
Rethinking Client-Side Caching for the Mobile Web

Ayush Goel
goelayu@umich.edu

University of Michigan

Vaspol Ruamviboonsuk
vaspol@umich.edu

University of Michigan

Ravi Netravali
ravi@cs.ucla.edu

UCLA

Harsha V. Madhyastha
harshavm@umich.edu

University of Michigan

ABSTRACT

Mobile web browsing remains slow despite many efforts to accel-

erate page loads. Like others, we find that client-side computation

(in particular, JavaScript execution) is a key culprit. Prior solutions

to mitigate computation overheads, however, suffer from security,

privacy, and deployability issues, hindering their adoption.

To sidestep these issues, we propose a browser-based solution in

which every client reuses identical computations from its prior page

loads. Our analysis across roughly 230 pages reveals that, even on

a modern smartphone, such an approach could reduce client-side

computation by a median of 49% on pages which are most in need

of such optimizations.

CCS CONCEPTS

• Information systems → Web applications; Browsers.

KEYWORDS

Mobile web, client-side computation, JavaScript caching

ACM Reference Format:

Ayush Goel, Vaspol Ruamviboonsuk, Ravi Netravali, and Harsha V. Mad-

hyastha. 2021. Rethinking Client-Side Caching for the Mobile Web. In

The 22nd International Workshop on Mobile Computing Systems and Ap-

plications (HotMobile ’21), February 24–26, 2021, Virtual, United King-

dom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3446382.

3448664

1 INTRODUCTION

Recent years have witnessed significant growth in the amount of

web traffic generated through mobile browsing [8]. Unfortunately,

mobile web performance has not kept up with this rapid rise in

popularity. Mobile page loads in the wild are often much slower than

what users can tolerate [23], with many pages requiring more than 7

seconds to fully render [5].

A key contributor to slow mobile page loads is client-side

computation—in particular, JavaScript execution—as seen in our

measurements (§2) and in prior studies [30, 41]. Given the impor-

tance of fast page loads for both user satisfaction [10] and content

provider revenue [1], much effort has been expended to alleviate

this bottleneck by reducing the work that mobile devices must do

to load pages. However, despite their promising results, existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448664

solutions have (fundamental) practical drawbacks that have hindered

adoption.

• Offloading computation tasks in page loads to well-provisioned

proxy servers, which ship back computation results for clients to

apply locally [15, 38, 47], poses numerous security and scalability

challenges. Clients must trust proxies to preserve the integrity of

HTTPS objects, and they must share (potentially private) HTTP

Cookies with proxies in order to support personalization. In addi-

tion, proxies require non-trivial amounts of resources to support

large numbers of mobile clients [42].

• Having origin web servers return post-processed versions of their

pages which elide intermediate computations [33] results in frag-

ile content alternations that may break page functionality [14].

For example, pages may adapt execution based on client-side

state (e.g., localStorage); servers are inherently unaware of this

state while generating post-processed pages, and thus risk violat-

ing page correctness. Moreover, like proxy-based solutions, this

approach places undue burden on web servers to generate opti-

mized versions for the large number of pages they serve (including

versions personalized to individual users).

We argue that the key to easing deployability is to shift the fo-

cus to solutions which only require client-side changes. Doing so

sidesteps the security, privacy, and correctness concerns discussed

above. Moreover, only a handful of browsers need to be updated for

most users to benefit [2].

As a first step towards this vision, in this paper, we ask: how much

web computation can be eliminated by a purely client-side solution?

To answer this question, we propose a rethink of the functionality of

client browser caches. While client-side caching has been a staple

optimization in page loads for decades, browsers have used their

caches only to eliminate network fetches; recent caching proposals

for improved hit rates share the same focus [34, 46]. In contrast,

we propose that browser caches be extended to enable reuse of

computations from prior page loads.

The idea of computation reuse, commonly known as computation

memoization, dates all the way back to late 1960s [28] when the

idea of a function “remembering" results corresponding to any set

of specific inputs was first introduced. Memoization has found wide

applicability in language compilers [36, 44, 45] as well as other

domains such as image search [25], image rendering [17] and data

center computing [16, 24, 26]. In this paper, we study the potential

of such an approach in the context of web page loads and make

contributions along the following dimensions:

(1) Granularity. The granularity at which computation is cached

can have a significant impact on potential benefits, and must be

amenable to the fact that cache entries may be from page loads

performed several minutes or even hours ago. For example,

we find that 11% of JavaScript code on the landing page of

the median Alexa top 500 site changes each hour, thereby pre-

cluding computation reuse at a page level [33, 38]. Instead, we

propose finer-grained computation caching at the granularity of

JavaScript functions. Our proposal is rooted in our finding that

96% of JavaScript code is housed inside JavaScript functions

on the median page.

(2) Efficacy. To measure the potential benefits of our proposal, we

developed an automated JavaScript tracing tool that dynami-

cally tracks all accesses to page state made by each function

invocation in a page load; this information is required to de-

termine the reusability of computation from prior page loads.

We experiment with a state-of-the-art phone (Google Pixel

2) and over 230 pages (landing pages of top Alexa sites and

random sites from DMOZ [4]). For the subset of these pages

which require clients to perform over 3 seconds of computation

(“high-compute pages"), we estimate that client-side reuse of

JavaScript executions can eliminate 49% of client-side compu-

tation on the median page.

(3) Practicality. Finally, we sketch the design of a browser-based

system that performs computation caching. We outline the prac-

tical challenges of such a system, which largely revolve around

the high state tracking and cache management overheads. To

alleviate those overheads without sacrificing substantial reuse

opportunities, our key finding is that 80% of total JavaScript

execution time is accounted for by 27% of functions on the

median high-compute page. This allows for the system to target

only a small fraction of functions while reaping most of the

potential computation caching benefits.

2 MOTIVATION

We begin by presenting a range of measurements to illustrate the

large (negative) impact that client-side computation has on overall

page load times (PLTs). Our experiments use a modern smartphone

(Google Pixel 21) with Google Chrome (v73), and consider landing

pages from the Alexa top 1000 sites; these pages are more likely

to incorporate recommended best practices for enabling fast page

loads.

Mobile web page loads often have very high compute. We record

each page and then load it within the Mahimahi replay environ-

ment [35] over an emulated 4G network [7]; emulation was done

using Chrome’s network shaping feature. We focus our analysis on

the 223 pages which experienced PLTs greater than 3 seconds (the

“Shaped, all cores" line in Figure 1), since these loads are slower than

user tolerance levels [23].

Since page loads consist of fetching resources over the network

and processing those resources to display functional content, the

observed load times could be high due to network or computational

delays. To distinguish between these two factors, we loaded the 223

slow landing pages again using Mahimahi, but this time with an

unshaped network. We note that this represents the best case per-

formance for prior (complementary) web optimizations that target

network delays [18, 32, 43, 48]. As shown in the “Unshaped, all

cores" line of Figure 1, 39% of these pages (i.e., 86 pages) continue

to experience load times greater than 3 seconds, despite the lack of

network delays; we call these “high-compute” pages. While client-

side computation may not always be the primary bottleneck when

1We believe a more recent version of Google Pixel (e.g., Pixel 4) would show some,
albeit limited, improvements in the total client-side computation time due to a slightly
higher CPU clock speed [20].

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

Page load time(s)

C
D

F
 a

c
ro

s
s
 s

it
e

s

Shaped, all cores Unshaped, 4 cores

Unshaped, all cores

Figure 1: Page load times, with or without network delays

(shaped vs. unshaped) and when using all 8 CPU cores or only 4

of them. Results are for 223 landing pages with load times over

3 seconds with a shaped network.

these pages are loaded in the wild (i.e., network fetches may consti-

tute the critical path), these results show that compute delays alone

would slow down many web pages beyond user tolerance levels.

Our findings, while in line with recent work [30, 41], are in stark

contrast to observations made by earlier studies. For example, a

decade ago, Wang et al. [48] found that high network latency and

the serialization of network requests in page loads are the key con-

tributors to poor mobile web performance. Since then, the mobile

web landscape has changed significantly in three ways. First, due

to a 680% increase over the last 10 years in the number of bytes of

JavaScript included on the median mobile page [9], the amount of

client-side computation as part of web page loads has dramatically

increased. Second, the quality of mobile networks has improved

greatly, e.g., over the last 10 years, on the average mobile connection

globally, bandwidth has increased from 1MBps to 19MBps and RTT

has decreased from 700ms to 65ms [11–13]. Lastly, the increased

adoption of HTTP/2 has reduced the serialization of network re-

quests; while HTTP/2 did not exist a decade ago, the fraction of

requests on the median page that are served over HTTP/2 is now up

to 67% [6].

Compute will continue to slow down page loads. Improvements

in CPU performance generally come from increase in either the

number of cores or the clock speed of each core. However, with

mobile devices, improvements have been largely due to the former,

with clock speeds increasing at a far slower rate, e.g., CPU clock

speed on the Samsung Galaxy S series increased from 1.9GHz in

2013 to 2.73GHz in 2019; the number of CPU cores doubled during

that time (from 4 to 8).

Unfortunately, this trend of increased cores provides little benefit

to the mobile page load process. Web browsers are more dependent

on clock speed than the number of cores [21] because they are unable

to fully take advantage of all available CPU cores (described more

below). Indeed, Figure 1’s “Unshaped, 4 cores" line shows that

PLTs are largely unchanged even when we disable 4 out of 8 CPU

cores on the Pixel 2.

Cellular networks, on the other hand, are projected to continue to

get significantly faster [3]. Given these trends, as well as the energy

restrictions that hinder CPU speeds on mobile devices [39], client-

side computation will likely continue to significantly contribute to

load times.

JavaScript execution dominates computation delays. Computa-

tion delays in page loads stem from numerous tasks that browsers

must perform, such as parsing and evaluating objects like HTML,

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(JavaScript execution)/(Total computation)

C
D

F
 a

c
ro

s
s
 s

it
e

s

High−compute
Random

Figure 2: Fraction of browser computation accounted for by

JavaScript execution. Results are for 200 random landing pages

in the Alexa top 1000 and 86 high-compute pages.

CSS and JavaScript, and rendering content to the screen. Further-

more, the JavaScript engine in the browser spends time compiling

and executing JavaScript, and doing garbage collection. We ana-

lyzed the loads of each page in our corpus to identify which of these

compute tasks browsers spend the most time on. We consider two

sets of pages: 200 random pages from the Alexa top 1000 sites, and

the 86 high-compute pages from above.

We find that JavaScript execution is the primary contributor to

browser computation delays in page loads. In particular, Figure 2

shows that JavaScript execution accounts for 64% and 65% of overall

computation time for the median page in the two sets of pages,

respectively.

This explains why page load performance does not benefit much

from more cores, as we saw above. JavaScript execution in browsers

is single-threaded and non-preemptive for each frame in a web

page [40]. While this single-threaded model greatly simplifies web

page development, it does so at the cost of degraded performance

and resource utilization.

3 CLIENT-SIDE COMPUTATION REUSE

To overcome the practical limitations of prior systems (§1), we

advocate for a purely client-driven approach to reduce client-side

computation in mobile page loads. Rather than having clients reuse

the results of server-side or proxy-side page load processing, we

envision each client reusing computations from its own page loads

from the past. More specifically, like how web browsers cache ob-

jects to exploit temporal locality in a client’s page loads [49] and

eliminate redundant network fetches, we propose that browsers also

reuse JavaScript executions from prior page loads.

3.1 Need for Fine-Grained Computation Reuse

Although conceptually straightforward, our proposal necessitates a

fundamentally new approach for how computation is reused. The

primary difference between our vision and existing proxy-/server-

side approaches is that of timing (Figure 3). In existing solutions, a

proxy/server loads a page in response to a client request and returns

a compute-optimized version, which the client applies a few seconds

later. In this workflow, clients download a single post-processed

object that reflects all of the state in the latest version of the page.

In contrast, if the browser locally caches computations from one

of its page loads, the time gap until a subsequent load in which

the cached computation is reused can be unbounded. As this time

gap grows, operating the cache at the granularity of an entire page

becomes increasingly suboptimal since even a small change to page

!"#$"#

%&'"()

*#+,"--.

/01"

2"3-".#"-3&)-.....

+4./#+,"--'(1

5(6+7'4'"7.

/01"

8'6". 8'6".

6'(-9

*#+,"--.

/01"

2"3-".#"-3&)-.

+4./#+,"--'(1

:+7'4'"7

/01"

(a) Server-side technique (b) Client-side technique

Figure 3: (a) Server-side acceleration techniques send a pro-

cessed page to the client. (b) Client-side acceleration requires

initial web page loads to populate the computation cache, and

then subsequent page loads to utilize this cache.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Fraction of matching JS state

C
D

F
 a

c
ro

s
s
 s

it
e

s

Heap
Source code

Figure 4: Fraction of JavaScript that matches across two loads

of the same page one hour apart.

content will render the page-level cached object unusable in subse-

quent page loads.

To better understand how often and in what ways web pages

change over time, we load the landing pages of the Alexa top 500

sites twice, with a 1 hour time gap, and compare 1) the JavaScript

source code fetched during each page load, and 2) the final window

object that represents the constructed JavaScript heap. For source

code, we compute the fraction of bytes that are identical, and for

the heap, we compute the fraction of keys within the window object,

whose values have the same SHA-1 hash in both loads. Figure 4

shows that both parts of web computation change over the course

of an hour on most pages. A common reason behind this frequent

change in page content is the increasing dynamism in modern web

pages [31]; web servers often compute responses on-the-fly in order

to deliver customized content catered to individual users.

3.2 Our Proposal: Function-Level Caching

While the above results highlight that a page-level caching approach

(i.e., a client entirely reuses computation results from a prior page

load) will present minimal opportunities for computation reuse,2

they also show that large parts of JavaScript content remain un-

changed across loads of a page. For the median page, Figure 4

shows that 86% of heap state and 89% of JavaScript source code

match between two loads separated by an hour; also, JavaScript state

2One approach to handling small changes in page content is to patch page-level caching
data. However, a client-side caching solution precludes this approach because clients
are unaware of content changes until they fully load the latest version of a page (thereby
foregoing caching benefits).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

% of JS execution time that is reusable

C
D

F
 a

c
ro

s
s
 s

it
e

s
1day
1hour
1min
0min

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

% of JS execution time that is reusable

C
D

F
 a

c
ro

s
s
 s

it
e

s

Alexa
High−compute
DMOZ

(a) Landing pages of 150 sites out of Alexa top 500 (b) Pages loaded at a time gap of 1 day

Figure 5: Reusable JavaScript execution across different time intervals and across different sets of sites.

changes by over 75% across an hour on only 25% of pages. Taken

together, there exists significant potential for computation caching,

but a fine-grained strategy is necessary to realize the savings.

Determining how fine a granularity to cache at (e.g., small or

large code blocks) involves a tradeoff between potential benefits

and storage overheads. Finer-grained caching would result in more

cache entries and subsequently higher storage overhead, but would

also offer more potential benefits (and be less susceptible to page

changes).

We observe that a natural solution for balancing this tradeoff is

to leverage the fact that most of the JavaScript code on a page is

typically within JavaScript functions. On the median landing page

among the Alexa top 500 sites, 96% of all the JavaScript code

is inside functions. Furthermore, JavaScript functions represent a

logical unit of compute as intended by the code developer. These

properties naturally lend themselves to a function-level compute

caching approach.

4 BENEFITS OF CLIENT-SIDE COMPUTE

CACHE

Given the single-threaded nature of JavaScript execution (§2), if a

JavaScript function is deterministic, then its execution is reusable

when it is invoked with the exact same input state as one of its prior

invocations, i.e., outputs from the prior invocation can be applied

without executing the function again. In this section, we estimate the

potential benefits of client-side computation caching by determining

the percentage of JavaScript execution time that can be eliminated

by reusing the results of function invocations from prior page loads.

4.1 Overview of JavaScript Function State

A JavaScript function has access to a variety of web page state –

global objects, local variables, function arguments, and closures –

with the precise set being determined by web security policies (e.g.,

same-origin policy) and scope restrictions implicit to each state’s

definition. All of this state is mapped to objects on the JavaScript

heap, DOM tree, and disk storage (like localStorage and sessionStor-

age). Given this, a JavaScript function execution can be summarized

by the combination of its 1) input state, or the subset of the page’s

state that it consumes, and 2) externally visible effects, such as its

impact on the page’s global JavaScript heap, calls to internal browser

APIs (e.g., DOM), and network fetches.

4.2 Quantifying Potential for Computation Reuse

Methodology: We use the following approach to estimate the ben-

efits of reusing computation from one page load in a subsequent

page load. First, we identify all functions which make use of non-

deterministic APIs (e.g., Math.random, Date, key traversal of dic-

tionaries, and timing APIs [29]) and network APIs (e.g., XHR re-

quests), and mark all such functions as uncacheable. For all remain-

ing JavaScript functions, during both loads, we track the input state

consumed by every invocation. Note that we do not include the input

state of the nested functions in the parent functions, instead they are

treated as separate function invocations. For each function, we then

perform an offline analysis to determine which of its invocations in

the later page load had the same input state as an invocation in the

initial load; all matching invocations could be skipped via client-side

computation caching. We then correlate this information with func-

tion execution times reported by the browser’s profiler to compute

the corresponding savings in raw computation time.

To employ the above methodology, we record web pages with

Mahimahi [35] and then rewrite those pages using static analysis

techniques [32]. The rewritten pages contain instrumentation code

required to track and log function input state; it suffices to log only

input states as our goal here is to only estimate the potential for

reuse, and not to actually reuse prior computations. We then reload

each instrumented page in Mahimahi and extract the generated logs.

We run our experiments on three different corpora: landing pages for

the Alexa top 500 sites, landing pages from 100 (less popular) sites

in the 0.5 million-site DMOZ directory [4], and the 86 high-compute

sites from Figure 2.

Reuse across loads of the same page. As discussed in Section 3,

the time between the page load where the cache is populated and

the load where the cache is used to skip function invocations is

unbounded. We therefore compare input states for each function

invocation across pages loads spaced apart by 1 minute, 1 hour, and

1 day.

Our dynamic tracing tool was successfully able to track input

state of JavaScript invocations for 150 of the 500 Alexa pages and

33 of the 86 high-compute pages. Since the distribution of load times

across these subsets of sites matches the overall distribution in the

respective corpus, we expect our findings to be representative of

other pages too. Figure 5(a) shows that, for the median Alexa page,

73% and 57% of JavaScript execution time can be skipped via com-

putation caching across 1 minute and 1 day. From Figure 5(b), the

fraction of JavaScript execution that is reusable a day later is higher

(76%) for pages which are more in need of computation caching:

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

% of JS execution time that is reusable

C
D

F
 a

c
ro

s
s
 p

a
ir
s

o
f

p
a

g
e

s

1day
1hour
1min

Figure 6: Reusable JavaScript execution across pairs of pages.

the high-compute pages.3 Since JavaScript execution accounts for

65% of client-side computation on the median high-compute page

(Figure 2), we estimate a net savings of 49% for the median page.

This translates to 990ms of eliminated execution time even on the

state-of-the-art Pixel 2 phone. We observe similar reuse potential

for the DMOZ pages (48 out of the 100), with a median of 70% of

Javascript execution time being reusable across a day.

Reuse across loads of different pages. Thus far, we have focused

on reusing computations from a prior load of the exact same page.

However, we observe that traditional browser caches support object

reuse even across pages. More specifically, object caches are keyed

by an object’s resource URI, which may appear on multiple pages;

this is a common occurrence for pages on the same site, e.g., a

shared jQuery library. Inspired by this, we extend our analysis of

computation caching to examine how cache entries can be reused

across loads of different pages from the same site.

We sample 10 sites at random from the Alexa top

1000, and then select 20 random pages on each site.

For example, www.gamespot.com/3-2-1-rattle-battle/ and

www.gamespot.com/101-dinopets-3d/ constitute two pages on the

same site. We then compare all pairs of pages on the same site to

determine what percentage of JavaScript execution time can be

reused between each pair. In other words, we load each of the 20

pages in a site once, load all of these pages again after a time gap,

and evaluate how much of the JavaScript execution time on the

latter load of a page can reuse executions from prior loads of the

other 19 pages. Our tool successfully tracked input states for 80 out

of the 200 pages. Figure 6 shows, that for the median pair, 29%

and 15% of JavaScript execution time can be reused across time

intervals of 1 minute and 1 day, respectively. The % of reuse varies

from site to site, with it being as high as 80% for www.ci123.com

and as low as 9% for www.prezi.com.

Note that a user can benefit from all of the reductions in client-

side computation that we estimate in this section, both across loads

of a page and across loads of multiple pages on the same site, with

only modifications to the user’s web browser. In contrast, a large

number of domains need to adopt prior server-side computation

eliding strategies [33] in order for users to see benefits across all of

the pages they visit. Furthermore, since JavaScript execution can be

reused across pages as well, even the very first load of any page at a

client can be sped up by reusing computation from that client’s prior

loads of other pages on the same site.

3To minimize the instrumentation overhead of our tracing tool, we exclude tracking of
closure state for high-compute pages. On the subset of these pages which we are able
to successfully load with closure state tracking enabled, we see that 59% of JavaScript
execution time can be reused a day later on the median page.

Reusable

Nondeterminism

Source

Inputs

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

CDF across sites

%
 o

f
J
S

 e
xe

c
u

ti
o

n

ti
m

e

Figure 7: JavaScript execution time breakdown for landing

pages of 150 out of Alexa top 500 sites loaded at a time gap

of 1 day. Reusable accounts for the execution time that can be

reused. Source, Inputs, and Nondeterminism account for exe-

cution time which is non-reusable due to change in JavaScript

source files, change in function inputs, and non-deterministic

functions, respectively.

4.3 Characterizing Computation Cache Misses

While our results above highlight the significant potential for compu-

tation reuse, we see that not all function invocations can be serviced

by the cache. To investigate the reason for such misses, we analyze

the data for the “1 day" line from Figure 5(a), and plot in Figure 7 the

breakdown of the total execution time into reusable and non-reusable

components (marking the reason precluding reuse).

Non-determinism. Functions which invoke non-deterministic APIs

are not amenable to computation caching. Figure 7’s “Nondetermin-

ism" shaded area shows the amount of execution time marked non-

reusable due to the presence of non-deterministic functions on the

page. For the median page in our corpus, 0.5% of total non-reusable

time was accounted for by such non-deterministic functions.

Changes to JavaScript source code. For a function’s execution

to be reusable from an earlier page load, the source code of the

JavaScript object file containing the function’s definition should not

have changed since that load.4 As previously shown in Figure 4,

11% of JavaScript source code is subject to change within a time

period of one hour. The longer the time gap between loads, the more

susceptible are web pages to load object files with different source

code [46].

Figure 7 shows that change in source code is the predominant rea-

son for non-reusable computation. Further analysis reveals that for

13% of pages, change in source code was the only reason hindering

reuse.

Changes to input state. Figure 7 also shows the percentage of non-

reusable computation accounted for by changes in the input state of

a function. A JavaScript function can observe different sets of inputs

across invocations on different page loads, either due to changes in

server-side state or due to non-determinism on the page.

Changes in server-side state can influence the responses sent to

the client, which in turn can affect the input state of JavaScript

invocations. For example, www.cnblogs.com sends a cookie known

as RNLBSERVERID as a part of the response to a client request. This

cookie value is used for server-side load balancing. Since the value

of this cookie changes dynamically depending on server logic, a

4 Though it would suffice for only the source code within the function’s boundaries to
remain unchanged, our analysis considers cache entries for a function as non-reusable if
the file containing the function changes.

REFERENCES
[1] 2016 Q2 mobile insights report. http://resources.mobify.com/2016-Q2-mobile-

insights-benchmark-report.html.
[2] Browser market share worldwide. https://gs.statcounter.com/browser-market-

share.
[3] Cisco annual Internet report highlights tool. https://www.cisco.com/c/en/us/

solutions/executive-perspectives/annual-internet-report/air-highlights.html.
[4] Directory of the web. https://dmoz-odp.org/.
[5] Find out how you stack up to new industry benchmarks for mobile page

speed. https://www.thinkwithgoogle.com/marketing-resources/data-measurement/
mobile-page-speed-new-industry-benchmarks/.

[6] HTTP/2 adoption. https://httparchive.org/reports/state-of-the-web#h2.
[7] Network latency numbers. https://github.com/WPO-Foundation/webpagetest/

blob/master/www/settings/connectivity.ini.sample.
[8] Smartphones are driving all growth in web traffic. https://www.vox.com/2017/9/

11/16273578/smartphones-google-facebook-apps-new-online-traffic.
[9] State of JavaScript. https://httparchive.org/reports/state-of-javascript.

[10] Why performance matters? https://developers.google.com/web/fundamentals/
performance/why-performance-matters.

[11] FCC: Broadband performance (OBI technical paper no. 4). https://transition.fcc.
gov/national-broadband-plan/broadband-performance-paper.pdf, 2009.

[12] Third annual broadband study shows global broadband quality improves by 24% in
one year. https://newsroom.cisco.com/press-release-content?type=webcontent&
articleId=5742339, 2010.

[13] GSMA: The State of Mobile Internet Connectivity 2020. https:
//www.gsma.com/r/wp-content/uploads/2020/09/GSMA-State-of-Mobile-
Internet-Connectivity-Report-2020.pdf, 2020.

[14] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel,
M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s Data Compression
Proxy for the Mobile Web. In NSDI, 2015.

[15] Amazon. Silk Web Browser. https://docs.aws.amazon.com/silk/latest/
developerguide/introduction.html, 2018.

[16] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin. Incoop:
MapReduce for incremental computations. In SoCC, 2011.

[17] K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality on mobile
devices via rendering memoization. In MobiSys, 2016.

[18] M. Butkiewicz, D. Wang, Z. Wu, H. Madhyastha, and V. Sekar. Klotski: Reprior-
itizing Web Content to Improve User Experience on Mobile Devices. In NSDI,
2015.

[19] A. Chudnov and D. A. Naumann. Inlined Information Flow Monitoring for
JavaScript. In CCS, 2015.

[20] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubramanian, S. R. Das, and
M. Ferdman. Impact of device performance on mobile Internet QoE. In IMC,
2018.

[21] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubramanian, S. R. Das, and
M. Ferdman. Impact of device performance on mobile internet QoE. In IMC,
2018.

[22] G. Developers. Chrome DevTools. https://developers.google.com/web/tools/
chrome-devtools/.

[23] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web site delays: How tolerant
are users? Journal of the Association for Information Systems, 2004.

[24] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang. Nectar:
Automatic management of data and computation in datacenters. In OSDI, 2010.

[25] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G. R. Ganger,
E. Riedel, and A. Ailamaki. Diamond: A storage architecture for early discard in
interactive search. In FAST, 2004.

[26] W. Lee, E. Slaughter, M. Bauer, S. Treichler, T. Warszawski, M. Garland, and
A. Aiken. Dynamic tracing: Memoization of task graphs for dynamic task-based
runtimes. In SC, 2018.

[27] S. Mardani, M. Singh, and R. Netravali. Fawkes: Faster mobile page loads via
app-inspired static templating. In NSDI, 2020.

[28] D. Michie. "Memo” functions and machine learning. Nature, 1968.
[29] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture and replay

for javascript applications. In NSDI, 2010.
[30] J. Nejati and A. Balasubramanian. An in-depth study of mobile browser perfor-

mance. In WWW, 2016.
[31] J. Nejati, M. Luo, N. Nikiforakis, and A. Balasubramanian. Need for mobile

speed: A historical analysis of mobile web performance. In TMA, 2020.
[32] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan. Polaris: Faster Page

Loads Using Fine-grained Dependency Tracking. In NSDI, 2016.
[33] R. Netravali and J. Mickens. Prophecy: Accelerating mobile page loads using

final-state write logs. In NSDI, 2018.
[34] R. Netravali and J. Mickens. Remote-Control Caching: Proxy-Based URL Rewrit-

ing to Decrease Mobile Browsing Bandwidth. In HotMobile, 2018.
[35] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal, J. Mickens, and

H. Balakrishnan. Mahimahi: Accurate Record-and-Replay for HTTP. In USENIX

ATC, 2015.
[36] P. Norvig. Techniques for automatic memoization with applications to context-free

parsing. Computational Linguistics, 17(1):91–98, 1991.
[37] H. Obendorf, H. Weinreich, E. Herder, and M. Mayer. Web page revisitation

revisited: implications of a long-term click-stream study of browser usage. In
CHI, 2007.

[38] Opera. Opera Mini. http://www.opera.com/mobile/mini, 2018.
[39] G. Phillips. Smartphones vs. desktops: Why is my phone slower than my PC?

https://www.makeuseof.com/tag/smartphone-desktop-processor-differences/.
[40] C. Radoi, S. Herhut, J. Sreeram, and D. Dig. Are Web Applications Ready for

Parallelism? In PPoPP, 2015.
[41] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V. Madhyastha. Vroom:

Accelerating the Mobile Web with Server-Aided Dependency Resolution. In
SIGCOMM, 2017.

[42] A. Sivakumar, C. Jiang, S. Nam, P. Shankaranarayanan, V. Gopalakrishnan, S. Rao,
S. Sen, M. Thottethodi, and T. Vijaykumar. Scalable Whittled Proxy Execution
for Low-Latency Web over Cellular Networks. In Mobicom, 2017.

[43] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakrishnan, S. Lee, S. Rao, and
S. Sen. PARCEL: Proxy assisted browsing in cellular networks for energy and
latency reduction. In CoNEXT, 2014.

[44] A. Suresh, E. Rohou, and A. Seznec. Compile-time function memoization. In CC,
2017.

[45] A. Suresh, B. N. Swamy, E. Rohou, and A. Seznec. Intercepting functions for
memoization: A case study using transcendental functions. ACM Transactions on

Architecture and Code Optimization (TACO).
[46] X. S. Wang, A. Krishnamurthy, and D. Wetherall. How much can we micro-cache

web pages? In IMC, 2014.
[47] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding Up Web Page Loads

with Shandian. In NSDI, 2016.
[48] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web browsers slow on

smartphones? In HotMobile, 2011.
[49] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer. Not quite the average: An

empirical study of web use. ACM Transactions on the Web, 2008.

