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ABSTRACT

It has now become commonplace for applications that run on smart-
phones, IoT devices, and even personal computers to rely on ser-
vices hosted either in the cloud or on edge servers. Some of the
motivations for this trend—augmenting thin clients and enabling
a shared view across users/devices—also apply to manufacturing
machines such as 3D printers, laser cutters, and machine tools.
Off-device control of manufacturing devices can help outdated ma-
chines benefit from the most advanced control algorithms, which
they are incapable of running locally. Cloud/edge support can also
enable coordinated manufacturing of a product’s parts across multi-
ple machines, thereby reducing production time and cost compared
to the use of a single machine. In this paper, we highlight the chal-
lenges in realizing these benefits for the manufacturing domain.
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1 INTRODUCTION

Over the last 10-15 years, we have witnessed a dramatic shift in how
software is developed and deployed. Instead of simply shipping
binaries that we run completely locally on our devices, a wide
variety of application providers now also rely on services hosted
either in the cloud or at the edge. Examples include file storage (e.g.,
Dropbox), document editing (e.g., Google Docs), augmented reality
(e.g., Microsoft Hololens), and gaming (e.g., Pokemon Go).

While there are a range of motivating factors that underlie use
of the cloud/edge in software applications, two considerations are
most relevant for our discussion here:
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e To circumvent the limitations of client devices with respect to
compute, memory, network, fault-tolerance, etc.

e To enable a consistent view of application state across devices
and users

Most of the work in enabling this paradigm shift has, however,
focused on applications that run on electronic devices such as
laptops, smartphones, smart glasses, etc. In this paper, we shine
light on a new setting which can benefit from cloud/edge support
for the same reasons mentioned above: control of manufacturing
devices (or machines) such as machine tools, 3D printers, and laser
cutters.

First, in contrast to electronic devices, which users upgrade ev-
ery few years, manufacturing devices are typically replaced signifi-
cantly less frequently, e.g., every ten years [7, 11, 20]. As a result,
they are often incapable of running the latest algorithms avail-
able to control their execution [10, 15, 25]. For example, there is a
tradeoff between the speed with which a manufacturing machine
is operated and the quality of the resulting product [1]. Advanced
control algorithms help reduce the time needed to execute a job
without adverse effects on the quality of the output product, e.g.,
by adaptively varying the speed of execution based on predictions
of the machine’s vibrations [8]. However, devices which are not
state-of-the-art lack sufficient compute and memory resources to
run such advanced controllers [17].

Second, to complete the production of any particular item, a man-
ufacturing device can often take several hours. Consequently, when
one wants to manufacture either a product composed of many parts
or several copies of the same product, faster and lower-cost com-
pletion can be achieved by distributing production across multiple
machines. Partly as a result of such motivations, a “manufacturing
as a service" market is emerging, in which many users are making
their manufacturing devices available for use by others [2, 13].

Remotely controlling a manufacturing machine’s execution can
therefore aid manufacturing by 1) enabling the use of computa-
tionally heavyweight control algorithms which the machine is
incapable of running locally, and 2) offering a unified view across
several machines. In addition, moving the execution of a machine’s
controller off the device also offers other benefits such as 3) enabling
a faster update cycle of the controller software, and 4) helping the
controller driving one device learn and adapt its execution based
on observations made when previously operating other devices of
the same type.

However, to realize these benefits, one cannot simply forklift
solutions from traditional settings where consumer software re-
lies on remotely hosted services. In particular, two characteristics
primarily differentiate manufacturing machines from electronic
devices.
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Figure 1: Traditional manufacturing automation model.

Strict timeliness and reliability requirements. Manufacturing
machines expect to receive input at a constant rate and must imme-
diately react to any local input, e.g., an operator may decide to halt
the ongoing job, but the execution must terminate gracefully when
doing so. For applications that run on our laptops and smartphones
and rely on input from the cloud, delayed input or lack of input can
lead to annoyances such as rebuffering and stalled videos. In the
context of manufacturing machines, lack of input when expected
is intolerable. For instance, abruptly halting a machine’s execution
can affect the device’s mechanical parts and result in vibration
marks on the manufactured parts, thus ruining them and leading to
significant losses. For these reasons, even if a machine’s controller
runs at a edge server nearby in order to ensure timely input [19],
disconnections from that controller are challenging to tolerate.

Inherent non-determinism. On electronic devices, running the
same program on multiple devices will consistently yield the same

results when given the same inputs, barring sources of non-determinism

which vary across runs on the same device (e.g., thread scheduling
and time of day). In contrast, even when the same part is manu-
factured on multiple machines of the same type, the output can
vary significantly due to differences in their mechanical parts, e.g.,
one might be more worn out than the other. Consequently, when
multiple parts of a product are manufactured on different machines,
the end results might not compose well with each other.

Due to these unique characteristics, enabling remote control
of manufacturing devices requires a fundamental rethink of how
clients can leverage compute resources in the cloud and at the edge.
In this paper, we first describe how support from the cloud and
from the edge will need to be combined in order to enable more
efficient, yet reliable, manufacturing. We then describe the research
problems that need to be tackled in order to enable these benefits.
We draw a contrast with several threads of prior work which have
focused on harnessing remote computation in the more traditional
context of supporting applications running on electronic devices.

2 BACKGROUND AND MOTIVATION

We begin with a high-level description of how manufacturing ma-
chines are used today, and a case study highlighting limitations of
the current workflow.

2.1 Traditional Manufacturing Workflow

In the traditional computer-aided workflow for making a part (Fig-
ure 1), the part is first modeled in computer-aided design (CAD)
software. Following this, computer-aided manufacturing (CAM)
software is used to generate toolpaths, based on the CAD model and
manufacturing process parameters. Between CAD and CAM, there
is a process planning step that helps determine key parameters used
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Figure 2: Prints of scale model of US Capitol (52.5 mm
height) using: (a) the default CNC controller at standard
printing speed; (b) the default CNC controller at higher
printing speed leading to loss in quality due to excessive
vibration; and (c) a more advanced controller which runs
the LPFBS (vibration compensation) algorithm to drive the
printer at a faster rate without loss in quality.

in CAM; it is sometimes achieved with the help of computer-aided
process planning (CAPP) software. The toolpath outputted by CAM
is post processed to G-code, which contains high-level commands
for manufacturing the part. An example high-level command is:
travel along a circular path at a specified maximum speed.

The component of interest in this paper is the last one involved
in this workflow: computer numerical control (CNC) of a manu-
facturing machine. Unlike the other components, which are used
offline (i.e., prior to when production of the part begins), CNC drives
the execution of the machine as it produces the part. CNC turns
high-level G-code commands into low-level commands that control
the motors of the manufacturing machine - be it a 3D printer, laser
cutter, milling machine, or other — to produce the desired part. For
instance, the CNC breaks down the high-level command to travel
along a circular path into specific details of the movement of the
machine at each millisecond time interval.

2.2 Case Study: 3D Printing

The primary constraint of the status quo is that CNC runs locally
on the manufacturing machine. To appreciate the poor tradeoff
between quality and manufacturing introduced by this constraint,
let us consider the CNC of a 3D printer.

First, manufacturing machines like 3D printers are fairly slow,
requiring on the order of hours to complete production of any part.
Therefore, when one needs to manufacture a product composed of
several parts or several copies of the same product, it is desirable



that production be distributed across many machines. Buying many
manufacturing machines may be expensive for a single entity, but
one can leverage manufacturing-as-a-service providers (e.g., Xome-
try ! and makexyx 2), which connect those who have idle devices
with others who are looking to cost-effectively manufacture parts.

However, a key challenge in distributing the production of a prod-
uct’s parts across multiple machines is that there can be significant
variance across machines, yet each machine is controlled by its
own locally running CNC algorithm. Even if all the machines used
were of the same “type” (e.g., same make and model, and devices
from the same year), prior work has shown that there can be signifi-
cant differences across machines [18], e.g., due to different amounts
of wear and tear. So, when production of a product’s parts is spread
across multiple machines, these parts might not compose well with
each other. In other words, the quality of the end-product will be
significantly worse than what one would obtain by manufacturing
all parts on the same machine.

Second, even if the product being manufactured comprises a
single part, the hardware resources available on a machine
intrinsically limit the capabilities of the CNC algorithm. For
example, in prior work, one of the co-authors has developed an
advanced control algorithm - limited-preview filtered B-spline
(LPFBS) - to drive 3D printers at faster speeds while minimizing the
impact on product quality [8]. The high-level intuition underlying
the LPFBS approach is that, rather than driving the 3D printer at
a fixed speed, the controller uses a dynamic model of the device
to predict the device’s impending vibrations and adaptively varies
the speed of execution to avoid the vibrations. Figure 2 shows
an example where use of the advanced LPFBS controller halved
production time compared to the default controller; running the
default CNC controller at twice the standard printing speed results
in severely degraded quality.

The resource requirements of the LPFBS algorithm, however,
exceed those typically available on many desktop 3D printers. For
example, the ATMega2560 chip, which is common on desktop 3D
printers, has a 16 MHz processor with 8 KB SRAM. These capabili-
ties are insufficient to support the execution of the LPFBS algorithm,
which needs at least a 1.2 GHz CPU and 9 MB of memory. Even as
device capabilities improve over time, historical trends indicate that
the resource requirements of the most advanced controllers avail-
able will also continue to increase, thus rendering many devices
incapable of benefiting from them.

3 REMOTE CONTROL OF MANUFACTURING

Given the limitations of running CNC locally on each manufactur-
ing machine, a natural solution is to move this controller off the
machine into a separate server. A straightforward way to do so is
as depicted in Figure 3. The remote controller translates high-level
commands (e.g., a G-code file) into low-level commands (e.g., step-
per commands for the motors on the device), which are streamed
to the device. The manufacturing machine is reduced to a “dumb
client", simply buffering the received inputs and applying them at
a fixed rate; this requires minimal compute/memory resources on
the device.
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Figure 3: High-level illustration of offloading control of a
manufacturing machine to a server.

3.1 Edge versus Cloud

The most natural way of hosting a machine’s remote controller
would be on a server within the same local area network (LAN)
as the machine. Using our case study from the previous section,
we argue why such an approach is neither strictly necessary nor
completely sufficient.

No (or slow) feedback. In order to improve the quality ver-
sus manufacturing time tradeoff, advanced control algorithms can
largely operate in feedforward mode, i.e., generate low-level com-
mands without any feedback from the machine, as is the case with
the results shown in Figure 2 using the LPFBS algorithm. While
such algorithms could benefit from periodic recalibration of their
model, it would suffice to obtain feedback from the machine once
every few seconds. Therefore, to use advanced control algorithms,
it is not vital to have sub-millisecond latencies between a machine
and its remote controller; latency in the order of tens to hundreds of
milliseconds, which would be commonplace if the controller were
hosted in the cloud, would be tolerable in the common case.

Cost. Furthermore, not everyone who would want to benefit from
off-device control of their manufacturing may be able to afford the
costs of setting up an edge server to host the controller or have
the expertise to do so. For example, in the case of 3D printing,
a common beneficiary of remotely controlled execution will be
individual users who have a single 3D printer at home. For such
users, we envision advanced controllers being hosted in the cloud
by service providers and a user selecting from a marketplace of
such cloud controllers. In such cases, users will need to be aware
of the implications with regard to both privacy (what products are
being manufactured will be revealed to the service being used) and
security (reliability of the machine, and perhaps even the human
operator, will be at risk), as is the case when we use cloud-based
services on our computers.

Collective learning. Even when one is capable of hosting a con-
troller at the edge, sharing of information with edge controllers
at other sites can benefit everyone. One edge controller’s opera-
tion when driving a particular machine can help other edge con-
trollers tailor their operation of other machines of the same type.
This would require asynchronous communication among edge con-
trollers, likely via a central service in the cloud.
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Figure 4: 3D prints of a part from a cloud controller: (a)
without Internet latency-induced pauses (benchmark), and
(b) with Internet latency-induced pauses. Shown below each
picture is the printing time. It can be seen that the latency af-
fects both productivity and part quality, by introducing un-
desirable blobs on the printed surface [17].

Independent failures. Compared to a cloud controller, an edge
controller offers lower latency, lower latency variance, and higher
availability. Yet, it does not solve all problems associated with re-
mote control of manufacturing machines. Moving the controller off
the device fundamentally implies that the machine and its controller
are now in different failure domains and can fail independently. So,
handling the unavailability of the controller becomes a must.

3.2 Research Challenges

Next, we discuss the common challenges that arise irrespective of
whether the controller for a machine is run in the cloud or on an
edge server.

3.2.1 Stringent Timing Requirements. Challenge: Spikes in la-
tency and drops in connectivity. In settings where hosting the
CNC controller at an edge server is not an option, relying on a
controller in the cloud is challenging due to the lack of delay and
availability guarantees over the Internet. While cloud providers
today have data centers in many locations across the globe, thereby
enabling customers to rent servers from a location close to their
client devices, prior work has observed significant spikes in Inter-
net latency intermittently even from clients to nearby cloud data
centers [23]. Similarly, others have observed that many paths on
the Internet have downtimes of over 2% [9]. After all, the Internet
offers only best-effort service.

Variability in latency from the controller to the device and unpre-
dictable availability of this communication is particularly damning
for manufacturing machines. When a machine runs out of buffered
low-level commands received from the controller, the machine can-
not simply pause its execution, e.g., a 3D printer will continue to
spew out material and inertia of the motors cannot be halted in-
stantaneously. Figure 4 depicts an example of the adverse effects
that result due to these factors.

Problems with strawman solutions. One could consider several
approaches for avoiding such ill-effects, none of which are ideal.

o First, if one wishes to pause a machine’s execution when it runs
out of buffered commands, bringing the machine to a graceful
halt must be preemptively initiated when buffer occupancy
is low, in contrast to electronic devices where execution is
halted once the buffer runs out. Not only might this lead to

Local
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Remote
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Figure 5: Combining use of an off-device controller with a
local controller which assumes control when either connec-
tivity to the remote controller is lost or feedback must be
immediately handled (e.g., power down the machine).

unnecessary slowdowns, but simply halting production when
the remote controller is unavailable hurts productivity.

o Alternatively, one could increase the number of commands
buffered on the device - in the limit, precomputing all low-
level commands - so as to increase the machine’s ability to
cope with latency spikes and temporary losses of connectivity.
Compute low-level commands far in advance is, however, not
desirable; as discussed earlier, advanced control algorithms
like LPFBS can benefit from feedback from the device.

e Even if one had the budget and knowledge to sidestep the
Internet’s vagaries by hosting the controller on an edge server,
disconnections from the remote controller will still be feasible
and must be tolerated.

Solution: Local and remote control. To leverage a off-device
controller while being tolerant to losses of connectivity and latency
spikes, we envision the approach depicted in Figure 5. Instead of the
machine acting as a dumb client which simply executes low-level
commands, we foresee the need for a local controller which can
take over from the remote controller when buffered commands run
out. The local controller would clearly be incapable of running the
same algorithm as the remote controller; this is the reason why
we seek to move the machine’s control off the device in the first
place. However, falling back to the local controller and switching to
a lower speed of operation is better than degrading the quality of
the part being manufactured or simply halting production. Control
of the device can be handed back to the remote controller once
connectivity to it is restored.

Why is handoff of control hard? There are two primary chal-
lenges in realizing this synergy between the local and remote con-
trollers.

e On first glance, this handoff of execution back and forth be-
tween the two controllers may appear similar to prior solutions
for dynamic partitioning of applications between mobile de-
vices and the cloud [3-5, 12]. However, the setting here differs
in one key property: all of these prior efforts assume that both
the local and remote instances of the application are running
the same algorithm, and handing off from one to the other is
guided by the need to speed up computation or reduce energy
consumption. In contrast, many manufacturing machines are
fundamentally incapable of running advanced control algo-
rithms, and therefore, the algorithms underlying the local and
remote controllers will differ.

This crucial difference calls for a new approach that one could
use to orchestrate execution between the local and remote
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Figure 6: Run redundant cloud controllers in multiple re-
gions to cope with losses in connectivity. The challenge is
in migrating the state built up based on machine feedback.

controllers of a manufacturing machine. A solution that is ag-
nostic to the control algorithm is desirable, but it must account
for differences in the algorithms used by the two controllers.

e Handing off control of a machine from the remote controller to
the local controller and back must be done with care because
the switch between the two must be performed gracefully. For
instance, if the machine were to abruptly transition from the
high acceleration that the remote controller was running it
at to a lower speed of execution that the local controller is
capable of driving, this will put the mechanical parts at risk of
failure.

Therefore, the control algorithm that runs off-device must
allow for potential rendezvous points to the lower fidelity [16]
algorithm (i.e., one which runs the device at a lower speed in
order to maintain quality) that the machine can run locally.
Abstractly, the remote controller must ensure at any point in
time that, after the machine has executed the last N low-level
commands received from it, there exists a potential path of
execution for the local controller to seamlessly transition to a
sequence of commands that it is capable of generating. While
this property is trivially satisfiable if both controllers run the
same algorithm, the open question here is whether it is feasible
to do so without curtailing the benefits of the advanced control
algorithms that we seek to run in a cloud/edge server.

3.2.2  Stateful Controller. As discussed above, we envision switch-
ing a machine’s controller from one running remotely to one run-
ning locally when the machine’s connectivity to the remote con-
troller is lost. While having the local controller drive the machine
ensures safe operation of the device, running in a degraded mode
for the remainder of the machine’s ongoing execution is undesirable.
This will result in elongated production times.

Leveraging redundancy. In cases where the remote controller
runs in the cloud and the machine’s connectivity to that controller is
lost, we envision that the local controller can hand off to a controller
in a different cloud region. As shown in Figure 6, this will require
redundant controllers to be running in standby mode in several
locations. Public cloud providers make it easy to do so as they have

data centers in many regions spread across the globe. Even when a
machine loses connectivity to one data center, it might still be able
to communicate with controllers in other data centers. Switching
to one of them will help ensure that the loss of productivity when
the local controller is in-charge will be temporary.

Realizing this vision is, however, far from straightforward if we

wish to support advanced control algorithms which could benefit
from slow feedback from the device. For example, it is desirable for
the LPFBS algorithm [8] described previously to collect measure-
ments of on-device vibrations, so as to help improve its predictions
of impending vibrations. At any point in time, the cloud controller
would have accumulated some state based on such feedback. Mov-
ing control of a device from one cloud region to another requires
transfer of this state.
From cloud to device and back. Again, at first glance, handoff
between controllers in multiple cloud regions appears similar to the
state handoff performed in mobile edge computing. There too, when
a mobile user moves from one location to another, the application
running in the cloud has to transfer state across edge servers (e.g.,
cloudlets, micro-clouds, base stations, etc.) [14, 21, 22].

However, a key difference in the two settings renders prior solu-
tions unusable in the manufacturing context. In the mobile edge
computing scenario, the service always runs remotely, and as the
user moves, the service migrates state from one edge server to
another. In contrast, control of a manufacturing machine cannot
directly be passed from one cloud region to another. Such a handoff
is necessary primarily when the machine loses connectivity to the
cloud region in which the controller currently driving it is hosted.
Unlike how predictions of the user’s next location can be used in
the mobile computing setting to determine when to migrate service
state, connectivity disruptions are unpredictable. If the handoff
between cloud regions is initiated once loss of connectivity to the
device is observed, the local controller must take over control of
the machine while this handoff is in progress.

Therefore, the open question here is: how to bootstrap a backup
cloud controller when it takes over? To seamlessly resume execu-
tion, the new controller must be made aware of the state that the
previous cloud controller had accumulated based on the feedback
it had received from the machine. But, this state must be updated
to account for the progress made by the local controller before it
handed off control to the backup cloud controller. The initial state
on the backup cloud controller must, therefore, be initialized by
carefully combining inputs received from both the original cloud
controller and the local controller.

3.2.3 In-Process Profiling. We have thus far discussed challenges
in controlling a single manufacturing device from a cloud or edge
server. Coordinating the execution of multiple machines (e.g., to
print multiple parts of a product) is challenging too.

Like distributed data processing, but not quite. In this case,
the analogy we draw is to the large body of prior work on distributed
data processing frameworks such as MapReduce [6], Spark [24], etc.
In these frameworks, typically a central coordinator orchestrates
the execution of many workers, assigning a portion of the overall
work to each worker. The compilation of outputs from all workers
represents the overall output.
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Figure 7: Envisioned system architecture.

Similarly, to manufacture a product composed of multiple parts,
an off-device controller overseeing many machines can assign the
production of a subset of parts to each machine. The final product
can be constructed by composing the individual parts.

The key difference is as follows: while processing the same data
will yield the same results irrespective of the computer on which
this is executed, the production of a part can vary significantly
across machines. So, the remote controller cannot simply drive
the execution of each machine independently. Instead, to ensure
that the individual parts do compose well with each other, the
remote controller must take into account the feedback it receives
from each machine to not simply fine-tune the execution of that
machine, but also inform the execution of other machines used
to manufacture other parts of the same product. In other words,
unlike in distributed data processing, where processing of each data
partition can be performed independently in each stage of a job, the
unpredictability of manufacturing machines makes cross-device
information sharing mandatory.

4 CONCLUSION

In summary, our goal in this paper was to make the systems re-
search community aware of the challenges that exist in the new
emerging domain of smart manufacturing. While the motivating
factors for utilizing support from the cloud or the edge are similar
in the manufacturing context to those in traditional software ser-
vices and applications, we argued that several existing techniques
- such as offloading computation, migrating service state across
compute units, and coordinating execution across devices — need
to be rethought. This presents an exciting new opportunity for
systems researchers.

As shown in Figure 7, we foresee the ideal end-goal here is to
develop a middleware that spans manufacturing machines and the
cloud/edge, handling handoffs from servers to the machine and back,
state migration, coordination based on in-process profiling, etc. This
would entail offering client-side and server-side stubs that abstract
away all of these details from the CNC modules that run on- and
off-device. Advanced control algorithms for driving the operation
of manufacturing machines can then evolve independently, freeing
researchers who develop such algorithms from having to worry
about any of the aforementioned complexities.
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