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Abstract
Many peer-to-peer distributed applications can benefit

from accurate predictions of Internet path performance.
Existing approaches either 1) achieve high accuracy for
sophisticated path properties, but adopt an unscalable
centralized approach, or 2) are lightweight and decentral-
ized, but work only for latency prediction.

In this paper, we present the design and implementa-
tion of iPlane Nano, a library for delivering Internet path
information to peer-to-peer applications. iPlane Nano
is itself a peer-to-peer application, and scales to a large
number of end hosts with little centralized infrastructure
and with a low cost of participation. The key enabling
idea underlying iPlane Nano is a compact model of Inter-
net routing. Our model can accurately predict end-to-end
PoP-level paths, latencies, and loss rates between arbi-
trary hosts on the Internet, with 70% of AS paths pre-
dicted exactly in our evaluation set. Yet our model can
be stored in less than 7MB and updated with approxi-
mately 1MB/day. Our evaluation of iPlane Nano shows
that it can provide significant performance improvements
for large-scale applications. For example, iPlane Nano
yields near-optimal download performance for both small
and large files in a P2P content delivery system.

1 Introduction
Peer-to-peer (P2P) systems offer a number of potential

advantages to the network systems designer, such as scal-
ability, resilience, and perhaps most importantly, cost-
effectiveness: P2P systems require little or no fixed in-
frastructure, and yet can scale to millions of end hosts.
These advantages have provoked considerable interest
in the P2P design paradigm among researchers [10, 14,
44]. There have also been several widespread deploy-
ments, including BitTorrent file sharing [11], Skype’s
use of detour routing for voice over IP [52], and multi-
player game servers that reduce bandwidth costs by us-
ing well-provisioned players to distribute objects to other
peers [4].

In this paper, we argue that a key missing piece of in-
frastructure for P2P applications is scalable and inexpen-
sive access to accurate information about Internet paths.
P2P applications by their nature select among a large
number of alternative paths; more accurate information
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can help streamline that search process. For example, a
P2P content distribution network [45, 38, 25] might bene-
fit from directing requests to a replica with a low latency,
low loss path. Similarly, an IP layer detour routing ser-
vice would benefit from structural information about the
Internet, to quickly find a path around a network fail-
ure [59, 23].

While server-based solutions for providing timely in-
formation about the Internet have been proposed and built
in the past [30, 1], they are less appropriate in the P2P
case. The iPlane [30] query engine, for example, runs as
a service, but since its algorithms require multi-gigabyte
memory resident data structures to generate predictions,
it would be difficult and costly to scale, especially for
a popular P2P application with millions of end hosts.
iPlane’s memory footprint means it cannot even run on
PlanetLab [41]. Further, iPlane’s data cannot be easily
distributed given its size and running the service on a few
nodes in turn significantly limits the rate at which queries
can be served.While network coordinate systems [13] do
scale, they only predict latency, and not the full range of
topology-aware performance metrics needed by P2P ap-
plications.

To address this gap, we have designed and built a
system called iPlane Nano, or iNano. iNano uses the
same input data and provides the same query interface
as iPlane, but is designed as a lightweight library that can
run on client machines, and even on small devices such
as Internet-capable smart phones. To make this work, we
have developed a compact model of Internet topology,
routing policy, and link performance metrics that can be
represented in less than 7MB, and updated with approxi-
mately 1MB/day. Yet this model is rich enough to be able
to accurately predict end to end routes, latencies, and loss
rates between arbitrary end hosts on the Internet. In our
evaluation, we find that iNano predicts 70% of AS paths
exactly, estimates latencies with less than 20ms of error
for over 60% of paths, and estimates loss rates with less
than 10% error for over 80% of paths.

Because iNano’s data set is the same for all end hosts,
both the model and its incremental daily updates can be
efficiently distributed using standard file sharing tech-
niques, such as via BitTorrent swarms. Our evaluation
shows that although our predictions are based on only a
tiny fraction of the total information available about the
Internet, iNano can significantly improve application per-
formance. For example, iNano yields near-optimal me-



dian download performance for both small and large files
in a P2P content delivery system.

In summary, our primary contribution is to develop
an accurate yet lightweight approach for Internet perfor-
mance prediction. To this end, we develop:
• A pocket-sized, annotated link-level map of the Inter-

net, that can be represented in 7MB and updated daily
with 1MB of data.

• Techniques to infer and concisely represent informa-
tion stored in the forwarding tables of Internet routers,
but in orders of magnitude lesser space.

• Implementation of iNano, a system that enables
Internet-scale P2P applications to discover properties
of Internet paths.

• Case studies using CDNs, VoIP, and detour routing to
demonstrate the utility of iNano.

2 Motivation and Design Goals
2.1 Goals

iNano targets network applications that choose among
multiple candidate paths to improve data transfer perfor-
mance. The design goals of iNano and their motivations
are as follows.

Rich path metrics: iNano should enable distributed
applications to orchestrate their actions based on sophis-
ticated path information. Application-perceived path per-
formance may depend on one or more path metrics such
as latency, loss rate, or bottleneck capacity. For exam-
ple, TCP performance depends upon the latency as well
as loss rate along the path, so a CDN re-director or Bit-
Torrent tracker may wish to use both metrics in its deci-
sions. A VoIP server such as in Skype may wish to pick
a relay node according to the mean-opinion-score (MOS)
metric [5] that depends upon loss rate and latency. Live
video streaming systems [3, 2, 10] that set up an over-
lay network among participating end-hosts may wish to
incorporate path metrics such as latency, loss rate, and
bottleneck capacity in the construction of the overlay. A
combination of these metrics determines the quality of
the video a client receives as well as its initial buffering
delay.

Scalable lookup: iNano should scale to every end-
host in the Internet. The trend towards massively dis-
tributed applications such as CDNs, BitTorrent, and
Skype suggests that the potential demand for path per-
formance prediction requests may be comparable to DNS
or web search. Given the frequent occurrence of detour
routes [48, 29], it is conceivable that every transfer is pre-
ceded by a query about alternative paths to the destina-
tion. Furthermore, the lookups must be local to be ef-
fective; otherwise, the delay incurred may outweigh the
resultant improvement in data transfer performance.

Low infrastructure cost: iNano should incur a low

infrastructure cost to set up and maintain. A server-based
infrastructure will need to be continually provisioned as
demand increases and will incur significant cost to de-
ploy and maintain. Instead, iNano should leverage the
property of P2P applications—users not only create de-
mand but also contribute resources to the system—by
using computing cycles and bandwidth on participating
end-hosts rather than on dedicated servers.

Structural information: iNano should enable net-
work applications to base their decisions on the structure
of the path. For example, recent proposals have advo-
cated locality-aware peer selection in peer-to-peer sys-
tems by either choosing paths that minimize the AS path
length [9] or by jointly optimizing network cost and ap-
plication performance [57]. Knowing the route can also
enable applications to perform detour [48, 7] or multipath
routing [58, 24] for reliability or performance objectives.
Structural information can also be used to route around
network failures [59, 23].

Arbitrary end-hosts: iNano should enable an appli-
cation to infer path information between an arbitrary pair
of end-hosts, not just from itself to others. Many of
the examples above involving redirection in peer-to-peer
content distribution, VoIP relays, multicast overlay con-
struction, and detour routing require this capability. Fur-
thermore, iNano should provide forward as well as re-
verse path information between arbitrary end-hosts—a
goal that is challenging even for paths originating locally
because of the asymmetric nature of Internet routing.

2.2 Exploring design alternatives

Why can’t existing techniques achieve the above goals?
To appreciate the challenge, let us consider a few natural
design alternatives as shown in Table 1.

A1 is the well-studied network coordinates approach
to infer latencies between end-hosts without on-demand
measurement. In this approach, each end-host is assigned
a coordinate, typically in a metric space, and the latency
between two end-hosts is estimated as the distance be-
tween their coordinates. Distributed systems such as Vi-
valdi [13] implement the coordinate approach in a scal-
able manner. However, the only information they provide
to an application running on an end-host is the latency on
paths from that end-host to the rest of the Internet. Al-
though the coordinate system could potentially be mod-
ified to predict latencies between arbitrary end-hosts by
periodically disseminating a coordinate for every Inter-
net prefix, it is unclear how to extend this approach to
other path metrics such as loss rate or bottleneck capac-
ity. Also, since coordinate systems rely only on end-to-
end measurements, they do not provide information on
the route traversed by a path.

A2 is an approach where applications issue queries
about path performance to a network information ser-



Design alternative Rich path
metrics

Structural in-
formation

Arbitrary
end-hosts

Scalable Infrastructure
cost

A1 Network coordinates × × ×
√

0
A2 Information plane (e.g.,

iPlane) servers

√
PoP path

√
× High

A3 Information plane as
“network newspaper”

√
PoP path

√
× Low

A4 Uncoordinated end-host
measurements

√
PoP path × × Low

A5 iNano
√

PoP path
√ √

Low

Table 1: Qualitative comparison of design alternatives for Internet path performance prediction.

vice hosted on centralized or replicated query servers.
This approach is suggested and made plausible by prior
work, namely iPlane, that developed techniques to accu-
rately predict the path and path metrics between an arbi-
trary pair of end-hosts. However, scaling replicated query
servers to handle requests from all end-hosts—a work-
load comparable to DNS—is challenging and would in-
cur a huge infrastructure cost to set up and maintain. The
number of query servers provisioned will need to grow
in proportion to the number of end-hosts issuing queries,
making this approach impractical for typical P2P appli-
cations.

A3 replicates a query server on each end-host. This
approach dubbed as “network newspaper” in [30] would
disseminate an atlas of measured Internet paths to end-
hosts to enable them to locally service their queries. The
atlas can be refreshed daily by sending incremental up-
dates; since most Internet paths do not change over a day
[40], daily updates are expected to be small. Unfortu-
nately, iPlane’s atlas of paths is several gigabytes in size,
making this approach unlikely to be adopted in practice.
An alternative is to delegate this task to a local agent (like
a local DNS nameserver) in each subnet, but the boot-
strapping overhead would pose a barrier to widespread
deployment and use. Another alternative is for each client
to only download its “view” of the network, i.e., proper-
ties of paths originating at itself, but this approach does
not allow an end-host to predict properties of paths be-
tween arbitrary end-hosts, e.g., as required to enable de-
tour routing.

A4, where each end-host conducts its own measure-
ments as needed, also suffers from the problem of not
being able to predict properties of paths between arbi-
trary end-hosts. Furthermore, such uncoordinated mea-
surements might impose an unreasonable measurement
overhead, e.g., measurement of loss rates and bandwidth
capacities require many large-sized packet probes to be
sent into the network. A centralized coordinator and ag-
gregator of measurements like iPlane amortizes this over-
head, but makes dissemination a challenge as discussed in
A2 and A3.

3 iNano Design
Our system, iNano, combines the best of the above alter-
natives. For scalability, iNano replicates query servers at
each end-host. To predict rich path metrics, iNano uses
a structural technique like iPlane that predicts the PoP-
level 1 path between an arbitrary pair of end-hosts. How-
ever, the data required to make such predictions needs to
be compact, like coordinates or like the AS-level Internet
graph, unlike a huge atlas of measured paths.

The key insight in iNano is a novel model for predict-
ing paths and their properties between arbitrary end-hosts
using a compact Internet atlas. iPlane uses a path compo-
sition technique to perform path predictions. To predict
the path from a source to a destination, the path compo-
sition technique composes two path segments that inter-
sect with each other. The first segment is from a path out
from the source to an arbitrary destination. The second
segment is from a path measured from one of iPlane’s
vantage points to the destination’s prefix. Depending on
which intersecting pair of segments is chosen, the path
obtained by composition is often similar to the actual
route from source to destination.

Instead of using an atlas of measured paths like
iPlane’s, iNano uses an atlas of measured links. The
space required by the former representation is propor-
tional to the number of vantage points while the lat-
ter representation requires space linear in the number of
nodes and edges in the underlying Internet graph. Conse-
quently, iNano’s atlas fits in less than 7MB, almost three
orders of magnitude smaller than iPlane’s atlas, enabling
it to be distributed to lightly powered end-hosts. The key
challenge in making this approach work is to make accu-
rate predictions about Internet path performance from an
atlas of observed links.

iNano’s approach of distributing a compact atlas and
locally resolving queries at end-hosts avoids significant
investment in server infrastructure. The approach also of-
floads the bandwidth cost of disseminating the atlas and
its periodic updates; the atlas can be swarmed among
end-hosts using, for example, BitTorrent. The genera-

1A Point-of-Presence (PoP) of an AS is the set of routers in that AS
in the same location.



tion of the atlas itself is the only centralized component
in iNano. A central coordinator distributes the task of
issuing measurements to participating end-hosts and ag-
gregates the measured paths into a set of measured links.

iNano’s current measurement infrastructure is largely
the same as that of iPlane [30] but processes the mea-
surements in a completely different manner to make path
performance predictions in keeping with the goals stated
in Section 2. Although we use end-host measurements
in building the atlas, we use as a starting point tracer-
outes from PlanetLab [41] to destinations in 140K pre-
fixes, which include roughly 90% of prefixes at the Inter-
net’s edge. The interfaces discovered in the traceroutes
are clustered together such that interfaces in the same
Point of Presence (PoP) within an AS are in the same
cluster; routers in the same PoP within an AS are similar
from a routing perspective. To map the IP address of an
interface to its corresponding AS, iNano uses the map-
ping from prefixes to their origin ASes as seen in BGP
feeds [33] and also resolves aliases [53] to ensure dif-
ferent interfaces on the same router are mapped to the
same AS. The clustering of interfaces in each AS into
PoPs is performed using a combination of alias resolu-
tion, mapping DNS names to locations [55], and identi-
fying colocated interfaces based on similarity in reverse
path lengths.

iNano processes the gathered traceroutes in combina-
tion with the PoP clustering information to build an at-
las of inter-cluster links. To annotate links in this atlas
with performance metrics, iNano performs measurements
to infer the latencies and loss rates of inter-cluster links.
iNano uses the frontier search algorithm described in [30]
to partition the set of links across the PlanetLab vantage
points, with some redundancy to account for measure-
ment noise. Each node then attempts to measure the la-
tency and loss rates of links assigned to it. The tech-
nique for measuring loss rates is the same as that used
by iPlane. Measuring latencies of links is hard due to the
wide prevalence of asymmetric routing [40, 21]. iNano
tackles this challenge using a two-pronged approach—
first, by identifying symmetric paths, and second, by
leveraging measurements of symmetric paths to measure
latencies of other links that do not appear on symmetric
routes. iNano’s link latency measurement techniques are
described in [28]. To estimate the end-to-end latency and
loss rate between a source and destination, iNano predicts
the forward and reverse paths between these end-hosts
and composes the properties of the inter-cluster links on
the predicted paths.

4 Route Prediction
In this section, we develop an inference algorithm that
predicts routes by composing observed links between
routers. The set of observed links yields a graph cap-

turing the Internet’s physical topology. In order to pre-
dict an end-to-end route accurately, we need to compactly
model the routing decisions made by routers along can-
didate paths in this graph.

This inference and modeling problem is not easy. In-
ferring routes would be easy using a naive model that ex-
plicitly stores the information contained in the forwarding
tables of routers in the graph. However, that defeats our
primary goal of predicting routes using a compact graph
representation. Thus, the key challenge to developing a
compact model is to understand and describe the proce-
dure routers use to compute routes, i.e., to concisely de-
scribe how Internet routing works!

4.1 The Problem: Modeling Internet Routing

Compactly modeling Internet routing would be trivial if
routers simply used shortest path routing. The weights
used for shortest path computation could be inferred us-
ing existing approaches [31]. However, Internet route se-
lection is driven by a number of factors such as routing
policies driven by economic considerations, traffic engi-
neering driven by load balancing goals, and performance
considerations that can not be characterized as shortest
path routing. Furthermore, end-to-end Internet routes are
computed by a set of complex interacting protocols (such
as BGP, OSPF, and RIP) rather than a single protocol.

Fortunately, we are aided by a large body of prior
research on understanding and reverse-engineering the
routing decision process, as well as the knowledge the
research community has acquired on how Internet rout-
ing works in practice. These result in the following com-
monly accepted “textbook” principles about how Internet
routing works.

1. Policy preference: ASes use local preferences to se-
lect routes. Typically, an AS prefers routes through
its customers over those through its peers, and either
of those over routes through its providers 2. Further,
ASes do not export all of their paths to their neigh-
bors; for instance, ASes do not export paths through
their peers to other peers/providers. Commonly
used export policies and AS preferences are be-
lieved to result in valley-free Internet routes [19], in
which any path that traverses a provider-to-customer
edge or a peer-to-peer edge does not later traverse a
customer-to-provider or peer-to-peer edge.

2. Shortest AS path: After applying local preferences,
if a router has multiple candidate paths that it prefers
equally, the default is to select the route containing
the fewest ASes. Typically, several paths may have
the same local preference and AS path length.

2Customer ASes pay their providers while peers connect to each
other at no cost.



GRAPH(s, d):
N ′ ← {d}
for each v ∈ G

if v is a neighbor of d, then D(v, d) = c(v, d);
else D(v, d) = [∞,∞] ;

Do
Pick w /∈ N ′ such that D(w, d) is a minimum
N ′ ← N ′ ∪ {w};
for each neighbor v of w

if D(v, d) > D(w, d)⊕ c(v, w), then
D(v, d) = D(w, d)⊕ c(v, w);
P (v, d) = v.P (w, d);

until N = N ′

Figure 1: The algorithm used by GRAPH to predict a valley-
free route from s to d in a graph G. ⊕ is the operator that de-
fines how edge weights compose in our application of Dijkstra’s
shortest path algorithm.

3. Exit policies: Among these, routes are chosen so as
to meet intradomain objectives, e.g. by choosing the
nearest exit point to the next AS (referred to as early-
exit or hot potato routing) along the path. In some
cases that often involve explicit compensation or ne-
gotiation among adjacent ASes to reduce their com-
bined costs, ASes adopt a late-exit policy.

How well does the above procedure describe Internet
routing? To evaluate this, we develop a simple algorithm
based on dynamic programming that underlies various
forms of shortest path computation. The algorithm in-
corporates the above criteria to compute an on-demand
route, based on a graph representation of the Internet.

Our first attempt, GRAPH, reduces the representation
size by over two orders of magnitude, but has poor predic-
tion accuracy. This suggests that exceptions to the above
criteria are common and must be carefully integrated into
the model, as we describe in Sections 4.3.1–4.3.4.

4.2 GRAPH: A first cut

We present the algorithm in three steps. First, we describe
a basic algorithm using dynamic programming (similar to
Dijkstra’s shortest path algorithm) that captures the pref-
erence for short AS paths, assuming early-exit between
every pair of ASes. Second, we augment the algorithm
to model late-exit when necessary. Third, we augment
the algorithm to model common export policies and local
preferences for routes.

4.2.1 Basic algorithm

Figure 1 shows the pseudocode for GRAPH, an algorithm
that predicts the route between a source s and a destina-
tion d. It chooses the shortest AS path among all valley-
free paths between s and d; further, it uses early-exit at
every AS. The algorithm is similar to Dijkstra’s shortest
path algorithm. Unlike conventional Dijkstra however,

the route computation 1) backtracks from the destination
to all sources, and 2) uses a two-tuple cost metric.

The cost of a route from each node v to the destina-
tion d, represented as D(v, d), is a strictly ordered two-
tuple [number of AS hops to the destination, cost to exit
the current AS], with the first component considered as
the more significant value. For two adjacent nodes v
and w connected by a link of latency l(v, w), the cost
of the edge between them, represented as c(v, w), is de-
fined as [0, l(v, w)] if v and w are in the same AS, and
as [1, 0] otherwise. The ⊕ operator in the algorithm re-
sets the second component to 0 upon crossing an AS
boundary as follows. If v and w belong to the same AS,
D(w, d) ⊕ c(v, w) is defined as D(w, d) + [0, l(v, w)],
where ‘+’ does the usual component-wise addition. If v
and w belong to adjacent ASes, D(w, d)⊕ c(v, w) is de-
fined as [D(w, d)[1]+1, 0]. It is straightforward to verify
that this definition of cost preserves the invariant that if a
node u ∈ N ′, then P (u, d) is a shortest path from u to
d. As in Dijkstra’s algorithm, this invariant ensures the
correctness of the algorithm.

4.2.2 Incorporating late-exit

It is straightforward to extend the above algorithm to han-
dle pairs of ASes that use late-exit instead of early-exit.
We model late-exit as two adjacent ASes v, w (such as
AS6380 and AS6389 – both of which are owned by Bell
South) jointly computing the path through them in or-
der to minimize the overall transit latency. To infer late
exit, we use the technique proposed in [54]. We sim-
ply redefine the ⊕ operator in the following way. An
inter-AS edge (v, w) corresponding to a late-exit route
has c(v, w) = [0, l(v, w)], meaning that it is treated as an
intra-AS edge. We do however have to increment the AS
hop count by two when we backtrack out of the AS con-
taining v. This is accomplished by maintaining another
component in the cost tuple that corresponds to the num-
ber of consecutive late-exit transitions. This component
corresponds to the number of AS hops that are not yet ac-
counted for in the AS path length component of the cost
metric. Whenever an AS transition is traversed where late
exit is not applied, this third component is added into the
AS path length component and reset to zero.

4.2.3 Incorporating export policies

Next, we incorporate constraints corresponding to com-
monly used export policies. We infer AS relation-
ships, such as which are peers and which have paid cus-
tomer/provider transit , using a combination of CAIDA’s
inferences [16] and Gao’s technique [19]. We model the
default export policy in which an AS advertises any paths
through customer ASes to all its neighbors, and it exports
paths from peers and providers to only its customers. It
is well-known that this export policy leads to valley-free



11

2
2

3

3

4

4

5
5

D

S

Stage 1

Stage 2

Stage 3

Figure 2: Route prediction from S to D so as to satisfy
customer<peer<provider preferences. Dark nodes are down
nodes, and light nodes are up nodes. Bold lines go from cus-
tomers to their providers, dashed lines connect peers, and faded
dotted lines go from providers to their customers. GRAPH tra-
verses all the customer-to-provider edges in the first phase to
finalize routes from 3 and 4 to D. Only peering links are tra-
versed in the second phase making 2 choose a path through 3
over a shorter one via 4. Finally, provider-to-customer edges
are traversed.

routes.
To compute valley-free routes, instead of having a sin-

gle node for each cluster (PoP) i, we instead introduce
two nodes in the graph: an up node upi and a down
node downi, and GRAPH computes the path from ups to
downd. The idea is that the construction of edges will
force every path to transition from up nodes to down
nodes at most once, thereby guaranteeing the path is
valley-free. Let i and j be two clusters observed as adja-
cent.

1. If i and j belong to the same AS, there is an undi-
rected edge between upi and upj and one between
downi and downj .

2. If i’s AS is a provider of j’s AS, there is a directed
edge from upj to upi and another directed edge from
downi to downj . This edges capture that a customer
will not provide transit between two providers.

3. If i and j belong to peer ASes, there is a directed
edge from upi to downj and from upj to downi.
These edges capture that i’s AS will use paths
through j only for itself and its customers (and sim-
ilarly for j’s AS and paths through i).

Finally, for each IP address i, there is a directed edge
from upi to downi. It is easy to verify that all routes in the
graph are valley-free by construction (after transitioning
from up to down, a transition from down to up can no
longer occur).

4.2.4 Incorporating local preferences

Next, we incorporate local preferences in selecting AS
paths. We assume that an AS prefers paths through its
customers over those through its peers, which are in turn
preferable to paths through provider ASes. To incor-
porate these preferences, instead of calculating paths to
the destination from all ASes and all routers in a batch,
GRAPH computes routes in three phases.

Figure 2 illustrates the phased approach. GRAPH first
limits the graph to contain only the set of down nodes,
along with the edges connecting them, and computes the
optimal paths from these nodes to the destination. This
frontier reaches precisely the routers in those ASes that
get paid for providing transit to the destination. Once
all such nodes have been visited and their best paths dis-
covered, the algorithm is allowed to reach any additional
nodes that can be reached only using peering; by con-
struction, only one peering is traversed. Finally, the algo-
rithm is allowed to use any link (e.g., provider links) to
reach all remaining addresses.

Results preview: As we show in detail in Section 6,
GRAPH—despite taking into account many aspects of
default routing behavior—correctly predicts only 30%
of the AS paths for our measured dataset. In contrast,
the path composition approach [30] (that dominates our
achievable accuracy) achieves 70% accuracy using the
entire set of observed routes.

On the other hand, the storage overhead of GRAPH
is directly proportional to the number of observed Inter-
net links. As we will see in the evaluation section, this
is two orders of magnitude more compact than the path
composition approach. Thus, the challenge is to improve
GRAPH’s accuracy while keeping it compact.

4.3 Addressing sources of prediction error

A careful examination of the above results reveals that
GRAPH’s inaccuracies arise partly from our failure to
model certain other aspects of Internet routing behav-
ior and partly from errors in inferred AS relationships.
GRAPH’s deficiencies are due to the following reasons.

1. Asymmetry: A significant fraction of Internet routes
are asymmetric [40, 21]. While GRAPH reflects
some asymmetry, e.g., due to early exit routing, it
does not fully capture asymmetric policy behavior.

2. Inaccurate export policy: If GRAPH fails to identify
a peer-to-peer relationship between two ASes, it is
overly lenient in inferring export policy and predicts
non-existent routes that would be filtered in practice.

3. Incorrect local preferences: An AS’s customer may
be a provider for specific paths. For example, two
ASes may have different relationships in different



regions because one AS may have larger network
presence than the other in one region and vice-versa
in another region. Incorrect local preferences could
result in an AS selecting a less preferable route, e.g.,
via a customer.

4. Traffic engineering: ASes may engineer routes in
order to improve routing for their customer traffic
compared to transit traffic.

We address each of these challenges by adding infor-
mation in our data set back into the graph.

4.3.1 Addressing asymmetry

Due to the asymmetric nature of Internet routing, adding
routes originating from the source to the atlas signifi-
cantly improves the accuracy of predicted routes [29]. To
reduce the likelihood of predicting non-existent routes,
iNano splits the graph into two subgraphs: 1) TO DST
that consists of all directed links observed on the tracer-
outes from iNano’s vantage points to all prefixes, and
2) FROM SRC that consists of all directed links on the
traceroutes contributed to iNano by participating end-
host sources.

For each cluster, we introduce a directed edge from its
corresponding node in FROM SRC to its corresponding
node in TO DST. iNano then predicts the route using the
Dijkstra-style algorithm that backtracks from the down
node corresponding to the destination in TO DST to the
up node corresponding to the source in FROM SRC. If it
fails to find such a route, a likely scenario if the atlas lacks
sufficient paths from the source prefix, then it attempts
to find a path from the down node corresponding to the
destination in TO DST to the up node corresponding to
the source in TO DST.

4.3.2 Inferring export policies

GRAPH predicts non-existent routes that would be filtered
given accurate AS relationships. Recall that we inferred
the AS relationships automatically by analyzing observed
behavior. Now, instead of explicitly distilling the AS re-
lationships from the observed routes, we explore an al-
ternate strategy that trades off a small amount of space
for improved prediction accuracy. We seed iNano with
known templates of export policy, e.g., if we observe a
path that traverses the ASes Cogent, AT&T, and Sprint,
we know that AT&T exports paths from Sprint to Cogent.

To implement this strategy, the valley-free check in
GRAPH is replaced with the following 3-tuple check.
iNano explicitly stores the list of all 3-tuples correspond-
ing to three consecutive ASes observed in traceroutes as
well as BGP feeds (discounting prepending). Ideally, we
would consider a predicted route valid only if all con-
stituent segments of size three satisfy the 3-tuple check by
appearing in the list, meaning that the path was exported
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Figure 3: Predicting the path from S to D. Thicker lines show
preferences, dashed lines show non-provider links, and dark
lines show the prediction. iNano cannot choose 1 − 5 − 4 be-
cause the 3-tuple does not appear and cannot choose 1− 7− 4
because 7 is not a provider for 4. It predicts 1 − 2 − 3 − 4
because of the preference for 2 over 5.

at every intermediate AS. In Figure 3, we see that, even
though it is shorter, iNano cannot choose path 1−5−4 be-
cause the 3-tuple (1, 5, 4) does not appear in any BGP ad-
vertisement or traceroute. iNano easily incorporates the
check in the backtracking step of the algorithm. How-
ever, since visibility into ASes at the edge is limited, we
might fail to observe all of the export policies for the
edge ASes. iNano thus performs this check only for 3-
segments in which the degree of the middle AS in the
Internet’s AS-level graph is greater than a threshold (5 in
the current implementation). Finally, we assume commu-
tativity among triples, so that if we observe (AS1, AS2,
AS3), we include (AS3, AS2, AS1) as well.

4.3.3 Improving local preferences

Recall that we infer AS relationships and incorporate the
customer<peer<provider preference order in the route
prediction algorithm. Unfortunately, AS relation infer-
ence by itself is difficult and error-prone. For example,
AS relationship inference based on Gao’s algorithm [19]
predicts that half of the edges observed between the top
hundred ASes ranked by degree correspond to sibling re-
lationships, which seems rather implausible. The 3-tuple
check by itself is not sufficient; although it ensures that
predicted routes consist only of observed tuples, it does
not take AS preferences into account when multiple op-
tions are available.

iNano uses a relationship-agnostic method to infer AS
preferences based only on observed routes. We infer
these preferences using the entire set of observed paths,
but include only the results of the inferences within the
compressed link-level representation of the atlas. The
technique works as follows. For each observed AS route
r, let r1, . . . , rm be the set of alternative routes available
from the source, visible in the topology but not taken. For
each route ri, if r and ri share the first k ASes but differ



at the (k +1)’th AS, then the k’th AS is said to prefer the
(k + 1)′th AS on r over the (k + 1)′th AS on ri. Each
alternative route in the set r1, . . . , rm similarly yields a
preference.

iNano stores the preferences obtained above as 3-
tuples (AS1, AS2 > AS3), where AS1 prefers a route
through AS2 over a route through AS3 when both routes
are of the same length. In Figure 3, iNano selects the path
1 − 2 − 3 − 4 over the path 1 − 5 − 3 − 4 because of a
preference (1, 2 > 5). In some cases, we observe both
3-tuples (AS1, AS2 > AS3) and (AS1, AS3 > AS2). So,
we include the preference (AS1, AS2 > AS3) only if it
was observed at least three times as often as the prefer-
ence (AS1, AS3 > AS2). If not, we ignore both pref-
erences; we conjecture that such wavering preferences
are likely due to load balancing by AS1. While some
AS preferences might be restricted to paths from specific
source prefixes or to specific destination prefixes, iNano’s
model of Internet routing currently captures only prefer-
ences valid across sources and destinations. However, as
we show in our evaluation, this suffices to significantly
improve prediction accuracy.

4.3.4 Incorporating traffic engineering

In many cases, we observe an edge from AS1 to AS2 on
some route in the atlas, but never see this edge on a route
terminating at AS2, i.e., when the destination is in AS2.
This occurs when an AS provides transit using one policy
but routes to its own prefixes using a different policy, e.g.,
AS2 provides transit from AS1 to other ASes but does not
send out BGP updates to AS1 for its own prefixes. The
optimizations described above, the 3-tuple check and AS
preferences, are insufficient to handle such cases.

To address the problem, iNano explicitly maintains in-
formation about provider ASes. For each AS, we deter-
mine its upstream neighbor ASes, i.e., the set of ASes ob-
served immediately prior to this AS in the atlas. We also
determine the set of providers for each AS, i.e., the set of
ASes observed upstream of this AS when it is the origin.
For the latter, we use both our traceroute data as well as
BGP snapshots [33, 47]. For 1,352 ASes out of a total of
27,515 ASes in the atlas, we find the set of providers to be
a proper subset of the set of upstream neighbors. In such
cases, the previous algorithms could give the wrong path.
We refine the approach further to determine the provider
and upstream neighbor sets on a per-prefix basis. In Fig-
ure 3, iNano cannot select the path 1−7−4, even though
it is shorter, because 7 is not a provider for 4.

5 Implementation of iNano
Our implementation of iNano can roughly be divided
into two logical components—server-side and client-side.
The primary function of the server-side implementation
is to gather measurements and to build the link-based at-

las as described in the previous section. In addition, the
iNano server bootstraps the distribution of the atlas to
end-hosts.

The client-side implementation comprises a library
providing information about Internet paths. The library
performs four functions—fetching the atlas, augmenting
the atlas with local measurements, servicing queries for
path information from applications, and keeping the atlas
up-to-date.

Fetching the Atlas: On startup, the iNano library
fetches the atlas required for making predictions. The
atlas fetched includes the following datasets: the set
of inter-cluster links annotated with latencies and loss
rates, data to map IP addresses to prefixes and ASes,
AS degrees, AS 3-tuples, AS preferences, and the set of
providers for each AS. Having all end-hosts fetch the at-
las from iNano’s server would require an extremely large
amount of bandwidth to be provisioned at the server. This
would significantly drive up the cost required to run and
maintain iNano.

Therefore, we instead rely on swarming the atlas
across clients in order to distribute it. iNano’s central
server serves as the seed for the dissemination of the at-
las. In addition, every end-host running the iNano library
makes available the portion of the atlas it has downloaded
for other end-hosts to download. We have made our im-
plementation sufficiently modular that any peer-to-peer
filesharing protocol can be plugged in for distribution of
the atlas. Our current implementation uses CoBlitz [39]
and we are working on a version that uses BitTorrent [11].

Client-side Measurements: As previously explained
in Section 4.3.1, iNano explicitly incorporates path asym-
metry into its prediction model to improve the accuracy
of path prediction. To enable this, iNano’s library in-
cludes a measurement toolkit used to gather measure-
ments of the Internet from the perspective of end-hosts.
The library uses this toolkit to issue traceroutes daily to
destinations in a few hundred prefixes, chosen at random
from all the routable prefixes in the Internet. The new
links discovered as part of these traceroutes are added to
the FROM SRC plane of the atlas. The library also up-
loads the measured traceroutes to the central server. The
server incorporates these measurements into the atlas dis-
tributed out to all end-hosts. Buggy or malicious clients
could distort the atlas by contributing incorrect or fab-
ricated measurements. While such discrepancies could
be inferred by comparing with measurements from other
clients, we leave such inference to future work.

Serving Queries: Once the atlas is fetched and aug-
mented with client-side measurements, the library starts
up a local query server. This query server implements the
prediction algorithm developed in Section 4. The API
exported by the library enables applications to query for
information on paths between (src, dst) IP address pairs



Dataset
No. of entries Compressed file

size (in MB)
Atlas Delta Atlas Delta

Inter-cluster links
309K 121K 1.99 0.49

with latencies
Link loss rates 47K 65K 0.21 0.29
Prefix to cluster 140K 0 0.76 0

Prefix to AS 287K 0 1.67 0
AS degrees 28K 0 0.09 0

AS three-tuples 1.05M 230K 1.23 0.56
AS preferences 9K 0 0.03 0

Provider mappings 33K 0 0.63 0
Total 6.61 1.34

Table 2: Current size of iNano’s atlas, in terms of number of
entries, compressed bytes on disk, and the delta between con-
secutive days.

in batches of arbitrary sizes. In future work, we plan to
support remote queries so that only one local host need
download the atlas.

Keeping Atlas Up-to-date: Paths and path proper-
ties on the Internet change over time. Hence, iNano’s
atlas needs to be kept up-to-date to reflect current net-
work conditions. Fortunately, the stationarity of Internet
routing keeps the bandwidth cost of such updates low. A
significant fraction of Internet routes are stationary [40]
across days and path properties are stationary [60, 30] on
the timescale of several hours. Therefore, as we show
later in our evaluation, the difference between the atlases
of consecutive days can typically be represented in ap-
proximately 1MB. As a result, once an end-host fetches
the complete atlas, it can maintain an up-to-date atlas
thereafter by downloading a daily 1MB update also as
a swarmed file download.

6 Evaluation
In this section, we evaluate the accuracy of iNano’s pre-
dictions of paths and path properties, and study the con-
tribution that each of iNano’s components makes towards
its predictive ability. We also quantify the stationarity of
iNano’s atlas across days, iNano’s storage requirements,
and how the atlas size would grow with additional van-
tage points.

6.1 Size of the atlas

First, we discuss the typical size of iNano’s atlas and then
evaluate how this size would scale with measurements
from more vantage points.

6.1.1 What is the current size of the atlas?

We describe a typical day’s atlas that we use for most
of the evaluation in this section. We leverage PlanetLab
nodes as vantage points for gathering the iNano atlas. The
atlas we use in our evaluation comprises traceroutes from
197 PlanetLab nodes to one destination each in 140K pre-
fixes. All of these traceroutes were gathered over the

course of a day. After alias resolution and clustering, 85K
distinct clusters are present in the atlas, with 309K links
between them. The dataset obtained by combining these
inter-cluster links annotated with latencies and loss rates,
observed AS 3-tuples, inferred AS preferences, and the
mapping of ASes to their providers is roughly 6.6MB in
size. AS 3-tuples, the dataset with the most number of en-
tries, are highly amenable to compression because only
2500 ASes, less than 10% of all the ASes in the atlas,
occur as the middle component of any 3-tuple. Table 2
shows the size associated with each of these components
of the atlas.

6.1.2 Does iNano’s atlas scale w.r.t vantage points?

iNano uses measurements from end-hosts to improve pre-
diction accuracy for asymmetric routes. However, adding
more measurements could significantly inflate the size of
iNano’s atlas, questioning the basic tenet of our work—is
the atlas still tractable if it includes measurements from
millions of end-hosts?

To study this question, we use the DIMES measure-
ment infrastructure [50]. The DIMES project runs an In-
ternet measurement agent on a few thousand end-hosts
distributed worldwide. We issued traceroutes from 845
DIMES agents to 100 randomly chosen destinations each
over the course of a week.

The addition of measurements from more vantage
points primarily impacts the number of inter-cluster links
and the number of AS three-tuples in the atlas. As stated
previously, measurements from PlanetLab find approxi-
mately 309K links and 1.05M AS three-tuples. Including
the measurements from the 845 DIMES agents into the
atlas added approximately 16K links and 14K AS three-
tuples in total. Even though the addition of links from
more vantage points is likely to be sublinear in practice,
we extrapolate linearly to get a conservative estimate of
the increase in the size of the atlas if we had measure-
ments from all of the Internet’s edge. Including tracer-
outes from end-hosts in all 100K prefixes at the Internet’s
edge would increase the number of links in the atlas from
309K to approximately 2.2M (16K new links added for
every 845 hosts), an eight-fold increase, and the num-
ber of AS three-tuples from 1.05M to 2.7M (14K new
three-tuples for every 845 hosts), a three-fold increase.
Assuming this data is as compressible as the PlanetLab
data, this would add 18MB to the atlas and 5MB to the
daily update. It is future work to determine how much of
this data is truly needed, discarding information that adds
little in terms of added accuracy.

6.2 Stationarity of measurements

iNano refreshes its atlas once every day. To eval-
uate whether the interval of a day between up-
dates suffices, we examine the stationarity of the



Figure 4: Similarity of PoP-level paths across consecutive days
for routes measured from 195 PlanetLab nodes to destinations
in 140K prefixes.

two kinds of measurements—traceroutes and loss rate
measurements—used to construct iNano’s atlas. Our link
latencies do not capture transmission and queueing de-
lays, and hence, are extremely stable. We then present
the size of the difference between successive atlases that
arises as a result of the stationarity in measurements.

6.2.1 How stationary are routes?

We studied the stationarity of routing by comparing the
traceroutes measured from each of 195 PlanetLab nodes
to destinations in 140K prefixes on successive days.
Since iNano only considers the Internet topology at the
granularity of clusters corresponding to PoPs, we map
traceroutes to cluster-level paths for comparison. We
compared every path between a PlanetLab node and a
destination on one day with the same path the next day
using the path similarity metric [22, 29]. The similarity
metric compares two paths as the ratio of the size of the
intersection to the size of the union, of the sets of clusters
in each of the paths; the ordering of clusters in the paths
is not considered. The maximum value of this metric is
1 when both paths pass through exactly the same set of
clusters, and the minimum value is 0 when the paths are
completely disjoint. Figure 4 shows the distribution of
PoP-level path similarity we obtained by comparing paths
across consecutive days, grouping the similarity values
into bins of 0.05. 91% of the paths on the first day have
a similarity of at least 0.75 with the corresponding paths
measured the next day, 68% have a similarity of at least
0.9, and 50% remain identical.

The main prior work on studying path stationarity has
been by Paxson [40] and Zhang et al. [60]. Both observed
more stationarity in routes than we do—Paxson found
68% of paths to be identical across days at the granu-
larity of routers, and Zhang et al. found the same number
to be more than 75%. We believe the difference in our
findings is due to our significantly larger dataset. Pax-
son’s measurement dataset included traceroutes between
27 vantage points and Zhang et al. used traceroutes be-
tween 220 vantage points. In contrast, our analysis of

path stationarity uses traceroutes from 195 vantage points
to 140K destinations each.

6.2.2 How stationary are loss rates?

To evaluate the stationarity of packet loss, we probed
paths from 201 PlanetLab nodes to destinations in 5000
randomly chosen prefixes each. We sent out 100 ICMP
probes of size 1KB on each path, with successive probes
separated by 2 seconds, and determined the fraction of
probes for which we received no response. We repeated
these loss measurements 6 hours later. We found that
66% of paths on which we originally observed packet
loss continued to be lossy 6 hours later. We also repeated
these measurements 12 hours and 24 hours after the orig-
inal measurements. The fraction of lossy paths that con-
tinued to remain so decreased from 66% to 53% when
the interval between measurements was increased from 6
hours to 12 hours but remained steady at 53% when the
interval was increased further to 24 hours.

6.2.3 How stationary is iNano’s atlas?

As a result of the significant stationarity seen in both
paths and path properties over the interval of a day, the
difference between iNano’s atlases on consecutive days
is much smaller in size than the atlas itself. To update
the atlas from the previous day, iNano ships the union
of the old entries not present any more and new entries
added to the inter-cluster links, link loss rates, and ob-
served AS three-tuples datasets. The size of the link loss
rates delta is larger than the loss rates dataset itself be-
cause we have to update a link’s loss rate not just when
it changes from being lossless to lossy (or vice-versa), as
in our study on stationarity of loss above, but also when
the link’s loss rate changes. All the other datasets do not
change on a day-to-day basis and hence, are updated in
full only once a month. Table 2 shows that the typical
difference is 1.34MB in size, less than one-fifth the typ-
ical size of a complete atlas. This implies that once an
end-host downloads iNano’s atlas, it can keep its local in-
formation up-to-date by fetching a significantly smaller
update daily thereafter.

6.3 Accuracy of Predictions

We next evaluate the accuracy of iNano’s predictions
of both paths and path properties. From the 197 van-
tage points used in gathering the atlas described in Sec-
tion 6.1.1, we choose a subset of 37 at random as our rep-
resentative end-hosts. We pick 100 random traceroutes
performed from each of them. After discarding paths that
do not reach the destination or have AS-level loops, we
are left with a validation set of 2816 paths. To predict the
paths and path properties from one of the 37 sources, we
include links from all traceroutes from the remaining 196
vantage points in the TO DST plane and links from 100
other randomly chosen traceroutes from this source in the



Figure 5: AS path prediction accuracy for measured traces as
components are incorporated into iNano. RouteScope is the
algorithm from [32], GRAPH is the algorithm described in
Section 4.2, and path-based is the iPlane algorithm. Improved
path-based incorporates iNano’s techniques into the iPlane al-
gorithm.

FROM SRC plane.

6.3.1 Can iNano predict AS paths accurately?

We evaluate the accuracy of iNano’s ability to predict the
AS paths in our validation set. We evaluate the accuracy
of iNano’s path prediction only at AS-level and not at
PoP-level because our dataset clustering router interfaces
into PoPs is complete. As a result, when our clustering
indicates that two PoP-level paths are not identical, it is
hard to say whether the difference is because of the in-
completeness of our clustering data or they are indeed
different. In contrast, our mapping from IPs to ASes is
significantly more comprehensive.

Figure 5 shows the improvement in accuracy of AS
path prediction as each component of iNano is incorpo-
rated into the GRAPH algorithm. The fraction of paths for
which we predict the AS path exactly right increases from
31% with GRAPH to 70% with all components of iNano
included. Each of the four techniques that iNano uses
significantly improves iNano’s ability to predict paths. In
fact, our final predictive model achieves the same AS path
accuracy as iPlane’s path composition technique, which
uses a path-based dataset two orders of magnitude larger
than iNano’s link-based atlas. Furthermore, iNano out-
does path composition in the ability to predict AS path
length.

Figure 5 also compares iNano’s AS path prediction ac-
curacy with that of RouteScope [32], the only prior work
that predicts AS paths from a graph representation of In-
ternet topology. First, RouteScope computes relation-
ships between ASes using an observed set of AS paths
as input. However, to predict the path between a (src,
dst) pair, it needs only the AS-level graph of the Internet.
RouteScope computes the set of shortest AS paths deter-
mined to be valley-free between the AS of src and the AS

of dst. For the problem setting targeted by iNano, a single
predicted path is required to estimate end-to-end perfor-
mance. Therefore, to evaluate the utility of RouteScope
in this setting, we choose one path at random from the
set of paths returned by RouteScope for each (src, dst)
pair. RouteScope’s accuracy at predicting AS path length
is only as good as that of GRAPH, and its accuracy at
predicting the correct AS path is worse than GRAPH’s.
iNano’s significantly better accuracy stems from its mod-
eling of Internet routing at PoP-level instead of AS-level
and its modeling of routing with techniques beyond sim-
ple valley-free routing.

iNano’s techniques are also applicable to a structural
approach that works by composing path segments. We
incorporate these techniques into iPlane’s path composi-
tion algorithm to improve the accuracy of prediction us-
ing an atlas of paths. When two path segments are being
spliced together, we check whether the sequence of ASes
prior to, at, and after the point of intersection exists in
our database of 3-tuples. We also ensure that AS prefer-
ences are enforced when multiple candidate intersections
pass the 3-tuple check. Figure 5 shows that the modified
path composition technique increases iPlane’s ability to
predict AS paths from 70% to 81%.

The ability to predict paths using either iNano or path
composition is limited by two factors, the comprehen-
siveness of the atlas measured from our vantage points
and the accuracy of our inferred routing policies. We
quantified the contribution of the former to the inaccu-
racy in path predictions as follows. For each path in our
validation set, we determined whether all the inter-cluster
links on the path were present in the corresponding atlas
used to predict the path. 7% of paths were such that at
least one of the inter-cluster links along the path was not
observed in the atlas used for prediction. Therefore, if we
had better coverage of the Internet’s topology with mea-
surements from more vantage points, the accuracy of path
prediction could increase to up to 77% using iNano and
to up to 88% using path composition.

6.3.2 How accurately can iNano estimate path prop-
erties?

Next, we evaluate iNano’s ability to estimate latencies
along paths to arbitrary end-hosts. For each of the paths
used in our evaluation of path prediction accuracy, we
compose iNano’s link latency estimates along the pre-
dicted forward and reverse paths to derive an estimate
for the end-to-end latency. Figure 6 shows the error in
iNano’s latency estimates. We derive latency estimates
for the same paths using the path-composition technique
of iPlane [30] and using Vivaldi [13], a popular network
coordinate system. iNano’s median latency estimation er-
ror is 11ms, as compared to a median error of 20ms with
Vivaldi. The path composition technique yields an even



Figure 6: Accuracy of latency estimates along paths to arbitrary
destinations.

Figure 7: Accuracy of techniques in predicting 10 closest desti-
nations (in terms of delay).

lower median error of 6ms, partly because of its better
accuracy at predicting paths and partly because estimates
of latencies along path segments tend to be more accurate
than the sum of individual links.

However, the order of the three lines is reversed in the
tail. iNano yields better latency estimates than the path
composition technique in the tail because of differences
in the methodology used to obtain link latencies for the
former and path segment latencies for the latter. Our tech-
niques for inferring link latencies identify and use mea-
surements obtained by symmetric traversal of links [28],
whereas our latency estimates of path segments do not.
Like in iPlane [30], our latency estimates for path seg-
ments are obtained by just subtracting RTTs measured in
traceroutes. The fact that Vivaldi produces better latency
estimates in the tail than both iNano and path composi-
tion shows the significant room for improvement in our
latency estimates for both links and path segments.

Applications such as peer selection and detour routing
benefit from the ability to discern which destinations have
low latency from a source. We therefore also assess la-
tency estimation from the perspective of ranking different
destinations in terms of latency from a common source.
To quantify each technique’s predictive ability on this cri-
terion, we use the following metric. From each source,
we determine the 10 closest nodes in terms of actual mea-

Figure 8: Accuracy of loss rate estimates along paths to arbi-
trary destinations.

sured RTT among the 100 destinations per source in our
validation set. We then do the same using estimated la-
tencies and compute the intersection between the actual
and predicted sets of 10 closest nodes. Figure 7 plots the
cardinality of this intersection for each source in our val-
idation set. iNano’s ability to rank paths is significantly
better than that of Vivaldi, while being comparable to the
path-based approach.

We next consider how well iNano can predict loss
rates. We measured the loss rates along each of our vali-
dation paths and also measured the loss rate of each inter-
cluster link in our atlas. We then use iNano to estimate
the loss rate by composing the loss rates of the links along
the predicted forward and reverse paths. Figure 8 plots
the accuracy of iNano’s loss rate estimates. Since coordi-
nate systems, such as Vivaldi, can only estimate latency,
we restrict our comparison to iPlane’s path composition
technique in the case of loss rate. iNano approximates
path-based estimates with a much smaller atlas.

7 Applications
Our motivation in building iNano is to provide informa-
tion on Internet paths to peer-to-peer applications. There-
fore, we investigate the utility of the iNano library by
using it in three sample peer-to-peer applications—peer-
to-peer file transfer, voice-over-IP, and detour routing
around failures.

7.1 P2P file transfer

The next generation of content distribution networks
(CDNs) are moving away from server-based deployments
to client-based models. In contrast to services like Aka-
mai [6], several alternatives [45, 38, 25] have recently
emerged that perform content delivery by utilizing client
end-hosts for storage and bandwidth. In such client-based
CDNs, which are not centrally managed, a common prob-
lem is to determine the best replica for a given client.
iNano enables clients to make this decision locally.

To evaluate the utility of iNano in client-based content-
delivery systems, we emulated such a system as follows.
We considered 199 PlanetLab nodes as clients. We re-



(a)
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Figure 9: Evaluation of peer selection in a peer-to-peer file
transfer system for file sizes of (a) 30KB and (b) 1.5MB. Each
point is a median of 10 samples, with each sample obtained with
a different randomly selected set of replicas.

solved an Akamai-zed DNS name from these nodes to
discover 199 Akamai servers. For each client, we then
determined the set of replicas that host the content of its
interest by choosing 5 Akamai servers at random 3, inde-
pendently for every client. We then determined the best
replica for every client using four different sources of
path information—1) measured latencies, 2) latency es-
timates from Vivaldi [13], 3) latency estimates from OA-
SIS [18], a server-selection system used by many CDNs
deployed on PlanetLab, and 4) latency and loss rate es-
timates from iNano. We also consider the strategy of
choosing replicas at random. We evaluated each strat-
egy by downloading from every client a file from each
replica. We compare the download times for each strat-
egy with the optimal, which is the minimum of the down-
load times from the 5 replicas associated with the client.

Figure 9 shows the results of this experiment. First, we
downloaded a 30KB file wherein we only used iNano’s
estimates of path latency, because short TCP transfers
are dominated by latency [8]. iNano closely tracks the
performance obtained with measured latencies and is sig-
nificantly better than the performance obtained with the
use of Vivaldi or OASIS. We then repeated this experi-

3We used such a setup instead of using PlanetLab nodes as replicas
because the locations of PlanetLab nodes are hard-coded into OASIS.

Figure 10: Evaluation of relay selection for voice-over-IP using
iNano’s estimates of latency and loss rate.

ment for a 1.5MB file. In this setting, we use iNano’s
latency and loss rate estimates in combination to choose
the replica that would maximize TCP throughput based
on the PFTK model [37]. iNano’s predictions of loss rates
enable it to choose replicas that deliver significantly bet-
ter download performance than that obtained using mea-
sured latencies. Vivaldi and OASIS, restricted to model-
ing path latency, continue to yield poorer performance.

Unlike our experimental evaluation, in practice, a P2P
CDN may perform a transfer in parallel across multiple
paths assuming that at least one of those paths will pro-
vide good performance. iNano can be of benefit to such
applications in two ways. First, in applications that trans-
mit video, iNano can reduce the bootstrapping time for
the video to load by helping prune down a potentially
large set of path alternatives to a small set of good paths
used for the transfer, without performing any measure-
ments. Second, by enabling the application to focus in
on the good paths quickly, iNano reduces the redundant
traffic sent by the application that either gets dropped on
lossy paths or is used just for measurement.

7.2 Voice-over-IP

Voice-over-IP (VoIP) has emerged as a popular peer-to-
peer application in recent years. VoIP applications such
as Skype [52] allow end-hosts that are both behind NATs
to talk to each other by routing packets via another end-
host that serves as a relay. Picking the right relay is vital
to ensure reasonable quality of the end-to-end call [46].

We emulated a VoIP application by considering 119
PlanetLab nodes as representative end-hosts. We chose
1200 (source, destination) pairs at random and emulated
a VoIP call between each such pair by sending a 10KBps
constant bitrate UDP packet stream from the source to
the destination. For each call, we consider all end-hosts
other than the source and destination to be potential re-
lays. We use iNano to pick the 10 relays that minimize
the predicted loss rate and then choose the one amongst
these that minimizes end-to-end latency. We compare this
strategy of choosing relays with three other strategies—
1) closest to source based on measured latency, 2) closest



Figure 11: Ability to route around failures using iNano’s path
predictions and using detour nodes at random. Note y axis is on
log scale to the base 2.

to destination based on measured latency, and 3) random.
Figure 10 compares the quality of the relay nodes cho-

sen by using iNano’s estimates of latency and loss rate
with the choices made using the other strategies. Paths
via relay nodes chosen by iNano see significantly less
packet loss compared to the alternatives.

7.3 Detouring around failures

Several Internet measurement studies [40, 60, 15, 20]
have shown that the typical availability of an Internet
path is “two-nines”, i.e., 99%. This level of availability
falls well short of that measured for the telephone net-
work [26]. One of the solutions proposed to mitigate
this problem is detour routing [48]. When a source is
unable to reach a destination, the source can attempt to
contact the destination instead by routing its packets via
another end-host that serves as a detour. Previous solu-
tions for improving availability with detour routing im-
plement one of three approaches—1) constantly moni-
tor paths between all pairs of end-hosts [7], 2) constantly
monitor paths between all pairs of detour nodes [1] and
have end-hosts route through nearby detour nodes, or 3)
detour via a small randomly chosen set of end-hosts [20].
All-pairs monitoring is infeasible at Internet-scale, mon-
itoring paths only between detour nodes ignores failures
on paths from end-hosts to nearby detour nodes, and a
small randomly chosen set of detours will not suffice for
widespread outages.

We explore a new way of routing around failures by
choosing detour nodes that maximize the disjointness be-
tween the detour path and the direct path. When a source
is unable to reach a destination, we use iNano to predict
the direct path from the source to the destination as well
as the detour path via each of the available intermedi-
aries. We then rank the detour paths based on the number
of PoPs and ASes shared by their predicted paths. We
choose the (k +1)th detour node in this ranking to be the
one that minimizes first the number of PoPs and second
the number of ASes in common with the direct path and
the k previously chosen detours. A strategy for recover-

ing from failures by using N detours would try the first
N detours in the ranking; the lower the value of N the
less overhead incurred.

To compare the efficacy of the above strategy for rout-
ing around failures with SOSR’s [20] strategy of using a
few detours at random, we gathered the following mea-
surements of path availability. We used 35 PlanetLab
nodes and performed traceroutes continually for a week
from each of them to destinations in 1000 randomly cho-
sen prefixes, once every 15 minutes. Whenever a Planet-
Lab node was unable to reach a destination, we measured
the availability of the detour path via the other 34 Plan-
etLab nodes. We consider for our analysis only the cases
when at least 10% of our sources were simultaneously
unable to reach the destination but at least 10% could.

Figure 11 compares our ability to route around failures
by intelligently choosing detours using iNano’s path pre-
dictions as opposed to choosing detours at random. For
the same number of detour paths, using iNano reduces
the fraction of cases when the destination is unreachable
by roughly a factor of 2. For example, the use of 5 detour
paths leaves the destinations unreachable in 2% of cases
compared to 4% of cases with the random strategy.

8 Related Work
Our work benefits from a decade of work in Internet
performance prediction [49, 17] and network measure-
ment [51, 55]. Compared to most prior work, our goal
is different: accurate prediction of sophisticated Internet
performance metrics from lightweight end-hosts, which
requires us to aggressively explore the trade-off between
accuracy and representation size.

8.1 Latency prediction

IDMaps [17] pioneered the idea of a network informa-
tion service that provides latency information between ar-
bitrary end-hosts on the Internet. IDMaps issues pings
from a set of vantage points to all participating end-
hosts and also measures latencies between all pairs of
vantage points. As more vantage points are added, the
size of IDMaps’ measurement data grows proportional to
the square of the number of vantage points. Therefore,
IDMaps uses a spanner-graph representation to compress
its data. iNano tackles a different compression problem,
that of compactly representing information encoded in
the forwarding tables of all routers in the Internet.

Ng et al. [35] showed that Internet nodes could be em-
bedded in a Euclidean coordinate space. The strength
of the approach is that it is 1) simple because it treats
the underlying network as a blackbox, and 2) lightweight
because only a few bytes of coordinates per node need
be stored. A large body of work has since refined this
basic approach to provide decentralization [36, 13], im-
proved computational efficiency [56], resilience to mea-



surement error [12, 13], security [12], and accuracy.
The techniques used to minimize error include Simplex
minimization [12, 36], Principal Component Analysis
(PCA) [27, 56], and spring relaxation [13].

The network coordinates approach poses two problems
for our goals. First, the approach has been shown capable
of predicting latencies, but it is unclear how to adapt the
approach to other metrics that do not obey linear compo-
sition, such as loss rate. Second, the approach is funda-
mentally limited in accuracy. For example, about half of
all Internet routes are known to be asymmetric [40] and
a significant fraction are known to possess shorter detour
routes [48]. However, common embedding techniques
based on metric spaces will predict symmetric latencies
and fail to predict detour routes when triangle inequality
is violated. This limits the applicability of the approach
for many applications.

8.2 Prediction of multiple metrics

Sequoia [43] attempts to embed nodes on to a “virtual
prediction tree”. Edges of the tree are annotated with
latency and the latency between two nodes is predicted
as the length of the path connecting them. Unlike other
coordinate systems, Sequoia is also extensible to band-
width. However, it continues to use metric embeddings
that predict symmetric routes with no detour routes. Aka-
mai’s SureRoute [1] service optimizes transfers between
end-hosts by routing through a mesh of detour nodes.
End-hosts are routed through nearby detour nodes and
the optimal path through the mesh of detour nodes is de-
termined by constant monitoring. However, the perfor-
mance along a path between two end-hosts is not nec-
essarily the same as on the path via their nearby detour
nodes.

8.3 Structural inference

iNano’s structural inference approach has been previ-
ously used in iPlane. However, unlike iNano, iPlane
adopts a centralized architecture that scales poorly to 1)
Internet-scale query loads, and 2) more vantage points.
iPlane uses an atlas of observed paths, whose size is pro-
portional to the number of vantage points times the num-
ber of destinations probed times the average path length.
With iPlane’s current set of vantage points and destina-
tions, the size of its atlas is already over 1GB. As more
vantage points contribute measurements, iPlane’s accu-
racy will increase, but at the cost of blowing up the size
of its atlas. iPlane’s large atlas has the implication that
its query engine can only be hosted on dedicated servers
but not on typical end-hosts. iNano’s atlas instead com-
prises link-level, not path-level, information of the Inter-
net structure. Routing policies encoded in iPlane’s set of
observed paths are replaced by iNano’s compact repre-
sentation of the same.

8.4 AS path inference

iNano’s main focus is on predicting path performance be-
tween arbitrary end-hosts, while predicting the path be-
tween them. Prior work has looked at a part of this prob-
lem, inference of AS paths.

Mao et al. [32] describe a structural inference ap-
proach, RouteScope, to infer AS-level paths. They use
constrained optimization to model aspects of interdo-
main policy routing such as customer<peer<provider
and valley-free routing, and use additional measurement
techniques to observe routes from multihomed prefixes.
Our evaluation in Section 6 shows that iNano’s ability
to predict AS paths is significantly better than that of
RouteScope, with iNano predicting the AS path correctly
for more than twice as many paths in our validation set.

Qiu and Gao [42] build on RouteScope by using
observed AS paths as constraints in predicting paths.
Muhlbauer et al. [34] attempt to develop a hybrid model
of Internet routing that lies in between a blackbox and
a structure inference approach. They introduce “quasi-
routers” to model the presence of multiple border routers
in an AS based on an observed set of routes. Their ap-
proach can predict the training set exactly and achieves
50% prediction accuracy for unobserved routes. Both
these pieces of work require a set of AS paths to make
predictions; an atlas of paths is not compact enough to
serve iNano’s goal of distributing the atlas to end-hosts.

9 Conclusions
Our contribution is a practical one. Today, there is
a gap between research techniques for Internet perfor-
mance prediction, and the scalability and low-overhead
desired by large-scale P2P applications. iPlane Nano is a
lightweight Internet path performance prediction engine
that applications can use today at low cost. To make this
work, we develop a model of Internet routing that can
predict PoP-level paths between arbitrary end-hosts with
an atlas that is less than 7MB in size and can be updated
with roughly 1MB/day. The compact nature of the at-
las enables applications to have their clients download
the atlas and process queries locally. Furthermore, be-
cause the atlas is the same for all end-hosts, it can be
disseminated to clients at low cost by using common P2P
filesharing protocols, and thus largely using client band-
widths. Our evaluation of iPlane Nano demonstrated the
accuracy of its predictions and its utility in improving the
performance of P2P applications.
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