
Software-defined Latency Monitoring
in Data Center Networks

Curtis Yu1, Cristian Lumezanu2, Abhishek Sharma2, Qiang Xu2,
Guofei Jiang2, Harsha V. Madhyastha3

1 University of California, Riverside
2 NEC Labs America

3 University of Michigan

Abstract. Data center network operators have to continually monitor
path latency to quickly detect and re-route traffic away from high-delay
path segments. Existing latency monitoring techniques in data centers
rely on either 1) actively sending probes from end-hosts, which is re-
stricted in some cases and can only measure end-to-end latencies, or 2)
passively capturing and aggregating traffic on network devices, which
requires hardware modifications.
In this work, we explore another opportunity for network path latency
monitoring, enabled by software-defined networking. We propose SLAM,
a latency monitoring framework that dynamically sends specific probe
packets to trigger control messages from the first and last switches of a
path to a centralized controller. SLAM then estimates the latency dis-
tribution along a path based on the arrival timestamps of the control
messages at the controller. Our experiments show that the latency dis-
tributions estimated by SLAM are sufficiently accurate to enable the
detection of latency spikes and the selection of low-latency paths in a
data center.

1 Introduction

Many data center applications such as search, e-commerce, and banking are
latency-sensitive [3, 7]. These applications often have several distributed com-
ponents (e.g., front-end, application server, storage) that need to communicate
across low-latency network paths to reduce application response times. To ef-
fectively manage data center networks and provide fast paths, operators must
continually monitor the latency on all paths that the traffic of an application
could traverse and quickly route packets away from high-delay segments [1, 5].

Operators can monitor path latency from the edge by sending probes (e.g.,
ICMP requests) between servers and measuring response times. However, three
factors complicate this approach. First, some data centers (e.g., collocation cen-
ters [14]) restrict access to customer servers. Second, end-to-end probes cannot
monitor the latency on path segments between arbitrary network devices, which
is helpful in identifying sources of high delay. Finally, operators are reluctant
to repeatedly run expensive measurements from the edge and prefer to allocate
server resources to customer VMs [12].

The alternative is to monitor latencies from inside the network by capturing
information about paths directly from network devices. Trajectory sampling [6]

and l2ping are examples of this approach. However, all such solutions incur the
overhead of performing real-time local coordination and aggregating measure-
ments captured at many devices. Recent work proposes to instrument switches
with a hash-based primitive that records packet timestamps and measures net-
work latency with microsecond-level accuracy [10, 11]. However, these methods
need hardware modications that may not be available in regular switches any-
time soon.

In this paper, we explore another opportunity to monitor path latency in
data center networks, enabled by software-defined networks (SDNs). We develop
SLAM, a framework for Software-defined LAtency Monitoring between any two
network switches, that does not require specialized hardware or access to end-
hosts. SLAM uses the SDN control plane to manage and customize probe packets
and trigger notifications upon their arrival at switches. It measures latency based
on the the notifications’ arrival times at the control plane.

SLAM is deployed on the network controller and computes latency estimates
on a path in three steps. (setup) It installs specific monitoring rules on all
switches on the path; these rules instruct every switch to forward the matched
packets to the next switch on the path; the first and last switches also generate
notifications (e.g., PacketIn) to the controller. (probe) SLAM sends probes that
are constructed to match only the monitoring rules and that traverse only the
monitored path. (estimate) It estimates the path’s latency based on the times
at which the notification messages (triggered by the same probe) from the first
and last switches of the path are received at the controller.

SLAM offers several advantages over existing latency monitoring techniques.
First, by exploiting control packets inherent to SDN, SLAM requires neither
switch hardware modifications nor access to endhosts. Second, SLAM enables
the measurement of latency between arbitrary OpenFlow-enabled switches. Fi-
nally, by computing latency estimates at the controller, SLAM leverages the
visibility offered by SDNs without needing complex scheduling of measurements
on switches or end-hosts. Moreover, SLAM’s concentration of latency monitor-
ing logic at the controller is well-suited to the centralized computation of low
latency routes that is typical to SDNs.

We address three key issues in our design of SLAM. First, latencies on data
center network paths are small—on the order of milli- or even micro-seconds—
and vary continually, due predominatly to changing queue sizes. As a result,
any single latency estimate may become invalid between when it is measured
by SLAM and when it is used to make rerouting decisions. Therefore, instead
of a single latency estimate for a path, we design SLAM to infer the latency
distribution over an interval. A latency distribution that shows high latencies
for a sustained period of time can be more instrumental in inferring high-delay
segments in the network.

Second, since SLAM’s latency estimation is based on the timings of Pack-
etIn’s received at the controller, the accuracy of latency estimates depends on
both end switches on the path taking the same amount of time to process noti-
fication messages and send them to the controller. However, in reality, the delay

incurred in a switch’s processing of the action field of a matched rule and its sub-
sequent generation of a notification (i.e., PacketIn) depends on the utilization of
the switch CPU, which varies continually. Moreover, switches are generally not
equidistant from the controller. To account for these factors, for every switch,
SLAM continually monitors the switch’s internal control path latency and its
latency to the controller (via EchoRequest messages) and adjusts its estimation
of the latency distribution.

Lastly, despite SLAM’s benefits, its probing overhead is the same as that
associated with probes issued from end-hosts. To alleviate this cost, we also
explore the feasibility of SLAM in a reactive OpenFlow deployment, where new
flows always trigger PacketIn messages from every switch. The key idea is for
SLAM to use the existing OpenFlow control traffic without requiring monitoring
probes to trigger additional PacketIn messages. We use a real enterprise network
trace to show that SLAM would be able to capture latency samples from most
switch-to-switch links every two seconds by relying solely on PacketIn’s triggered
by normal data traffic.

We deploy and evaluate a preliminary version of SLAM on an OpenFlow-
based SDN testbed and find that it can accurately detect latency inflations of
tens of milliseconds. SLAM works even in the presence of increase control traffic,
showing a median latency variation of a few milliseconds when the switch has
to process up to 150 control messages per second. Although not suitable to
detect very fine variations in latency, SLAM is quick and accurate in identifying
high-delay paths from a centralized location and with little overhead.

2 Background

We first describe the operation of a typical OpenFlow network and discuss the
factors that contribute to the latency experienced by a packet that traverses it.

2.1 OpenFlow

We consider a network of OpenFlow-enabled switches, connected with a logically
centralized controller using a secure, lossless TCP connection. The controller
enforces network policies by translating them into low-level configurations and
inserting them into the switch flow tables using the OpenFlow protocol.

The network configuration consists of the forwarding rules installed on switches.
Every rule consists of a bit string (with 0, 1, and ∗ as characters) that speci-
fies which packets match the rule, one or more actions to be performed by the
switch on matched packets, and a set of counters which collect statistics about
matched traffic. Possible actions include “forward to physical port”, “forward to
controller”, “drop”, etc.

The controller installs rules either proactively, i.e., at the request of the ap-
plication or the operator, or reactively, i.e., triggered by a PacketIn message from
a switch as follows. When the first packet of a new flow arrives, the switch looks
for a matching rule in the flow table and performs the associated action. If there

S1
S2

S3

data path

control path

data flow

PacketIn ctrl msg

switches

controller

t1 t2 t3 t4 t5 t6 t7 t8

t'3 t'8

t

t

@S1 @S2 @S3

t1 t2

t3

t4 t5 t6
t7

t8

t'3 t'8

d1
d3

Fig. 1: Latency computation using control message timestamps. Consider a packet
traversing a path comprising switches S1, S2, and S3. The packet arrives at these
switches at t1, t4, and t6 and leaves at t2, t5, and t7. The true latency between S1 and
S3 is t7 − t2. The matching rule at switches S1 and S3 has the additional action “send
to controller” to generate PacketIn’s (the red dotted lines). t3 and t8 are the times
when the PacketIn’s leave S1 and S3, and they arrive at the controller at t′3 and t′8. d1
and d3 are the propagation delays from switches S1 and S3 to the controller. We use
(t′8 − d3) − (t′3 − d1) to estimate the latency between S1 and S3, after accounting for
the processing times in each switch (see Section 3).

is no matching entry, the switch buffers the packet and notifies the controller by
sending a PacketIn control message containing the packet header. The controller
responds with a FlowMod message that installs a new rule matching the flow
into the switch’s flow table. The controller may also forward the packet without
installing a rule using a PacketOut message.

2.2 Data center path latency

A packet traversing a network path experiences propagation delay and switching
delay. Propagation delay is the time the packet spends on the medium between
switches and depends on the physical properties of the medium. The propagation
speed is considered to be about two thirds of the speed of light in vacuum [16].
The switching delay is the time the packet spends within a switch and depends
on the various functions applied to the packet. In general, the switching delay
in an OpenFlow switch has three components: lookup, forwarding, and control.
We describe them below and use Figure 1 to illustrate.

Lookup. When a switch receives a packet on one of its input ports, the
switch looks for a match in its forwarding table to determine where to forward
the packet. This function is usually performed by a dedicated ASIC on parts of
the packet header.

Forwarding. A matched packet is transferred through the internal switching
system from the input port to an output port. If the output link is transmit-
ting another packet, the new packet is placed in the output queue. The time

a packet spends in the queue depends on what other traffic traverses the same
output port and the priority of that traffic. In general, forwarding delays dom-
inate lookup delays [16]. The intervals [t1, t2], [t4, t5], and [t6, t7] represent the
combined lookup and forwarding delays at switches S1, S2, and S3 in Figure 1.

Control. If there is no match for the packet in the flow table or if the match
action is “send to controller”, the switch CPU encapsulates part or all of the
packet in a PacketIn control message and sends it to the controller. The control
delay is the time it takes the PacketIn to reach the controller ([t2, t

′
3] and [t7, t

′
8]

in Figure 1).

3 Latency monitoring with SLAM

SLAM computes the latency distribution for any switch-to-switch path by gath-
ering latency samples over a specified period of time. We define the latency
between two switches as the time it takes a packet to travel from the output
interface of the first switch to the output interface of the second switch, e.g.,
the latency of the path (S1, S3) in Figure 1 is t7 − t2. Our definition of latency
does not include the internal processing of the first switch, t2 − t1, on the path
due to the way we use OpenFlow control messages as measurement checkpoints.
However, since we continually monitor internal processing delays (see later in
the section), we can account for any effects they may have on the overall latency
estimation.

Directly measuring the time at which a switch transmits a packet is either
expensive [6] or requires modifications to the switch hardware [10]. Instead,
we propose that switches send a PacketIn message to the controller whenever a
specific type of data packet traverses them. We estimate the latency between two
switches as the difference between the arrival times at the controller of PacketIn’s
corresponding to the same data packet, after accounting for the differences in
internal processing of the two switches and propagation delays to the controller.
In Figure 1, the estimated latency is (t′8 − d3) − (t′3 − d1).

We incorporate these ideas into the design of SLAM, an OpenFlow con-
troller module that estimates the latency distribution between any two Open-
Flow switches in a network. Next, we discuss how to generate and send probes
that trigger PacketIn messages and how to calibrate our latency distribution to
the differences in control processing latency between switches. We then describe
the design of SLAM.

3.1 Latency monitoring

To estimate latency on a path, SLAM generates probe packets that traverse the
path and trigger PacketIn messages at the first and last switches on the path. To
guide a probe along an arbitrary path, we pre-install forwarding rules at switches
along the path, whose action field instructs the switch to send matched packets
to the next-hop switch. In addition, to generate PacketIn’s, the rules at the first
and last switch on the path contain “send to controller” as part of their action

set. SLAM sends monitoring probes using PacketOut messages to the first switch
on the path. Our method is similar to the one proposed by OpenNetMon [15],
but we explore the implications of using such a system, including its issues, and
quantify this effect on the final result.

An important requirement is that the monitoring rules we install to guide
the probes do not interfere with normal traffic, i.e., only our probes match
against them. For this, we make the rules very specific by not using wildcards
and specifying exact values for as many match fields as possible (e.g., VLAN
tag, TCP or UDP port numbers, etc.). To save space on switches, we also set
the rules to expire once the monitoring is finished by setting their hard timeout.

3.2 Control processing

We define the control processing time of a switch as the time it takes a switch
to process the action included in the rule that matches a packet, generate a
PacketIn, and send it to the controller. In Figure 1, t′3 − t2 and t′8 − t7 are the
control processing times for S1 and S3. Control processing times determine when
PacketIn messages arrive at the controller. If processing times vary across the first
and last switch, the latency estimation on the path is skewed.

Control processing consists of slow path delay and control channel delay. The
slow path delay is the time it takes the switch to transfer the packet along its
internal circuits from the ASIC where the match is performed to the switch
CPU that generates the PacketIn. As shown in prior work [4], the slow path
delay depends on what other operations (e.g., flow installations, stat queries)
are performed simultaneously on the switch. The control channel delay is the
propagation delay from the switch to the controller.

We adapt to the variations in control processing across switches by constantly
monitoring both the slow path and control channel delays. To monitor the slow
path delay of a switch, we send packet probes to the switch using PacketOut,
use a carefully placed rule to trigger a PacketIn, and then drop the probe with-
out forwarding it to other switches. This resembles our path latency estimation
method described above, with the modification that the path to be monitored
consists of one switch. We discard latency samples obtained during periods when
the slow path delays of the first and last switches on a path vary. Predicting how
each variation affects our latency estimate is subject of future work.

To monitor the control channel delay on a switch, we send EchoRequest Open-
Flow control messages to the switch and measure the delay in its replies. We find
that the control channel delay from the controller to switch is more predictable.
Thus, if we discover that switches are not equidistant to the controller, we simply
adjust the estimated latency by the difference in their control channel delays, as
hinted earlier in the section.

3.3 Monitoring design

We have developed SLAM, a framework for latency monitoring in SDNs, based
on the methods enumerated above. SLAM combines four components—rule gen-

Traffic generator Traffic listenerRule generator Latency estimator

probes

PacketInS1

S2

S3

Rule 1: if probe
-> send to C, S2

Controller

Rule 2: if probe
-> send to S3

Rule 3: if probe
-> send to C

Fig. 2: SLAM design. SLAM generates probe packets along the path to be monitored.
The probes are guided by carefully specified rules and trigger PacketIn messages at the
first and last switches on the path. SLAM analyzes PacketIn arrival times and estimates
path latency.

erator, traffic generator, traffic listener, and latency estimator—that run on the
network controller (Figure 2).

Given a path to monitor, SLAM identifies the first and last switches on
the path. It then installs a specific rule on each switch on the path to guide
measurement probes, as explained above. The traffic generator then sends a
stream of packet probes along the monitored path using OpenFlow PacketOut
messages. These packets match the specific rules installed in the previous step.
Normal traffic is processed by the original rules on the switches and is not affected
by our monitoring rules. In addition, the measurement module generates probes
to monitor the slow path and control channel delays of the first and last switches
on a monitored path.

The traffic listener captures control packets received from switches and records
their arrival timestamps. To obtain a latency sample, it then correlates Pack-
etIn messages associated with the same probe packet and triggered by different
switches. By aggregating the latency samples obtained from multiple probes sent
on a path, SLAM computes a latency distribution for the path.

4 Evaluation

We implemented SLAM as a module for the POX OpenFlow controller and
deployed it on our 12-switch network testbed. We evaluate SLAM from three
aspects: (1) the accuracy of its latency estimates, (2) its utility in selecting
paths based on latency, and (3) its adaptiveness to network conditions.

Ground truth estimation. To evaluate the quality of SLAM’s path latency
estimates, we must first measure the real path latency (i.e., the ground truth).
As we cannot directly time packet arrival and departure on switches, we use
the following setup to measure ground truth, similar to that used for OpenFlow
testing by Rotsos et al. [13] and by Huang et al. [8]. We create another physical
connection between the first and last switches on a path and the controllerin

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F
 o

f
m

e
a
s
u
re

m
e
n
ts

Latency (ms)

Exp L (SLAM)
Exp L (GT)

Exp M (SLAM)
Exp M (GT)

Exp H (SLAM)
Exp H (GT)

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

L
a
te

n
c
y
 (

m
s
)

Time (sec)

SLAM
Ground Truth

(a) (b)
Fig. 3: (a) SLAM vs. Ground truth latency empirical CDFs. (b) SLAM with bursty
traffic. As path latency increases, SLAM is able to correctly detect the increase.

4 5 6 7 8 9 10 11
4

5

6

7

8

9

10

11

12

13

Ground truth quantiles

S
L
A

M
 q

u
a
n
ti
le

s

40 50 60 70 80 90 100
40

50

60

70

80

90

100

110

Ground truth quantiles
S

L
A

M
 q

u
a

n
ti
le

s

(a) (b)
Fig. 4: Quantile-Quantile plots for SLAM vs. ground truth in (b) Exp M, and (c) Exp
H. The quantiles for SLAM’s estimates are close to the quantiles for ground truth esti-
mates, indicating that SLAM is able to detect millisecond-level path latency variations.

addition to the already existing control channel and put the controller on the
data plane.

We use the controller to send probe packets along the path to be monitored.
When a probe arrives at the first switch, the action of the matching rule sends
the packet both to the next switch on the path and to the controller on the data
plane. Similarly, at the last switch, the matching rule sends probe packets back to
the controller. We obtain the ground truth latency by subtracting the two arrival
times of the same probe at the controller. This method is similar to that used
by SLAM, with the difference that no packet ever crosses into the control plane.
Although the computed latency may not perfectly reflect the ground truth, it
does not contain the effects of control processing, and hence, can be used as a
reasonable estimate to compare against SLAM’s estimated latency distribution.

Experiments. To evaluate SLAM’s performance under different network
conditions, we perform three sets of experiments: low latency (Exp L), medium
latency (Exp M), and high latency (Exp H). We estimate latency between the
same pair of switches in our testbed, but each of the three experiments takes
place on a different path between the switches. There is no background traffic
for the low latency experiment. For medium and high latency experiments, we
introduce additional traffic using iperf and simulate congestion by shaping traffic
at an intermediate switch on the path. We use 200 Mbps iperf traffic with 100
Mbps traffic shaping in Exp M, and 20 Mbps iperf traffic with 10 Mbps traffic
shaping in Exp H. In each experiment, we run both SLAM and the ground truth
estimator concurrently for 10 minutes with a rate of one probe per second.

4.1 Accuracy

First, we seek to understand how similar to ground truth is the latency distri-
bution computed by SLAM. To compare two latency distributions (of different
paths or of the same path under different conditions), we use the Kolmogorov-
Smirnov (KS) test [9]. The KS test computes a statistic that captures the dis-
tance between the empirical cumulative distribution functions (CDFs) of the two
sets of latencies. The null hypothesis is that the two sets of latencies are drawn
from the same distribution. If we can reject the null hypothesis based on the test
statistic, then this implies that the two distributions are not equal. Further, we
can compare the quantiles of the two distributions (e.g., median) to determine
if one path has lower latencies than the other. Figure 3(a) shows that, although
SLAM overestimates the ground truth for under-millisecond latencies, it is able
to match the ground truth latency distribution as the path latency increases.
Indeed, the KS test does not reject the null hypothesis for Exp M and Exp H.

Figures 4(a) and 4(b) show the Quantile-Quantile (Q-Q) plots for Exp M
and Exp H, respectively. We remove outliers by discarding the bottom and top
10% (5%) of SLAM’s latency estimates for Exp M (Exp H). Except for a small
number of very low and high quantiles, the quantiles for SLAM’s estimates are
equal or close to the quantiles for ground truth estimates; most of the points in
the Q-Q plot lie on the y = x line.

4.2 Filtering out high latency paths

SLAM can help network operators identify low-latency paths. For a collection
of paths, we can use the pairwise KS test to first select a subset of paths whose
distribution are different from each other, and then filter out paths with high
latency quantiles. Similarly, when monitoring a path, an operator can first use
the KS test to determine if its latency distribution has changed (e.g., due to
change in traffic) and then use the latency quantile values to decide whether to
continue using it or switch to a different path. For instance, in our experiments,
when we compare samples from Exp M and Exp H, the KS test rejects the null
hypothesis, i.e., the latency distribution on the monitored path has changed
due to change in traffic. Table 1 shows that four quantiles for the two samples
differ significantly. This is confirmed by Figure 3(a), where empirical CDFs of
the measurements collected by SLAM for Exp M and Exp H are clearly different.
SLAM’s use of KS test, in combination with latency quantiles, is more robust
because an operator can be confident that the difference in latency quantiles
across paths or on the same path over time is statistically significant.

4.3 Sensitivity to network conditions

Next, we study SLAM’s accuracy in the presence of bursty data traffic and
increased control channel traffic.

Data traffic. To see if variable traffic affects SLAM’s latency estimates, we
repeat Exp H, but instead of running iperf continuously, we run it in bursts of

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

C
D

F
of

 p
or

ts

Number of PacketIn msgs seen

Average interval
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25

C
D

F
of

 p
or

ts

Time between PacketIn messages (sec)

Average interval
Median interval

(a) (b)
Fig. 5: (a) No. of PacketIn’s each link in a 24 port switch sees in three hours. (b)
Average and median time between PacketIn’s per link on a 24 port switch.

Exp # 50th %tile 75th %tile 90th %tile 95th %tile

Exp M 7.47 ms 8.66 ms 11.6 ms 19.2 ms
Exp H 60.0 ms 71.9 ms 76.8 ms 78.0 ms

Table 1: Comparison of the 50th, 75th, 90th, and 95th percentile values for Exp M
and Exp H.

variable size. Figure 3(b) shows how latency varies over time as we introduce and
remove traffic from the network. SLAM’s estimates adapt well to changes in the
ground truth latency triggered by introducing congestion in the network. Like the
results shown in Figure 3(a), SLAM over-estimates latency when path latency is
low but accurately captures latency spikes. These results further confirm SLAM’s
effectiveness in enabling data center networks to route traffic away from segments
on which latency increases by tens of milliseconds.

Control traffic. We monitor the slow path delay of switches in our network
while we introduce two types of control traffic: FlowMod, by repeatedly inserting
forwarding rules, and PacketIn, by increasing the number of probes that match
a rule whose action is “send to controller”. We varied the control packet rate
from 1 to 20 per second and observed a median increase of 1.28 ms. Varying the
amount of concurrent rule installations from 0 to 150 rules per second resulted
in a median increase of 2.13 ms. Thus, the amount of unrelated control traffic
in the network does not influence SLAM’s effectiveness in detecting high-delay
paths.

5 Reactive OpenFlow deployments

So far, we considered a proactive OpenFlow deployment for SLAM, where normal
data packets always have a matching rule and do not trigger PacketIn messages.
Another option is to use a reactive deployment, in which switches notify the
controller of incoming packets without a matching rule by sending a PacketIn
control message. Because too many such control messages could overload the
controller and make the network unusable [2], reactive deployments are limited
to smaller enterprises and data centers with tens of switches or when the network
must react to traffic changes automatically.

Reactive networks provide a significant advantage for SLAM: it can use ex-
isting PacketIn messages to compute path latency distributions. This eliminates

the need to insert expensive probes to trigger PacketIn’s and reduces the cost of
monitoring by using already existing control traffic [17]. However, there are two
disadvantages, which we discuss at large next.

5.1 Variations in control processing

Using reactive PacketIn’s at both ends of a path to capture its latency means
that normal data packets are delayed at the first switch until the controller tells
the switch what to do with them. This introduces an additional delay in the path
of a packet described in Figure 1: the time it takes the controller to process the
packet and reply to the switch (either with FlowMod or PacketOut) and the time
it takes the switch to forward the packet to the out port once it learns what to
do with it. SLAM can estimate the controller processing time and the controller-
to-switch delay as described in Section 3.2. However, the switch forwarding time
depends on the load on the switch CPU and what other traffic is traversing the
switch; this is more difficult to estimate accurately. In practice, SLAM can use
the approach in Section 3.2 to infer variations in switch processing and discard
measurements performed during times when variations are high.

5.2 Frequency of control traffic

The accuracy of SLAM’s estimated latency distribution depends on the fre-
quency of PacketIn’s from switches at both ends of the measured path. This is
affected by the overall distribution of traffic in the network and by the structure
of rules used to guide the traffic. For example, because switches on a backup link
see little data traffic, they trigger little control traffic for SLAM to use. Simi-
larly, forwarding rules with long timeouts or with wildcards limit the number of
PacketIn messages.

To evaluate the frequency of PacketIn measurements, we simulate SLAM on
a real-world enterprise trace. We use the EDU1 trace collected by Benson et
al. [2], capturing all traffic traversing a switch in a campus network for a period
of three hours. We identify all network flows in the trace, along with their start
time. The collectors of the trace report that the flow arrival rate at the switch
is on the order of a few milliseconds [2].

Since only PacketIn’s associated with traffic that traverses the same path are
useful, we need to evaluate the flow arrival rate for each input port of the switch.
Our traffic trace does not contain input port information, therefore we simulate
a 24-port switch using the following heuristic. We first associate every distinct
/p prefix (where p is, in turn, 32, 30, 28, 20, or 24) of source IP addresses in
the trace with a port and then assign each individual flow to the link (or input
port) associated with its source IP /p prefix. We group flows by prefix because
routing in the Internet is typically prefix-based. Below, we present results for
p = 28; results for other prefix lengths are qualitatively similar.

We compute both the number and the frequency of PacketIn messages that
each link receives during the measurement period. Figure 5(a) shows that most

links see more than 10,000 PacketIn’s during the three hour span, which is equiv-
alent to a rate of around one PacketIn per second. Figure 5(b) presents the aver-
age and median time between consecutive PacketIn’s for each link of the switch.
SLAM would capture samples from most links every two seconds and 80% of all
links would be measured less than every 10 seconds.

To summarize, our analysis on a real-world enterprise trace shows that, in a
reactive SDN deployment, SLAM would be able to capture latency measurements
once every two seconds on average without requiring any additional generation
of probes. We are currently investigating the design of an adaptable SLAM that
would rely on existing PacketIn’s when control traffic volume is high and generate
probes that trigger artificial PacketIn’s when control traffic is scarce.

6 Conclusion

We presented SLAM, a path latency monitoring framework for software-defined
data centers. SLAM uses timestamps of carefully triggered control messages
to monitor network latency between any two arbitrary switches and identify
high-delay paths. SLAM’s measurements are accurate enough to detect latency
inflations of tens of milliseconds and enable applications to route traffic away
from high-delay path segments.

References

1. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow
scheduling for data center networks. In USENIX NSDI, 2010.

2. T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of data centers in the wild.
In ACM IMC, 2010.

3. Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang. A provider-side view of web search
response time. In Proc. ACM SIGCOMM, 2013.

4. A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. DevoFlow:
Scaling flow management for high-performance networks. In Proc. ACM SIGCOMM, 2011.

5. A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu. Transparent and efficient
network management for big data processing in the cloud. In HotCloud, 2013.

6. N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation. In Proc.
ACM SIGCOMM, 2000.

7. T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheong, A. Jain, S. Hao,
E. Katz-Bassett, and R. Govindan. Reducing web latency: The virtue of gentle aggression. In
Proc. ACM SIGCOMM, 2013.

8. D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch models for software-defined
network emulation. In Proc. HotSDN, 2013.

9. A. N. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giornale
dellIstituto Italiano degli Attuari, 4(1):83–91, 1933.

10. R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese. Every microsecond counts:
Tracking fine-grain latencies with a lossy difference aggregator. In Proc. ACM SIGCOMM,
2009.

11. M. Lee, N. Duffield, and R. R. Kompella. Not all microseconds are equal: Fine-grained per-flow
measurements with reference latency interpolation. In Proc. ACM SIGCOMM, 2010.

12. M. Moshref, M. Yu, A. Sharma, and R. Govindan. Scalable rule management for data centers.
In Proc. USENIX NSDI, 2013.

13. C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. OFLOPS: An open framework
for OpenFlow switch evaluation. In Proc. PAM, 2012.

14. RagingWire. http://www.ragingwire.com.
15. N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. OpenNetMon: Network Monitoring in

OpenFlow Software-Defined Networks. In IEEE NOMS, 2014.
16. G. Varghese. Network Algorithmics. Elsevier/Morgan Kaufmann, 2005.
17. C. Yu, C. Lumezanu, V. Singh, Y. Zhang, G. Jiang, and H. V. Madhyastha. Monitoring network

utilization with zero measurement cost. In Proc. PAM, 2013.

