 public traceroute

servers to maintain a daily updated snapshot of the Internet’s structure annotated with link

metrics. iPlane exports an interface that end-hosts can use to contribute measurements,

and an interface that applications can use to query for information about path properties.

Demonstration of iPlane’s utility to distributed applications. My evaluation of

the utility of information provided by iPlane uses three representative applications—content

distribution, peer-to-peer filesharing, and voice-over-IP. For each of these applications, I

demonstrate that application performance significantly improves when information about

the network is available from iPlane.

8.2 Key Ideas

The following key ideas enable me to build iPlane and support the stated hypothesis.

• Structural approach: Prior attempts at estimating path properties typically treat

the Internet as a blackbox, relying on end-to-end measurements as input. Instead, I

discover and utilize the Internet’s structure for making inferences. To estimate the

path properties between any pair of end-hosts, I predict the route between them and

then compose the properties of links and path segments along the predicted route to

estimate end-to-end path properties.

• Path composition: The primary technique I employ to predict the route between a

source and a destination is to compose a path segment observed on a route from the

source with a path segment seen on a route to the destination. Path composition is

based on the principle of route similarity—since routing in the Internet is predomi-

nantly destination-based, two nearby sources are likely to have similar routes to the
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same destination.

• Path selection: The rich connectivity of the Internet’s structure, however, results

in the path composition technique yielding several candidate predicted routes from a

source to a destination. To distinguish amongst these candidate routes, I infer and

apply routing policy used by ISPs. I infer routing policy for each ISP in two forms:

1) its preferences amongst its neighbors, and 2) the pairs of neighbors between which

it provides transit.

• Tackling path asymmetry: The structural approach necessitates the inference of

properties of links and path segments. This task is complicated by the fact that iPlane

is restricted to issuing measurements from a limited set of vantage points and hence can

only gather measurements of the round-trip path to end-hosts and routers that it does

not control. Since routes in the Internet can be asymmetric, it is tough to estimate

properties of a link or a path segment observed only on the forward path based on

round-trip measurements. In this dissertation, I develop techniques to identify when

routes are symmetric and use these techniques to measure link latencies.

• Clustering: Measuring the network at Internet-scale has been largely believed to

be infeasible. In building iPlane, I demonstrate that path properties between any

arbitrary pair of end-hosts can be updated once every few hours by operating at the

right granularity. Though the Internet has millions of end-hosts and routers, these

can be clustered into roughly 50K BGP atoms [7] and 100K Points-of-Presence. By

clustering elements of the Internet that are similar from a routing and performance

perspective, I manage to obtain Internet-wide coverage in building an information

plane.

8.3 Future Work

The work presented in this dissertation can be extended in several ways.
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8.3.1 Improving iPlane’s Accuracy

My prototype implementation of iPlane has demonstrated that it is feasible to make reason-

ably accurate estimates of routes and path properties between arbitrary end-hosts. Mea-

suring at Internet-scale was previously thought to be untenable. My work demonstrated

that measuring at the right granularity—at the level of PoPs within an AS—reduces the

number of measurements significantly without loss of accuracy in predictions.

However, the results from my evaluation also show that there remains significant room

for improvement in the accuracy of iPlane’s predictions. While some of the inaccuracy could

be attributed to the incompleteness of the atlas that iPlane currently uses, there are a bunch

of directions in which iPlane’s prediction techniques can be extended to further improve its

accuracy. First, a better job could be done at processing the atlas, e.g., by improving

the algorithms used to cluster router interfaces into routers and PoPs, algorithms which are

currently not comprehensive. Second, the inference of routing policy from observed routes in

a manner that can be represented compactly requires work beyond the AS export policies

and the AS preferences that I currently infer. Third, as the number of observed paths

available to iPlane increases, not only will the size of the atlas blow up but also the path

composition algorithm needs to be extended to handle the fact that every vantage point will

not have measurements to every prefix. Rather than relying on a complete path segment to

the destination, the path prediction algorithm would need to instead stitch together multiple

path segments—an algorithm in the middle of the spectrum between path composition and

graph-based prediction.

8.3.2 Building Internet-scale Distributed Applications

The availability of information about the network from iPlane has the potential to greatly

simplify the task of building distributed applications that scale to the Internet. iPlane

provides applications access to properties of paths without each application having to im-

plement an Internet measurement toolkit of its own.

However, experience in building applications that leverage iPlane is necessary to evaluate

iPlane’s ability to simplify construction of applications. First, iPlane is intended to be a
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single source of information across distributed applications on the Internet. But, since an

application’s request for information about a network resource is not atomic with its use of

that resource, multiple applications can act on the same information leading to none of the

applications getting the path performance that they expected. Therefore, applications can

treat information obtained from iPlane only as a hint. Once an application starts using a

path, it will need to monitor the performance it obtains for more fine grained information.

Second, the exercise of building applications that use iPlane will throw more light on

the right API that iPlane should export. iPlane’s current interface of accepting a pair of IP

addresses as input and returning its prediction for the path and path properties between

these addresses is the most basic interface possible. In practice, many applications will need

to fetch predictions for paths between several pairs of addresses. For example, to determine

the best among a set of detour nodes for communication between a source and a destination,

the application will need to query for paths from the source to possible detour nodes and

from all of these nodes to the destination. If such a conjugate query is common enough

across applications, one could imagine iPlane supporting queries of the type “best-detour-

node”. The right set of conjugate queries that iPlane should support will be apparent only

once iPlane is applied to several distributed applications. Also, one of the reasons to build

iPlane as an information plane rather than as a library was to enable it to receive feedback

from applications about the information it provides. The right interface for accepting such

information from applications remains an open question.

8.3.3 Scaling iPlane

iPlane currently builds an Internet atlas using measurements from a few hundred geograph-

ically distributed vantage points and refreshes this atlas once a day. iPlane’s view of the

Internet’s structure is limited by its set of vantage points, and it may miss several changes

in the Internet owing to the frequency with which it updates its information. iPlane needs

to scale both in space as well as time.

To scale iPlane in terms of its network presence, it is desirable to have one vantage

point in every edge prefix. To do so, end-hosts will need to be recruited to participate as
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measurement vantage points. Previous Internet measurements efforts such as DIMES [75]

and NETI@home [12] have attempted to recruit end-hosts as agents by appealing to the

scientific spirit of users, which has helped them assemble a few thousand vantage points.

Expanding such measurement platforms further instead requires that users be provided

with some incentive for downloading and installing Internet measurement software on their

computers.

One way to incent users to contribute Internet measurements would be to couple a mea-

surement agent with an application that users desire. As seen in my evaluation, end-hosts

can significantly improve iPlane’s predictions for paths from that end-host by contributing

a few measurements. Thus, if users adopt an application that uses iPlane, their incentives

would be aligned to contribute measurements and as a result increase their own application

performance. Further, since every end-host needs to contribute extremely few measure-

ments, the measurement load imposed on any given end-host would be orders of magnitude

less than that on iPlane’s dedicated vantage points, e.g., PlanetLab nodes.

While one approach to keep iPlane’s view of the Internet up-to-date would be to have

all of the vantage points repeat the measurements assigned to them more frequently, such

an approach intrinsically adds overhead. Instead, keeping the atlas up-to-date should be

driven by the observation that not all parts of the Internet are constantly in flux. At any

point in time, only the properties of some portions of the Internet change and only these

changes need to be measured to keep the atlas up to date. Therefore, iPlane’s current mode

of repeating all of its measurements regularly must be replaced by a two-tier system—

lightweight mechanisms to detect change (or the rate of change) followed by the triggering

of more comprehensive measurements to incorporate the change in the atlas. For example,

to update its map of the Internet’s topology, iPlane currently issues traceroutes to one target

in every prefix daily. Instead, prefixes to which routes have changed can be detected using

passive monitoring of BGP feeds or by tracking the return TTLs on pings, and traceroutes

can be issued only to such prefixes. Similarly, paths that are unchanged on a daily basis

can be probed less often and those that change more often, self-tuning the monitoring rate

to the system flux.
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8.3.4 Longitudinal Analysis of the Internet

Apart from providing real-time information about the network to applications, the data

gathered by iPlane over time is a great dataset for longitudinal analysis of the Internet.

iPlane has been refreshing its Internet atlas once a day for more than two years now, and

this dataset continues to grow. While there have previously been efforts to continually

gather and maintain measurements of the Internet, e.g., RouteViews [53], Skitter [9], the

data gathered by iPlane provides significantly more coverage than prior efforts.

iPlane’s data has already been tapped for several studies, e.g., to study the evolution

of the Internet’s AS-level topology [58]. However, there remain a large number of features

that can be mined from this data. For example, the topology data gathered by iPlane can

be used to study the stability of routes on the Internet. The last such study performed was

by Paxson [63] in 1997 using traceroutes gathered between all pairs of nodes in the 30-odd

node NIMI testbed. Not only has the Internet evolved drastically over the last decade, but

iPlane’s atlas of routes—from several hundred vantage points to several hundred thousand

prefixes—is much more comprehensive than the data used by Paxson. Studying the stability

of Internet routes is also necessary to develop the right strategy that iPlane must employ

to maintain an up-to-date atlas.

8.4 Summary

My work has leveraged the expertise built up by the Internet measurement community to

make it easier to build distributed applications. iPlane provides information about paths

and path properties between arbitrary end-hosts on the Internet, and thus, eliminates every

application from having to reimplement a network measurement toolkit. While my current

implementation of iPlane provides reasonably accurate predictions of path properties, much

remains to be done to improve iPlane’s prediction accuracy and its coverage. I hope my work

in building iPlane will herald a new model for building applications—much as applications

assume the easy availability of packet delivery today, iPlane enables applications to assume

the easy availability of information about the network. This new model has the potential

to spawn a new generation of Internet-scale distributed applications.
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