
QoE Inference Without Application Control

Ashkan Nikravesh, David Ke Hong, Qi Alfred Chen, Harsha V. Madhyastha, Z. Morley Mao
University of Michigan

{ashnik, kehong, alfchen, harshavm, zmao}@umich.edu

ABSTRACT
Network quality-of-service (QoS) does not always directly
translate to users’ quality-of-experience (QoE), e.g., changes
in a video streaming app’s frame rate in reaction to changes
in packet loss rate depend on various factors such as the
adaptation strategy used by the app and the app’s use of for-
ward error correction (FEC) codes. Therefore, knowledge of
user QoE is desirable in several scenarios that have tradition-
ally operated on QoS information. Examples include traffic
management by ISPs and resource allocation by the operat-
ing system (OS). However, today, entities such as ISPs and
OSes typically do not have a convenient way of obtaining
input from applications on user QoE.

To address this problem, we propose offline generation
of per-application models mapping application-independent
QoS metrics to corresponding application-specific QoE met-
rics, thereby enabling entities (such as ISPs and OSes) that
can observe a user’s network traffic to infer the user’s QoE,
in the absence of direct input. In this paper, we describe how
such models can be generated and present our results from
two popular video applications with significantly different
QoE metrics. We also showcase the use of these models for
ISPs to perform QoE-aware traffic management and for the
OS to offer an efficient QoE diagnosis service.

1 Introduction
For applications that users access over the Internet (e.g., video,
VoIP, Web), knowledge of the user’s quality of experience
(QoE) is valuable in various ways. When dealing with con-
gestion, any ISP can shape traffic in a manner sensitive to
the impact that its traffic management will have on the QoE
of its users (e.g., throttling every flow to only that extent
that does not significantly degrade QoE for the correspond-
ing users). An application’s servers can leverage knowledge
of user QoE to appropriately adapt its delivery of traffic to
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

Internet-QoE, August 22-26, 2016, Florianopolis , Brazil
c© 2016 ACM. ISBN 978-1-4503-4425-8/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940136.2940145

its users (e.g., a video service can reduce the video bitrate to
eliminate the rebuffering delays being incurred at a higher
bitrate). Furthermore, if the operating system (OS) on a
user’s end-device can detect when the user is suffering from
poor QoE, it can attempt to diagnose the problem.

However, today, all of these useful QoE-aware mecha-
nisms for traffic management, application delivery adapta-
tion, and user experience diagnosis are stymied by a basic
limitation: determining a user’s QoE on a particular appli-
cation requires software on the user’s device that is capable
of measuring QoE metrics for that application and reports
this information to the entity (OS, ISP, or application server)
implementing the QoE-aware mechanism. This limitation
stems from several reasons.

• Application-specific QoE metrics. The metrics that cap-
ture user QoE vary significantly across applications, e.g., re-
buffering delays for video, PESQ score for VoIP, and page
load times for the Web. This makes it challenging, if not
impossible, to write one software, which if installed on a
user’s device, can measure the user’s QoE for any arbi-
trary application.

• Lack of API to communicate QoE. In cases where the
user interacts with an application via client software of-
fered by that application’s provider, that client is able to
measure the user’s QoE and relay such information to the
application’s servers. However, there typically does not
exist an interface via which an application’s client soft-
ware can relay measured QoE information to other entities
that can make use of this information, such as the user’s
OS or ISP.

• Third-party clients. It can also be challenging for an
application’s own servers to discover user-perceived QoE
because users often access applications via client software
not developed by the application provider, e.g., YouTube
accessed on Internet Explorer, or a messaging service ac-
cessed via a third-party client that has support for several
messaging services.

As a result of these limitations, we are currently at an im-
passe. There is growing recognition that dealing with net-
work traffic based on traditional quality of service (QoS)
metrics (e.g., allocating an equal share of the bottleneck link’s
bandwidth to all flows, irrespective of which applications
those flows correspond to) does not accurately account for

http://dx.doi.org/10.1145/2940136.2940145

users’ quality of experience. Yet, all of the wonderful QoE-
aware optimizations detailed above are infeasible to imple-
ment today due to the lack of software on end-devices which
can measure and report QoE to the entity implementing the
optimization.

To chart a way forward out of the current impasse, we
argue that it is indeed feasible for an entity that has access
to a user’s network traffic to infer the user’s QoE, despite
not having direct access to application-level QoE measure-
ments from the user’s device. Our proposed approach for
inferring QoE corresponding to a traffic flow is to rely on
models that can map the flow’s QoS metrics (such as latency,
bandwidth, and loss rate) to the corresponding QoE metrics.
While such a model is impractical in general, our key obser-
vation is that such QoS-to-QoE models are indeed feasible
on a per-application basis.

In this paper, we first describe how application-specific
models that map QoS metrics to corresponding objective
QoE metrics can be generated. We present results for two
applications: a video conferencing app AppRTC, and the
video player underlying YouTube. In both cases, we find
significant non-linearities between QoS and QoE, validating
the need for our models. A key challenge that we tackle
in generating these models is to adaptively sample the QoS
metric space to obtain good coverage of all transitions where
changes in QoS result in changes in QoE, without having to
exhaustively cover the whole QoS metric space.

In addition, we present how the per-application QoS-to-
QoE models, once generated, can be utilized in two different
scenarios: QoE-aware traffic management by ISPs, and QoE
diagnosis as a service by the OS. In the former case, we show
how our models can enable ISPs both to identify QoE degra-
dation for any user and to determine the minimum increase
in QoS for the user’s traffic that is necessary to improve the
user’s QoE to a desired level. In the latter scenario, our QoS-
to-QoE models generated offline enable an OS-level QoE di-
agnosis service to efficiently identify whether network con-
ditions are the cause for poor QoE and to trigger collection of
more heavyweight logging (e.g., lock contention) only when
necessary.

2 Generating QoS-to-QoE models
Since the entities (such as ISPs and OSes) that could bene-
fit from knowledge of user QoE often do not have visibility
into this information, we seek to equip them with the abil-
ity to infer QoE based on network QoS metrics. A single
mapping from QoS to QoE values does not exist, given the
wide variance in how QoE is measured across different ap-
plications, e.g., frame rate in video conferencing and page
load time in web browsing. Because of the differences in
the protocols used by different applications, even generat-
ing a separate QoS-to-QoE model for every application type
is infeasible. For instance, Skype and Google Hangout use
different techniques to deal with packet loss [18]; therefore,
even with the same packet loss rate, users may experience
different QoE when using the two applications. As a conse-
quence, we focus on generating a QoS-to-QoE model on a
per-application basis.

WiFi AP

Sender Receiver

 ��Youtube

Measure
QoE

Sampling
Algorithm

Traffic
Shaping

��AppRTC

Figure 1: Our experimental setup for generating QoS-to-
QoE mappings. Traffic shaping at WiFi AP applied to
(1) video conferencing using AppRTC, and (2) YouTube
video streaming using ExoPlayer.

2.1 Model Generation Setup
For any app, we build the QoS-to-QoE model for it by run-
ning the app in a testbed, in which we can control the net-
work conditions experienced by the app. Since most apps are
cloud based and we lack visibility into their implementation
and the protocols they use, we treat every app as a black-
box and use both UI automation and app instrumentation
techniques (e.g., QoE Doctor [9]) to measure user-perceived
QoE. As depicted in Figure 1, we run every app such that
it can communicate with its own application server, as app
developers may use proprietary protocols making it impossi-
ble to emulate server-side algorithms (e.g., adaptation strat-
egy). Where necessary (e.g., for collaborative apps such as
those that offer video conferencing), we run multiple clients
to mimic the operation of the app. In order to construct the
mapping by measuring the QoE for any particular combi-
nation of values for the QoS metrics, we emulate different
network settings for latency, bandwidth, and loss rate by ap-
plying traffic shaping using tc at the WiFi access point and
measure its corresponding QoE value at the client.

For each network setting, we wait until QoE stabilizes, as
there might be a delay wherein application tries to adapt. For
example, since YouTube uses the moving average of the past
few chunks’ throughput value to select the bitrate and may
play buffered video chunks, in our experiments, on average
it takes 19.62 seconds for video bitrate to stabilize after an
injected bandwidth change.

2.2 QoS-to-QoE Mapping
To construct the mapping from individual QoS metrics to the
corresponding QoE value, we vary one QoS metric at a time,
keeping the other metrics fixed. Here, we describe our expe-
rience in generating this mapping for two apps: AppRTC [5]
and YouTube video streaming using ExoPlayer [1]. Ap-
pRTC is a video conferencing app developed by Google that
uses Chrome’s built-in WebRTC implementation and shares
the same WebRTC code base as Google Hangout. In order to
play YouTube videos, we use the ExoPlayer library that pro-
vides a pre-built video player for Android with DASH and
is currently used by YouTube and Google Play Movies [2].

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

F
ra

m
e
 r

a
te

 (
fp

s
)

Bandwidth (kbps)

VGA
HD

(a) Mapping bandwidth to frame rate
for VGA and HD video quality.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

F
ra

m
e
 r

a
te

 (
fp

s
)

Delay (ms)

VGA (25%-50%-75%)
HD (25%-50%-75%)

(b) Mapping delay to frame rate for
VGA and HD video quality.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

F
ra

m
e
 r

a
te

 (
fp

s
)

Bursty packet loss (%)

HD (25%-50%-75%)

(c) Mapping packet loss to frame rate
for HD video quality.

 0

 500

 1000

 1500

 2000

 2500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

B
it
ra

te
 (

k
b

p
s
)

Bandwidth (mbps)

(d) Mapping bandwidth to video bi-
trate.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

B
it
ra

te
 (

k
b

p
s
)

Delay (ms)

(e) Mapping delay to video bitrate.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

B
it
ra

te
 (

k
b

p
s
)

Bursty packet loss (%)

(f) Mapping packet loss to video bitrate.

Figure 2: Mapping various QoS metrics to frame rate (QoE) for AppRTC (a,b,c) and YouTube (d,e,f).

AppRTC and YouTube represent two app types with differ-
ent QoE metrics and requirements: video conferencing and
on-demand video streaming. For video conferencing, frame
rate and end-to-end video delay are the key QoE metrics,
whereas for on-demand video streaming, video bit-rate and
rebuffering frequency are considered as QoE metrics.

In order to minimize disruption, both apps adapt their QoE
to variations in QoS. AppRTC adapts its encoded/decoded
frame rate to variability in bandwidth. As shown in Fig-
ures 2(a)(b)(c), various QoS metrics affect QoE differently.
Since AppRTC uses Forward Error Correction (FEC) in its
encoding of media, it can tolerate considerable amount of
packet loss (5%). However, it is highly sensitive to band-
width variations. Moreover, for all three metrics, we observe
that every change in QoS values does not necessarily lead to
a change in QoE; the frame rate changes only at certain tran-
sitions in QoS. We made the same observation for YouTube
(Figures 2(d)(e)(f)), wherein the QoE metric (i.e., video bi-
trate) is even more discrete. This is particularly important
to consider for the purpose of traffic management, where the
impact of throttling or allocating more bandwidth on appli-
cation’s QoE is important for network operators. In §3, we
show how ISPs can tune QoS metrics and control users’ per-
ceived QoE by using the QoS-to-QoE mapping for the cor-
responding application.

2.3 Adaptive Sampling of the QoS Metric
Space

Constructing a precise model QoE = f(bw, delay, loss_rate)
requires emulating all combinations of QoS values. How-
ever, as QoS metrics are continuous variables, experiment-
ing with all possible combinations is impractical. Hence,
we propose a sampling technique to find important combina-
tions of QoS values. We argue that we can map QoE values

Algorithm 1 Adaptive sampling of QoS metric space

1: procedure SAMPLE(n-dim space R) . n QoS metrics
with arbitrary range r

2: NewSubSpaces← {...}
3: for each ri do
4: if ri ≤ Thresh(i) then
5: Ri1, Ri2 ← divide ri by 2
6: NewSubSpaces.append(Ri1, Ri2)

7: if len(NewSubSpaces) = 0 then
8: return
9: else

10: for each Ri in NewSubSpaces do
11: BadQoESamples← 0
12: for each Edge ej do . Each Space R has 2n

edges
13: if QOE(ej)=Bad then
14: BadQoESamples ← BadQoESam-

ples +1
15: if 0 < BadQoESamples/2n < 1 then
16: SAMPLE(Ri)

to a limited set of QoE classes (e.g., if frame rate is above
a threshold, users may not notice any further improvement).
Then, we can selectively increase our sampling of the QoS
metric space close to the borders of different QoE classes.

We describe our algorithm in Algorithm 1. For simplicity,
we present the version of our algorithm for the case where
we have two classes of QoE – Bad and Good – and n QoS
metrics. The algorithm is easily extensible to more than
two classes of QoE. We demonstrate the result of sampling
for AppRTC in Figure 3. For simplicity, two QoS metrics
(i.e., bandwidth and packet loss) are sampled. As shown,
our sampling algorithm is able to clearly identify the bound-
ary between the two classes of QoE.

�����������������������
������������

��������������������

������������
���������������������

����

�����������������������
������������

��������������������
�����

��������������
������������

��������������������

������������
�������������������

�����������������������
������������

��������������������

������������
���������������������

��������������
������������

��������������������

������������
�������������������

�����������������������
������������

��������������������

�����������
���������������������

��������������
�����������

��������������������

�����������
�������������������

�����������
�������������������

�����������
���������������������

Figure 4: Decision tree generated from QoS-to-QoE mappings for application AppRTC (Figure 3). percentage_bad
denotes the number of bad QoE instances over total instances.

 0

 1.25

 2.5

 3.75

 5

 6.25

 7.5

 8.75

 10

 300 400 500 600 700 800 900 1000 1100

P
a

c
k
e

t
lo

s
s
 (

%
)

Bandwidth (kbps)

Fps<10
Fps>=10

Figure 3: Sampled QoS values based on Algorithm 1

3 Use-Case Scenarios
In this section, we demonstrate the utility of per-application
QoS-to-QoE models by applying them in two scenarios.

3.1 QoE-Aware Traffic Management
Network operators may use various traffic shaping techniques
to optimize the use of their network. For example, an ISP
may throttle some of the flows traversing a congested link.

We argue that network operators should not treat all traffic
equally and must be responsive to dissimilar application de-
mands. To do so, using existing deep packet inspection tech-
niques and tools such as nDPI [3] or other application traffic
classification techniques [19, 17], network operators are able
to map every flow to its corresponding application. Then,
in the event of congestion, network operators can choose to
handle application traffic in a manner that minimizes QoE
degradation for their users. For example, network operators
can throttle delay-tolerant bulk software updates more in or-
der to reduce the impact on interactive applications. In this
case, per-application QoS-to-QoE mappings can help iden-
tify optimal traffic shaping parameters to minimize the im-
pact on users.

Moreover, identifying the extent of QoE degradation from
their traffic shaping measures is also important for network
operators. As shown by previous studies [13, 15], when QoE
degrades to below a certain threshold, users become frus-
trated and they may quit using the app or abandon the ser-
vice. The QoS-to-QoE models can enable operators to detect
when a user is experiencing bad QoE, and then identify the
additional resources (e.g., bandwidth) that must be allocated
in order to improve QoE to tolerable levels.

3.1.1 QoS Measurement
To apply the model to infer QoE, network operators need
to measure end-host QoS and use it as input for the model.
Since network operators of all ISPs do not necessarily have
visibility into the edge, the possibility of inferring end-host
QoS depends on the metric and the protocol specification.
For example, if QoS is measured in the cellular core network
(e.g., GGSN), downlink throughput of a video conferencing
traffic measured by the carrier might differ from actual user-
perceived throughput, as the last-mile is typically the bot-
tleneck in cellular networks. Moreover, some QoS metrics
such as UDP packet loss can be measured in the core net-
work only if the protocol exposes some information such as
sequence number.

To overcome these challenges, there exist tools and tech-
niques to measure bandwidth, packet loss, and delay from
passive analysis of user traffic [11]. For instance, to in-
fer packet loss and delay from TCP traffic, ISPs can keep
track of sequence numbers and TCP handshake RTTs. For
UDP traffic, if the protocol includes timestamp and sequence
number, it is possible to estimate delay and measure packet
loss. For instance, Real-time Transport Protocol (RTP), which
is a popular protocol for real-time applications and is used by
WebRTC, includes both timestamp and sequence number in
the header. If the payload is encrypted, network operators
can still measure TCP/UDP flow throughput.

3.1.2 Application of the Model
To succinctly map measured QoS values to the correspond-
ing class of QoE, the QoS-to-QoE mappings generated as
described in the previous section can be used to generate a
decision tree. For example, the decision tree in Figure 4,
which is generated based on the sampled data in Figure 3,
identified different thresholds for bandwidth and loss rate to
classify the QoS space into two classes of bad (red leaves)
and good (green leaves) QoE. In the case of degraded QoE,
an ISP needs to identify how much a flow’s QoS must be
changed to improve the application’s QoE, i.e., the flow’s
state needs to move from a leaf labeled as bad QoE to one
with good QoE. Since the parent of any bad QoE leaf has at
least one descendant with good QoE, we can leverage search
algorithms (e.g., breadth-first search) to traverse the subtree
and find all the leaf nodes which are classified as good QoE.
To improve QoE, the ISP must improve QoS metrics accord-
ing to the thresholds in the path between the bad QoE leaf
and good QoE leaf. Therefore, among all identified good

QoS metrics Description
upload_traffic_rate Upload traffic rate at device
download_traffic_rate Download traffic rate at device
thread_CPU_usage CPU usage by thread
thread_NET_block Wait time for network I/O by thread
thread_DISK_block Wait time for disk I/O by thread
thread_LOCK Wait time on system locks by thread

Table 1: Summary of system-wide QoS metrics

QoE nodes, we select the one that requires minimal change
in QoS metrics.1

To evaluate the utility of our use of adaptive sampling
when generating the QoS-to-QoE model, we compare the ac-
curacy of our model with an equivalent decision tree gener-
ated with the same number of randomly sampled data points.
When we consider 20 random combinations of QoS values
(25% of the size of training data), our model can achieve
10% higher accuracy than random sampling in estimating
the corresponding QoE. Furthermore, since our model can
identify accurate boundaries between different classes of QoE,
for QoS values correctly predicted as bad QoE by both mod-
els, the change in QoS prescribed by our model is on average
29% less than with random sampling.

3.2 QoE Diagnosis as a Service
The OS at an end-user device has an accurate and holistic
view of network and system-level QoS metrics, which are
helpful for diagnosing QoE degradation in mobile applica-
tions. The client software for mobile applications, such as
web browser, Skype or AppRTC, usually come with QoE
monitoring modules. We envision that an application main-
tains an offline network QoS-to-QoE mapping and keeps
track of its network QoS and QoE metrics during run time.
An OS-based QoE diagnosis service can diagnose QoE prob-
lems using system-level QoS metrics for any observed QoE
degradation which cannot be explained using the offline map-
ping. Once notified, the service starts to collect QoE metrics
from the application and QoS metrics from the system to
construct an end-device QoS-to-QoE mapping for explain-
ing the current QoE problem. The OS also samples the run-
time periodically to obtain end-device QoS metrics under
normal QoE condition.

3.2.1 Methodology
By leveraging event-based runtime tracing [20, 4], the OS
on a device can extract general, system-wide QoS metrics.
Moreover, using feature selection techniques like decision
tree, one can evaluate how well each QoS metric can distin-
guish QoE degradation from normal QoE and identify a spe-
cific subset of QoS metrics as preconditions for a QoE prob-
lem. This QoS-to-QoE mapping naturally pinpoints the root
cause of QoE problems and may provide actionable hints for
diagnosing the QoE problem.

We propose a general approach for diagnosing QoE prob-
lems as an OS service for mobile applications. First, QoS
metrics are extracted from execution traces and QoE met-
1We normalized the QoS values and use Euclidean distance
as a measure of the change required in QoS metrics to im-
prove QoE.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

F
ra

m
e
 r

a
te

 (
fp

s
)

Time (s)

Figure 5: Time series of output frame rate for AppRTC’s
HD video conferencing on a Nexus 6 phone.

upload_traffic_rate <= 10883376 bps

samples = 271

percentage_bad = 4.1%

decoding_CPU_usage <= 21281 us

samples = 261

percentage_bad = 0.4%

True

samples = 10

percentage_bad = 100%

False

samples = 1

percentage_bad = 100%

True

samples = 260

percentage_bad = 0%

False

Figure 6: Decision tree classifying normal and degraded
QoE instances.

rics are collected from the application as ground-truth la-
bels. Then the QoS metrics along with QoE labels are fed
as input to train a decision tree for classifying normal and
degraded QoE instances. The tree structure defines a QoS-
to-QoE mapping and the paths to leaves consisting of de-
graded QoE instances characterize the QoS precondition for
different types of QoE problems. We choose decision tree to
construct this QoS-to-QoE mapping because it is a scalable
supervised learning technique and the top-to-bottom layout
of its nodes corresponds to the relative importance of each
QoS metric contributing to QoE.

3.2.2 Case Study
We apply our approach to diagnose QoE degradation in video
conferencing through the AppRTC framework between two
Nexus 6 phones in a controlled environment. Network and
execution traces are collected from tcpdump and Panapp-
ticon [20]. System-wide QoS metrics, listed in Table 1, are
extracted from raw traces. QoE metrics are collected from
the monitoring module of AppRTC to trigger the diagnosis.
We set the time granularity over which QoS and QoE met-
rics are computed to be 1 second in our experiment. Finer-
grained QoS metrics can be extracted for further diagnosis.

Figure 5 shows the change of output frame rate (QoE met-
ric) over time on one device during an HD quality video con-
ferencing session. For each time interval, we label its QoE as
degraded if the number of frames encoded is less than 10 and
otherwise normal. There are altogether 11 QoE degradation
instances in this 271-second video session.

Using aforementioned QoS metrics, we train a decision
tree (shown in Figure 6), which pinpoints two QoS metrics
relevant to the QoE degradation, namely the upload traffic
rate at the device and the CPU usage of frame decoding
thread for AppRTC. Particularly, upload_traffic_rate
appears as the most significant contributing factor to QoE,
since over 90% of degraded QoE instances occur when the
upload traffic rate at the device exceeds 10.88 Mbps. One
degraded QoE instance does not associate with high upload
traffic rate, but is likely caused by the insufficient CPU share
allocated to the frame decoding thread of AppRTC. By fur-
ther examining Panappticon traces and the device, we find
a background application EventLoggingApp running on the
device that periodically uploads system traces to a server,
which causes network and CPU interference to AppRTC in
receiving and decoding video frames. Therefore, we observe
intermittent low frame rates in Figure 5.

Informed by our diagnosis, we shape background traf-
fic by limiting its bandwidth usage below 8Mbps using tc,
and discover that traffic shaping significantly mitigates video
frame drops for AppRTC. Degraded QoE instances no longer
occur when EventLoggingApp is uploading traces to a server.

4 Related Work

Previous work leverages predictive models to estimate QoE
within the network. Schatz et al. [16] present methods to
estimate the number of stalling events and their duration
for YouTube using network level measurements. YOUQ-
MON [7] is a system that can detect stalling events in YouTube
by analyzing the traffic collected in the 3G core network,
and then map it to Mean Opinion Score (MOS), which is
a subjective QoE metric. Casas et al. [8] study the impact
of downlink bandwidth and latency on the overall quality
(MOS) and acceptance rate of five popular smartphone ap-
plications through a subjective study. Compared to these
works that focus on video streaming specific methods or a
specific set of QoS/QoE metrics, our work is more broadly
applicable to a wide range of apps and QoS/QoE metrics.
Since collecting objective QoE metrics (e.g., MOS) from
users is time consuming and lacks repeatability, our model
maps QoS metrics to objective app-specific QoE metrics,
which can be later translated to corresponding subjective
QoE metrics using existing models [14].

The closest work to ours is Prometheus [6], which esti-
mates application QoE using passive network measurement
and then uses linear regression to map network traffic fea-
tures to the binary classification of QoE. In contrast, we ar-
gue that the QoS-to-QoE mapping may not be linear, due to
(1) the complex interaction between application protocol and
network conditions, and (2) the non-linear relationship be-
tween QoS metrics and user satisfaction [12, 10]. Moreover,
Prometheus relies on passive measurement of QoS from real
mobile phones, whereas we propose an offline sampling tech-
nique that samples QoS values close to the boundary of dif-
ferent QoE classes to more efficiently gather training data
for prediction.

5 Conclusion and Future Work
We propose offline generation of per-application models map-
ping QoS metrics to application QoE metrics. To build such
models, we design an efficient sampling technique to gather
the training data for generating a decision tree based model
representation, and demonstrate how such a model can be
used for the purposes of traffic management and QoE diag-
nosis. We show that our proposed sampling technique can
provide better accuracy in QoE prediction.

For future work, we are deploying the constructed model
for popular applications into a public WiFi access point to
evaluate the performance of the QoE-aware traffic manage-
ment module. For the OS-side QoE diagnosis service, we
plan to create a feedback loop where this diagnosis service
can further automatically solve the diagnosed problems. One
direction is to design a scheduling module at the OS level,
which can allocate less CPU resources to the competing pro-
cesses or prioritize the application traffic.

Acknowledgements
We thank the anonymous reviewers for their helpful feedback. This
work was supported in part by NSF under CNS-1059372 and CNS-
1345226.

6 References
[1] ExoPlayer. https://google.github.io/ExoPlayer.
[2] ExoPlayer: Adaptive video streaming on Android - YouTube.

https://www.youtube.com/watch?v=6VjF638VObA.
[3] nDPI: Open and Extensible LGPLv3 Deep Packet Inspection Library.

http://www.ntop.org/products/deep-packet-inspection/ndpi/.
[4] Systrace. http://developer.android.com/tools/help/systrace.html.
[5] WebRTC Native Code. https://webrtc.org/native-code/.
[6] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan. Prometheus: Toward

Quality-of-experience Estimation for Mobile Apps from Passive Network Measurements. In
Proc. of HotMobile, 2014.

[7] P. Casas, M. Seufert, and R. Schatz. YOUQMON: A System for On-line Monitoring of
YouTube QoE in Operational 3G Networks. SIGMETRICS Perform. Eval. Rev.

[8] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz. Next to You: Monitoring
Quality of Experience in Cellular Networks from the End-devices. IEEE Transactions on
Network and Service Management, PP(99), 2016.

[9] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni, and K. Lau. QoE
Doctor: Diagnosing Mobile App QoE with Automated UI Control and Cross-layer Analysis.
In Proc. of IMC, 2014.

[10] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic quantitative relationship between quality
of experience and quality of service. IEEE Network, 24(2), 2010.

[11] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck. An
In-depth Study of LTE: Effect of Network Protocol and Application Behavior on
Performance. In Proc. of SIGCOMM, 2013.

[12] S. Khirman and P. Henriksen. Relationship between quality-of-service and
quality-of-experience for public internet service. In Proc. of PAM, 2002.

[13] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality Impacts Viewer Behavior:
Inferring Causality Using Quasi-experimental Designs. In Proc. of IMC, 2012.

[14] J. Morfitt and I. Cotanis. Mapping objective voice quality metrics to a MOS domain for field
measurements, 2008. US Patent 7,327,985.

[15] H. Nam, K.-H. Kim, and H. Schulzrinne. QoE Matters More Than QoS: Why People Stop
Watching Cat Videos. In Proc. of IEEE INFOCOM, 2016.

[16] R. Schatz, T. Hoßfeld, and P. Casas. Passive YouTube QoE Monitoring for ISPs. In Proc. of
IMIS, 2012.

[17] Q. Xu, Y. Liao, S. Miskovic, M. Baldi, Z. M. Mao, A. Nucci, and T. Andrews. Automatic
Generation of Mobile App Signatures from Traffic Observations. In Proc. of IEEE
INFOCOM, 2015.

[18] Y. Xu, C. Yu, J. Li, and Y. Liu. Video Telephony for End-consumers: Measurement Study of
Google+, iChat, and Skype. In Proc. of IMC, 2012.

[19] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M. Mao. SAMPLES: Self Adaptive
Mining of Persistent Lexical Snippets for Classifying Mobile Application Traffic. In Proc. of
MOBICOM, 2015.

[20] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda. Panappticon: Event-based Tracing
to Measure Mobile Application and Platform Performance. In Proc. of CODES+ISSS, 2013.

https://google.github.io/ExoPlayer
https://www.youtube.com/watch?v=6VjF638VObA
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://developer.android.com/tools/help/systrace.html
https://webrtc.org/native-code/

	Introduction
	Generating QoS-to-QoE models
	Model Generation Setup
	QoS-to-QoE Mapping
	Adaptive Sampling of the QoS Metric Space

	Use-Case Scenarios
	QoE-Aware Traffic Management
	QoS Measurement
	Application of the Model

	QoE Diagnosis as a Service
	Methodology
	Case Study

	Related Work
	Conclusion and Future Work
	References

