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ABSTRACT
User privacy has been an increasingly growing concern in online
social networks (OSNs). While most OSNs today provide some
form of privacy controls so that their users can protect their shared
content from other users, these controls are typically not sufficiently
expressive and/or do not provide fine-grained protection of infor-
mation. In this paper, we consider the introduction of a new pri-
vacy control—group messaging on Twitter, with users having fine-
grained control over who can see their messages. Specifically, we
demonstrate that such a privacy control can be offered to users of
Twitter today without having to wait for Twitter to make changes to
its system. We do so by designing and implementing Twitsper, a
wrapper around Twitter that enables private group communication
among existing Twitter users while preserving Twitter’s commer-
cial interests. Our design preserves the privacy of group informa-
tion (i.e., who communicates with whom) both from the Twitsper
server as well as from undesired Twitsper users. Furthermore,
our evaluation shows that our implementation of Twitsper im-
poses minimal server-side bandwidth requirements and incurs low
client-side energy consumption. Our Twitsper client for Android-
based devices has been downloaded by over 1000 users and its util-
ity has been noted by several media articles.

1. INTRODUCTION
OSNs have gained immense popularity in the last few years since

they allow users to easily share information with their contacts and
to even discover others of similar interests based on information
they share. However, not all shared content is meant to be public;
users often need to ensure that the information they share is accessi-
ble to only a select group of people. Though legal frameworks can
help limit with whom OSN providers can share user data, users are
at the mercy of controls provided by the OSN to protect the content
they share from other users. In the absence of effective controls,
users concerned about the privacy of their information are likely
to connect with fewer users, share less information, or even avoid
joining OSNs altogether.

Previous proposals to address these privacy concerns on exist-
ing OSNs either (a) jeopardize the commercial interests of OSN
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providers [31, 23] if these solutions are widely adopted and thus,
are likely to be disallowed, or (b) require users, who are currently
accustomed to free access to OSNs, to pay for improved privacy [26,
42, 3]. On the other hand, though new OSNs have been developed
with privacy explicitly in mind [16, 7], these OSNs have seen lim-
ited adoption because users are virtually “locked in" to OSNs on
which they have already invested significant time and energy to
build social relationships. Consequently, users have, in many cases
today, raised privacy-related concerns in the media and organiza-
tions such as the EFF and FTC have tried to coerce OSNs to make
changes. Though OSNs have introduced new privacy controls in
response to these concerns (e.g., Facebook friend lists, Facebook
groups, Google+ circles), such controls do not provide sufficiently
fine-grained protection.

In light of this, we consider the privacy shortcomings on Twit-
ter, one of the most popular OSNs today [17]. Twitter offers two
kinds of privacy controls to users—a user can either share a mes-
sage with all of her followers or with one of her followers; there
is no way for a user on Twitter to post a tweet such that it is visi-
ble to only a subset of her followers. In this paper, we fill this gap
by providing fine-grained controls to Twitter users, enabling them
to conduct private group communication. Importantly, we provide
this fine-grained privacy control to Twitter users by implementing
a wrapper that builds on Twitter’s existing API, and hence, users do
not have to wait for Twitter to make any changes to its service.

As our main contribution, we design and implement Twitsper,
a wrapper around Twitter that provides the option of private group
communication for users, without requiring them to migrate to a
new OSN. Unlike other solutions for group communication on Twit-
ter [8, 19, 20], Twitsper ensures that Twitter’s commercial inter-
ests are preserved and that users do not need to trust Twitsper
with any private information. Further, in contrast to private group
communication on other OSNs (e.g., Facebook, Google+), in which
a reply/comment on information shared with a select group is typ-
ically visible to all recipients of the original posting, Twitsper
strictly enforces privacy requirements as per a user’s social connec-
tions (all messages posted by a user are visible only to the user’s
followers).

When designing Twitsper, we considered various choices for
facilitating the controls that we desire; surprisingly, a relatively
simple approach emerged as the best fit for fulfilling our objec-
tives. Thus, our Twitsper implementation is based on this sim-
ple design which combines a Twitter client (that retains much of
the control logic) with a server that maintains minimal state. Im-
portantly, we ensure that no privately shared content is revealed
to the Twitsper server, and furthermore, the privacy of group
memberships is also preserved from both the Twitsper server
and from other undesired users. Our evaluation demonstrates that



this simple design does achieve the best trade-offs between several
factors such as backward compatibility, availability, client-side en-
ergy consumption, and server-side resource requirements.

Overall, our implementation of Twitsper is proof that users
can be empowered with fine-grained privacy controls on existing
OSNs, without waiting for OSN providers to make changes to their
platform. Our client-side implementation of Twitsper for An-
droid phones has been downloaded by over 1000 users and several
articles in the media have acknowledged its utility in improving
privacy and reducing information overload on Twitter.

2. RELATED WORK
Characterizing privacy leakage in OSNs: Krishnamurthy and

Willis characterize the information that users reveal on OSNs [34]
and how this information leaks [35] to other entities on the web
(such as social application providers and advertising agencies). Our
thesis is that legal measures are necessary to ensure that OSN
providers do not leak user information to third-parties. However,
it is not in the commercial interests of OSN providers to support
systems that hide information from them. Therefore, we focus on
enabling users to protect their information from other undesired
users, rather than from OSN providers.

Privacy controls offered by OSNs: Google+ and Facebook per-
mit any user to share content with a circle or friend list comprising
a subset of the user’s friends. However, anyone who comments on
the shared content has no control; the comment will be visible to all
those with whom the original content was shared. Even worse, on
Facebook, if Alice comments on a friend Bob’s post, Bob’s post be-
comes visible to Alice’s friend Charlie even if Bob had originally
not shared the post with Charlie. Facebook also enables users to
form groups; any information shared with a group is not visible to
users outside the group. However, a member of the group has to
necessarily share content with all other members of a group, even
if some of them are not her friends. Twitter, on the other hand,
enables any user to restrict sharing of her messages either to only
all of her followers (by setting her account to private mode) or to
exactly one of her followers (by means of a Direct Message), but
not to a proper subset. We extend Twitter’s privacy model to permit
private group communication, ensuring that the privacy of a user’s
reply to a message shared with a group is in keeping with the user’s
social connections.

Distributed social networks: Several proposals to improve user
privacy on OSNs have focused on de-centralizing OSNs (e.g., Vis-
a-Vis [42], Confidant [37], DECENT [33], Polaris [45], and Peer-
SoN [26]). These systems require a user to store her data in the
cloud or on her own or her friends’ personal devices, thus remov-
ing the need for the user to trust a central OSN provider. However,
users have put in tremendous effort in building their social connec-
tions on today’s OSNs [4, 17], and rebuilding these connections on
a new OSN is not easy. Thus, unlike these prior efforts, we build a
backward-compatible privacy wrapper on Twitter.

Improving privacy in existing OSNs: With Lockr [44], the
OSN hosting a user’s content is unaware of with whom a user is
sharing content; Lockr instead manages content sharing. Other sys-
tems allow users to share encrypted content, either by posting the
encrypted content directly on OSNs [31, 23, 24] or via out-of-band
servers [13]. Users can share the decryption keys with a select sub-
set of their connections (friends). Hummingbird [28] is a variant of
Twitter in which the OSN supports the posting of encrypted content
in such a manner that preserves user privacy. Narayanan et al. [39]
ensure users can keep the location information that they divulge
on OSNs private via private proximity testing. All of these tech-
niques either prevent OSN providers from interpreting user content,

Category %
Consider privacy a concern 77
Would like to control who 70sees information they post
Declined follower requests 50owing to privacy concerns

Table 1: Results of survey about privacy shortcomings on Twitter.

or hide users’ social connections from OSNs. Since neither is in the
commercial interests of OSN providers, these solutions are not sus-
tainable if widely adopted. In contrast, we respect the interests of
OSN providers while exporting privacy controls to users.

Group communication: Like Twitsper, listserv [30] enables
communication between groups of users. However, unlike with
Twitsper, group communications on listserv lack a social struc-
ture and listserv was never designed with privacy in mind. Prior
implementations of group messaging on Twitter, such as Twitter
Groups [20], GroupTweet [8], and Tweetworks [19], have either not
focused on privacy—they require users to trust them with their pri-
vate information—or require users to join groups outside their ex-
isting social relationships on Twitter. Similar to Twitsper, a re-
cent workshop paper [43] advocated the use of a wrapper that offers
private group communication on Twitter, but unlike Twitsper,
they ignored the leakage of private information, such as the sizes of
conversation groups, to the server maintained by the wrapper.

3. MOTIVATING USER SURVEY
While privacy concerns with OSNs have received significant cov-

erage [34, 35], the media has mostly focused on leakage of user
information on OSNs to third-parties such as application providers
and advertising agencies. Our motivation is the need for a more
basic version of privacy on OSNs—protecting content shared by a
user from other users on the OSN, which has began to receive some
attention [11].

To gauge the perceived need amongst users for this form of pri-
vacy, we conducted an IRB approved user study across 78 users
of Twitter 1. Our survey questioned the participants about the need
they see for privacy on Twitter, the measures they have taken to pro-
tect their privacy, and the controls they would like to see introduced
to improve privacy. Table 1 summarizes the survey results. More
than three-fourths of the survey participants are concerned about
the privacy of the information they post on Twitter, and an almost
equal fraction would like to have better control over who sees their
content. Further, rather tellingly, half the survey takers have at least
once rejected requests to connect on Twitter in order to protect their
privacy. These numbers motivate the necessity of enabling users on
Twitter to privately exchange messages with a subset of their fol-
lowers, specifically allowing them to choose which subset to share
a message with on a per-message basis.

4. DESIGN OBJECTIVES
Given the need for enabling private group messaging on Twitter,

we next design Twitsper to provide fine-grained privacy con-
trols to Twitter users. Our over-arching objective in developing
Twitsper is to offer these controls to users without having to
wait for Twitter to make any changes to their service. Our design
for Twitsper is guided by three primary goals.

Backward compatible: Rather than developing a new OSN de-
signed with better user controls in mind (e.g., proposals for dis-
tributed OSNs [42, 26, 3]), we want our solution to be compatible
with Twitter. This goal stems from the fact that Twitter already has

1Participant details removed for anonymity reasons



Proposal Backward Preserves No Added
Compatible Commercial Trust

Interests Required
Distributed OSNs × × X

Encryption X × X
Separating content providers

X × ×from social connections
Existing systems for group

X X ×messaging on Twitter
Twitsper X X X

Table 2: Comparison of Twitsper with previous proposals for improv-
ing user privacy on OSNs.

an extremely large user base—over 100 million active users [21].
Since the value of a network grows quadratically with the growth
in the number of users on it (the network effect [36]), Twitter users
have huge value locked in to the service. To extract equal value
from an alternate social network, users will not only need to re-add
all of their social connections, but will further require all of their
social contacts to also shift to the new service. Therefore, we seek
to provide better privacy controls to users by developing a wrapper
around Twitter, eliminating the burden on users of migrating to a
new OSN and thus maximizing the chances of widespread adop-
tion of Twitsper.

Preserves commercial interests: A key requirement for
Twitsper is that it should not be detrimental to the commercial
interests of Twitter. For example, though a user can exchange en-
crypted messages on Twitter to ensure that she shares her content
only with those with whom she shares the encryption keys, this
prevents Twitter from interpreting the content hosted on its service.
Since Twitter is a commercial for-profit entity and offers its service
for free, it is essential that Twitter be able to interpret content shared
by its users. Twitter needs this information for several purposes: to
show users relevant advertisements, to recommend applications of
interest to the user, and to suggest others of similar interest with
whom the user can connect. Though revealing user-contributed
content to Twitter opens the possibility of this data leaking to third-
parties (either with or without the knowledge of the provider), user
content can be insured against such leakage via legal frameworks
(e.g., enforcement of privacy policies [22]) or via information flow
control [46]. On the other hand, protecting a user’s content from
other users requires enabling the user with better controls—our fo-
cus in building Twitsper.

No added trust: In attempting to give users better controls with-
out waiting for Twitter to change, we want to ensure that users
do not have another entity to trust in Twitsper; users already
have to trust Twitter with their information. Increasing the num-
ber of entities that users need to trust is likely to deter adoption
since users would fear the potentially greater opportunity for their
information to leak to third-parties. Therefore, we seek to ensure
that users do not need to share with Twitsper’s servers any in-
formation they want to protect, such as their content or their login
credentials. Tools such as TaintDroid [29] can be used to verify that
Twitsper’s client application does not leak such information to
Twitsper’s servers. We design Twitsper for the setting where
Twitsper’s servers are not malicious by nature, but are inquis-
itive listeners; this attacker model is similar to that used in prior
work (e.g., [40]).

Table 2 compares our proposal with previous solutions for im-
proving user privacy on OSNs. Unlike proposals for distributed
OSNs, Twitsper enables users to reuse their social connections
on Twitter, and unlike calls for exchange of encrypted content,
we respect Twitter’s commercial interests. Moreover, we intro-
duce user controls via Twitsper without adding another entity
for users to trust, unlike proposals such as Lockr [44], which call

API call Function

PrivSend(msg, group) Send msg to all
users specified in group

isPriv?(msg) Determine if msg
is a private message

PrivReply(msg, orig_msg)

Send msg to all
of the user’s followers
who received orig_msg

Table 3: Twitsper’s API beyond normal Twitter functionality.

for the separation of social connections from content providers.
Lastly, in contrast to prior implementations of group messaging
on Twitter such as GroupTweet [8], Tweetworks [19], and Twitter
Groups [20], we ensure that Twitter is privy to private conversations
but Twitsper is not.

5. Twitsper DESIGN
Next, we present an overview of Twitsper’s design. We con-

sider various architectural alternatives and discuss the pros and
cons with each. Our design objectives guide the choice of the ar-
chitecture that presents the best trade-offs. As mentioned earlier,
surprisingly, a fairly simple approach seems to yield the best trade-
off and is thus, used as the basic building block in Twitsper.

Basic definitions: First, we define a few terms related to Twitter
and briefly explain the Twitter ecosphere.
• Tweet: A tweet is the basic mode of communication on Twitter.

When a user posts a tweet, that message is posted on the user’s
Twitter page (i.e., http://twitter.com/username), and is seen on
the timeline of everyone following the user.
• Direct Message: A direct message is a one-to-one private tweet

from one user to a specific second user, and is possible only if
the latter follows the former.
• @ Reply: A user can use a @reply message to reply to another

user’s tweet; this message will also appear on the timeline of
anyone following both users.
• Twitter page: Every user’s Twitter page(http://twitter.com/username)

contains all tweets and @reply messages posted by the user. By
default, this page is visible to anyone, even those not registered
on Twitter. If a user sets her Twitter account to be private, all
messages on her page are visible to any of the users following
her account.
• Timeline: A user’s timeline is the aggregation of all tweets, di-

rect messages, and @reply messages (sorted in chronological or-
der) visible to that user. In addition to her timeline, note that a
user can view any tweet or @reply message posted by any user
that she follows by visiting that user’s Twitter page.
• List: Twitter allows every user to create lists—groups of Twitter

users selected by the user. Lists can either be public and world
viewable, or private and viewable to the user alone.
• Whisper: Twitsper’s private messaging primitive to allow a

user to contact any subset of followers
Twitter associates every tweet, Direct Message, user, and list with
a unique ID.

Interface: Our primary goal is to extend Twitter’s privacy model.
In addition to sharing messages with all followers (tweet) or pre-
cisely one follower (Direct Message), we seek to enable users to
privately share messages with a non-empty proper subset of their
followers. To do so, we extend Twitter’s API with the additional
functionality shown in Table 3. We present the algorithmic repre-
sentations of these API calls later.

First, the PrivSend API call allows users to post private messages
that can be seen by one or more members in the user’s network,



who are specifically chosen to be the recipients of such a message.
However, simply enabling a message to be shared with a group of
users is insufficient. To enable richer communication, it is neces-
sary that the recipients of a message (shared with a group) be able
to reply back to the group. In the case of discussions that need not
be kept private, a user may choose to make her reply public so that
others with similar interests can discover her. However, when Nina
responds to a private message from Jack, it is unlikely that Nina
will wish to share her reply with all the original target recipients
of Jack’s message since many of them may be “unconnected" to
her. Nina will likely choose to instead restrict the visibility of her
reply to those among the recipients of the original message whom
she has approved as her followers. Therefore, the PrivReply API
call enables replies to private messages, while preserving social
connections currently established on Twitter via follower-followee
relationships. Finally, the isPriv? API call is necessary to deter-
mine if a received message is one to which a user can reply with
PrivReply. Hereafter, we refer to the messages exchanged with the
PrivSend and PrivReply calls as whispers.

It is important to note that, since our goal is to build a wrap-
per around Twitter, rather than build a new OSN with these privacy
controls, this extended API has to build upon Twitter’s existing API
for exchanging messages. Though Twitter’s API may evolve over
time, we rely here on simple API calls—to post a tweet to all fol-
lowers and to post a Direct Message to a particular follower—that
are unlikely to be pruned from Twitter’s API. Also note that, in
some cases, multiple rounds of replies to private messages can re-
sult in the lack of context for some messages for some recipients,
since all recipients of the original whisper may not be connected
with each other. In the trade-off between privacy and ensuring con-
text, we choose the former in designing Twitsper.

Architectural choices: Next, we discuss various architectural
possibilities that we considered for Twitsper’s design, to support
the interface described above. While it may be easy for Twitter to
extend their interface to support private group messaging, we note
that Twitter has not yet done so in spite of the need for this amongst
its users. Therefore, our focus is in designing Twitsper to offer
this privacy control to users without having to wait for Twitter to
make any changes.

Using a supporting server: The simplest architecture that one
can consider for Twitsper is to have clients send a whisper to a
group of users (represented by a list on Twitter) by sending a Direct
Message to each of those users. To enable replies, when a client
sends a whisper, it can send to the supporting server the identifiers
of the Direct Messages and the ID of the Twitter list which contains
the recipients. Thus, a user can query this supporting server to
check if a received Direct Message corresponds to a whisper and to
obtain the ID of the associated Twitter list. When the user chooses
to reply to a whisper, the user’s client can retrieve the Twitter list
containing the recipients of the original whisper, locally compute
the intersection between those recipients and the user’s followers,
and then send Direct Messages to all those in the intersection.

If the supporting server is unavailable, users can continue to use
Twitter as before, except that the metadata necessary to execute
the isPriv? and PrivReply API calls cannot be retrieved from the
server. However, the client software can be modified to allow a
recipient to obtain relevant mappings (ID of the list of recipients
of a whisper) from the original sender. Another option is to have
the client embed the ID of the list associated with a whisper in ev-
ery Direct Message sent out as part of a whisper. However, given
Twitter’s 140 character limit per Direct Message, this can be a sig-
nificant imposition, reducing the permissible length of the message
content.

This design places much of the onus on the client and may result
in significant energy consumption for the typical use case of Twit-
ter access from smartphones. On the flip side, in this architecture,
the content posted by a user is not exposed to the supporting server,
i.e., privacy of user content from Twitsper’s server is preserved.
The server is simply a facilitator of group communications across a
private group and only maintains metadata related to whispers (we
discuss later in Section 6 how we protect the privacy of this meta-
data as well from the supporting server). Further, Twitter is able to
see users’ postings and thus its commercial interests are protected.
We note that the alternative of the client sending messages to the
supporting server for retransmission to the recipients is not an op-
tion, since this would require users to trust the supporting server
with the content of their messages.

This design however does have some shortcomings. Twitter lacks
sufficient context to recognize that the set of Direct Messages shared
to send a whisper constitute a single message rather than a local
trending topic. Similarly, Twitter cannot link replies with the orig-
inal message, since all of this state is now maintained at the sup-
porting server.

Posting encrypted content: To address the shortcoming in the
previous architecture of being unable to link replies to the original
whispers, in our next candidate architecture, we consider clients
posting a whisper just as they would a public message (tweet) but
encrypt it with a group key which is only shared with a select group
of users (who are the intended recipients of the message). This
reduces the privacy problem to a key exchange problem for group
communications. An out-of-band key exchange is possible.

However, since only intended recipients can decrypt a tweet,
Twitter’s commercial interests are compromised. Furthermore, fil-
tering of encrypted postings not intended for them is necessary at
the recipient’s side; if not, a user’s Twitter client will display inde-
cipherable noise from these postings. In other words, the approach
is not backward compatible with Twitter. Note here that if these
issues are resolved, e.g., by sharing encryption keys with Twitter,
encryption can be used with any of the other architectural choices
considered here to enhance privacy.

Using community pages to support anonymity: Alternatively,
one may try to achieve anonymity and privacy by obfuscation.
Clients post tweets to a obfuscation server, which in turn re-posts
messages on behalf of users to a common “community” account
on Twitter. Except for the server, no one else is aware of which
message maps to which user. When a user queries the obfuscation
server for her timeline, the server returns a timeline that consists
of messages from her original timeline augmented with messages
meant for that user from the “community” page. The obfuscation
prevents the exposure of private messages to undesired users. Since
the “community" page is hosted on Twitter, the shortcoming of the
encryption-based architecture is readily addressed—Twitter has ac-
cess to all information unlike in the case of encryption. An ap-
proach similar to this was explored in [41].

However, this architecture has several drawbacks. First, Twit-
ter cannot associate messages with specific users; this precludes
Twitter from profiling users for targeted advertisements and such.
Second, all users need to trust the obfuscation server with the con-
tents of their messages. Finally, since the architecture is likely to
heavily load the server (due to the scale), the viability of the design
in practice becomes questionable. When the server is unavailable,
no private messages can be sent or received.

Using dual accounts: In our last candidate architecture, every
user maintains two accounts. The first is the user’s existing account,
and a second private account (with no followers or followees) is
used for sending whispers. When Alice wishes to send a whisper



Design Twitter’s No Easily Same Always Linkable
interests added scales text avai- to orig

preserved trust size lable message
Supporting server X X X X X ×

Embed lists X X X × X ×
Encryption × X X X × X

Community pages × × × X × ×
Dual accounts × X X X X X(No longer possible)

Figure 1: Comparison of architectural choices.

Twitsper App
on user device

Twitsper
Server

Login Credentials
+

Content

User
Controls Twitter

Servers

Figure 2: System architecture using supporting
server.

to Bob and Charlie, she posts an @reply message from her private
account to Bob’s and Charlie’s private accounts. Since Alice’s pri-
vate account has no followers, these @reply messages are visible to
no users other than to the intended recipients. However, as of mid-
2009, Twitter discontinued the “capability” of @reply messages be-
tween disconnected users after concluding that less than 1% of the
users found this feature useful and that it contributes to spam mes-
sages [14]. Thus, @reply messages posted from these disconnected
private accounts will not be visible to intended recipients. Other
problems with this architectural choice are that Twitter is unable to
associate private messages with the normal accounts of users and
responding to private messages is a challenge.

Figure 1 summarizes the comparison of the various architectural
choices with respect to our design goals. While no solution satisfies
all desirable properties, we see that the use of a supporting server
presents the best trade-off in terms of simplicity and satisfying our
goals. Therefore, we choose this to be the architectural choice for
implementing Twitsper, as shown in Figure 2.

While the basic structure of the architecture is simple as dis-
cussed above, there exist certain challenges in making the server
and other undesired users oblivious to the specifics of a group con-
versation. We discuss these issues and our approaches for handling
them in the following section.

6. PROTECTING PRIVACY
With the supporting server architecture, users do not directly

send content to the Twitsper server. However, there is meta-
data that is provided to the server in order to support group con-
versations —the mapping of Direct Message IDs to list IDs. This
metadata could reveal the identities of the members that belong to
a private conversation or the group size, and a user may desire to
keep such information private. Hence, we incorporate several fea-
tures that hides this information both from the Twitsper server
and other undesired users.

Threat model: The components of Twitsper are a) Twitter
itself, b) user devices, c) the Twitsper server, and d) the channel
connecting these entities.

We trust Twitter not to leak a person’s private information and
this has been the premise of our work. We assume that a user’s
personal device does not compromise a user’s privacy; this prob-
lem is orthogonal to our work. Thus, the two potential sources of
leakage are the Twitsper server and the channel. Note here that
the Twitsper server is the only new addition to the pre-existing
Twitter architecture. As discussed earlier, in our supporting server
architecture, private content is always posted to Twitter’s servers,
thus ensuring that this content is not leaked due to the Twitsper
server. The threat is then the leakage of the metadata associated
with private content that may be exposed to the server. Since we
administer the Twitsper server, we assume that the server will
not modify or delete metadata stored on it. Therefore, we focus in-
stead on ensuring that the manner in which metadata is shared with
and stored on the Twitsper server does not reveal private infor-

mation either to the server or to undesired users (those not involved
in private conversations).

In light of this, we seek to ensure that the following security
properties hold:
• An undesired user should not be able to infer which of his/her

friends are involved in ongoing private conversations.
• The server should not infer the memberships in ongoing conver-

sations, or determine the size of a private group.
We wish to point out here that if the supporting server has no ac-

cess to user information (which if made available can compromise
the privacy of a user by revealing information such as the number
of private conversations that the user is involved in), it cannot au-
thenticate the veracity of whisper postings. We recognize that this
exposes the Twitsper server to a possible DoS attack wherein
fraudulent information could be sent to the server. We defer the
exploration of defenses against such attacks on the server for future
work, and focus here on protecting user privacy from the server.

Use of certificates to avoid over the channel modifications:
The Twitsper server has an SSL certificate which validates the
authenticity of the server. Thus, a secure HTTPS channel can be
established with the server, precluding the possibility of over the
channel modifications (as with man in the middle attacks).

Protection from undesired users: A curious user who is not
privy to a private conversation may wish to trick the Twitsper
server into disclosing if one of his friends has initiated a private
conversation. To do so, the user may try to guess the message IDs
associated with whispers posted by the friend, e.g., based on recent
tweets posted by that friend. Note that a whisper results in a set
of Direct Messages being posted to Twitter, each of which has an
associated message ID.

First, we seek to understand if it is easy for a user to carry out
such an attack. Towards this, we perform the following experiments
wherein we use three accounts (say) Alice, Bob and Charlie. In our
first experiment, Alice sends 50 Direct Messages to Charlie. In our
second experiment, Alice sends a Direct Message to Charlie, and
immediately thereafter Bob follows by sending a Direct Message to
Charlie; we repeat this sequence 50 times. In our final experiment,
Alice sends a Direct Message to Charlie and follows that message
with a tweet, whereupon Bob does the same. Again, we repeat this
sequence 50 times. We observe that while the ID space of tweets
and Direct Messages grows monotonically (across both), the gap
between the IDs in any pair of posts (sent in quick succession) was
at least 107. We observe no visible pattern using which a user can
guess the ID for a Direct Message posted by a friend based on either
a recent tweet or Direct Message posted by that friend. While this
experiment does indicate that it is hard for an undesired user to
query the Twitsper server and obtain information with regards
to specific private conversations, it does not completely rule out the
possibility. Thus, we incorporate the following into our design.

Recall that an initiator of a private conversation sends Direct
Messages to a private group, and then seeks to create a mapping
on the supporting server between the identifiers for those messages
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and the recipient list. Instead of storing this message ID to list ID
mapping on the Twitsper server simply as (whisperID, listID)
tuples, where whisperID is the message identifier assigned by
Twitter, we replace the first component in this tuple with the SHA-
512 hash value of (whisperID|userID|text). Here, userID
corresponds to a receiver of the whisper and text corresponds to
the actual content in the message. This way of storing the map-
pings on the server has two benefits. First, since the hash function
is non-invertible, the server cannot infer the identity of the user in-
volved (the text input to the hash function is only known to the
group members and thus, not available to the server). Second, even
if an undesired user guesses the IDs of the posted messages, he can-
not retrieve the desired mapping, again because he does not know
the text provided as input to the hash.

Hiding the entries in a list: The list identifiers included in the
mappings stored at the Twitsper server can however reveal the
participants of private conversations to the server. To hide this in-
formation, we encrypt the list ID stored in any tuple with a group
key. Clearly, the group key should be available to all of the partic-
ipants themselves but not to the server. Thus, we have all recipi-
ents derive a group key Kg from the content of the received Direct
Message, which is not exposed to the Twitsper server. Since a
user may be involved in multiple groups, the private conversation
with which a particular received Direct Message is associated may
not always be apparent. Therefore, we associate a new group key
Kg with every whisper rather than with every conversation. The
key Kg for a particular whisper is a function of the associated text
and the sender of the whisper encrypts the list ID with Kg before
posting the associated mappings to the Twitsper server. Finally,
though this can impact the availability of metadata, to keep stor-
age costs at the Twitsper server low, we purge entries after a
pre-specified time interval (days).

Alternatively, we could use a one-to-many or many-to-many state-
less broadcast encryption scheme [32, 38, 27, 25], which ensures
that re-keying is infrequent and that many possible subsets can be
generated with little computational effort. At this point, we did
not see any direct advantage of using such approaches over simply
deriving the group key for a conversation from the content of the
initial Direct Message in that conversation.

Note that, in the rare case where a user has a single list on Twitter,
anyone who knows that the user is using Twitsper can infer the
set of users with whom the user is having private conversations.
In practice, we expect that users will conduct private conversations
with different groups at different times, and thus maintain multiple
lists on Twitter.

Preventing the inference of group sizes: Even though list IDs
are now encrypted, the Twitsper server can infer the sizes of pri-
vate groups simply by counting the number of tuples with the same

encrypted list identifier. Recall that the list ID is associated with a
hash value that is unique to each intended group participant; thus,
if there are K participants, there would be K entries corresponding
to the same list. Alternatively, it can simply count the number of
tuples written by a single client (the initiator) via its HTTPS con-
nection within a short time frame.

To ensure that the listID in its encrypted form cannot be di-
rectly used (via counting) to infer the group size, we store en-
tries of the form encKg (listID|hash(listID)|whisperID). The
whisperID corresponds to the Direct Message sent to a specific
receiver, and thus, each entry now has a unique encrypted list ID
associated with it; the Twitsper server cannot infer group sizes
simply by counting tuples with the same second component. It is
easy to see that when the entries are sent to users, the client pro-
gram can decrypt the content and extract the listID.

To preclude the server from inferring the group size by counting
the number of tuples written by a client within a short time span, we
take the following approach. First, note that simply having clients
write dummy tuples to the server does not suffice. The server can
infer which tuples are spurious by noting the tuples that are never
queried. Thus, we associate each entry with a counter value n
which can vary from 1 to M , where M is a random value cho-
sen uniquely for each recipient (note that in many cases M = 1).
We then modify the first and second components of every tuple to
be hash(n|whisperID|userID|text) and encKg (n|M |listID|
hash(listID)|whisperID). For each recipient (say Bob), Al-
ice creates M entries, M being specific to Bob. Of these, as may
be evident, M − 1 entries correspond to dummy entries. When
Bob queries the server for the first time (with hash(1|whisperID|
userID|text)), he retrieves the value of M and now knows how
many spurious entries are stored for him. His client software then
sends M − 1 additional requests to retrieve the spurious entries.

Our design has several other desirable security properties, that
we discuss briefly here.
• Preventing leakage of the browsing habits of users: Since the

user ID is never directly revealed to the supporting server, the
browsing habits or Twitter access patterns of users are held con-
fidential from the server.
• CCA security: Our encryption scheme is based on AES (Ad-

vanced encryption standard) [5] which ensures CCA (chosen ci-
pher text attack) security. Thus, even with the rather predictable
and simple counters used, the list IDs cannot be reverted.
• Forward and backward secrecy: Since a new group key is gen-

erated per whisper message, even if someone guesses or uncov-
ers the key for the metadata for a specific message, it does not
uncover past or future messages both in the same, or in different
conversations. This ensures both forward and backward secrecy.



API Call 1 PrivSend(msg,listID)

1: SALT← First 8 bytes of SHA-512(msg)
2: PASS←msg concatenated with sender’s ID
3: Kg ← PBKDF2(PASS, SALT)
4: for each User U in group listID do
5: msgID ← messageID returned by Twitter on successful post
6: M ← select a random number
7: Entrya ← SHA-512(1|msgID|U |msg)
8: Entryb ← encryptKg (1|M |listID|hash(listID)|msgID)
9: EntryList← add (Entrya, Entryb)
10: for i ∈ [2,M ] do
11: Dummyi

a ← SHA-512(i|msgID|U |msg)
12: Dummyi

b ← encryptKg (i|M |listID|hash(listID)|msgID)

13: EntryList← add (Dummyi
a,Dummyi

b)
14: end for
15: end for
16: for each (a,b) in EntryList do
17: send (a,b) to Twitsper server
18: end for

Collision of hash entries: Lastly, since things are indexed by the
results of a hash function, the collisions of the hash values might
seem to be an issue. The secure hash standard [15] states that for
a 512 bit hash function (as in our implementation) we need a work
factor of approximately 2256 entries to produce a collision which
we believe leads to a minuscule probability of experiencing colli-
sions. Thus, we ignore hash collisions for now.

7. IMPLEMENTATION
In this section, we describe our implementation of the Twitsper

client and server. Given the popularity of mobile Twitter clients, we
implement our client on the Android OS [1, 2].

Generic implementation details. Normal tweets (public) and
Direct Messages are sent with the Twitsper client as with any
other Twitter client today. We implement whispers using Direct
Messages as described before. Recall that direct messaging is a
one-to-one messaging primitive provided by Twitter. Mappings
from Direct Messages to whispers are maintained on our Twitsper
server. Instead of describing each API call separately, our descrip-
tion captures their inter-dependencies.
Twitsper’s whisper messages are always sent to a group of se-

lected users. The client handles group creation by creating a list of
users on Twitter. This list can either be public (its group members
are viewable by any user of Twitter) or private for viewing only by
its creator.

Instantiation of Twitsper API: Figure 3 shows the flow of
information involved in posting a whisper. The Twitsper client
at the sender first creates a 256 bit AES key from the content to
be shared (msg) using the password-based key derivation func-
tion (PBKDF2) from PKCS#5 [10]. The input to PBKDF2 is the
message text (msg) concatenated with the user ID of the sender.
SALT is a random number generated from the content string; in
our implementation we simply use the first 8 bytes of the hash value
SHA-512(msg). At the end of these steps, the sender has generated
the group key (Kg) for the communication (API Call 1; Lines 1–3).
The client then sends a Direct Message via Twitter to each group
member, whereupon Twitter returns the message IDs for each re-
cipient (API Call 1; Line 5).

The Twitsper client then creates metadata tuples that will en-
able recipients of the whisper to map Direct Messages to the corre-
sponding list ID (API Call 1; Lines 6–9). Note here that the client
also picks a random number M for every recipient and creates
M − 1 dummy metadata entries on the Twitsper server (API
Call 1; Lines 10–14) as discussed before. All of these metadata

API Call 2 isPriv?(msg)

1: msgID ← Twitter ID for msg
2: Entrya ← SHA-512(1|msgID| self’s ID |msg)
3: response← query Twitsper server for Entrya

4: if response 6= null then
5: SALT← First 8 bytes of SHA-512(msg)
6: PASS←msg concatenated with sender’s ID
7: Kg ← PBKDF2(PASS, SALT)
8: Decrypt response using Kg and cache embedded listID with msgID

for future replies
9: M← extracted number for spurious queries
10: for i ∈ [2,M ] do
11: Dummyi

a ← SHA-512(i|msgID| self’s ID |msg)
12: response← query Twitsper server for Dummyi

a

13: end for
14: return TRUE
15: else
16: return FALSE
17: end if

API Call 3 PrivReply(msg,orig_msg)

1: if ID for orig_msg is not in cache then
2: Reply with a direct message
3: return
4: end if
5: listID ← mapping for orig_msg’s ID in cache
6: group← group specified by the list ∩ user’s followers
7: PrivSend(msg,group)

tuples are finally transmitted to the Twitsper server (API Call 1;
Lines 16–18). As discussed earlier, in order to associate a whis-
per with the correct list, new metadata is created for every Direct
Message sent and Kg is newly generated for every posted whisper.

When the Twitsper client program at a recipient receives a
Direct Message, it queries the Twitsper server to check whether
the message is a whisper or a standard Direct Message (API Call 2).
To do so, it first computes the SHA-512 hash from the content in
the Direct message and its own user ID (API Call 2; Line 2). If
the server finds a match for the query string, it returns the corre-
sponding tuple to the recipient client program; else it sends a null
response. If an appropriate (non-null) response is received from
the server, the Twitsper client of the recipient extracts the list
ID embedded in the tuple. To decrypt the metadata entry, the client
generates the group key Kg using the text in the received Direct
Message (msg) and the sender’s ID (API Call 2; Lines 5–8). The
client also extracts the embedded value of M and sends M − 1
additional requests for the spurious entries added for this particular
recipient (API Call 2; Lines 9–13).

A key feature of our system is that since whispers are sent as Di-
rect Messages, whispers can still be received and viewed by legacy
users of Twitter who have not adopted Twitsper; such users can-
not however reply to whispers (API Call 3). Twitsper allows a
whisper recipient to reply not only to the sender, but also to a sub-
set of the original group (specified by the retrieved list) receiving
the whisper. This subset is simply the intersection of the original
group and the followers of the responding user (API Call 3; Line
6). Thus, it respects the social relations established by users.

Finally, we point out that with the list ID corresponding to the
group, the client can retrieve the user IDs on that list from Twit-
ter if the original whisper sender has made the list public. If the
list is private, the recipient’s response can only be received by the
original sender. In the future, we plan to permit Twitsper users
to modify the list associated with a particular whisper in order to
enable inclusion of new users in the private group communication
or removal of recipients of the original whisper from future replies;
this can be easily done by adding/removing entries on Twitter lists.
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Server implementation details: Our server is equipped with
an Intel quad-core Nehalem processor, 24 GB of RAM, and one
7200 RPM 1 TB hard disk drive. The Twitsper server is imple-
mented as a multi-threaded Java program. The main thread accepts
incoming connections and assigns a worker thread, chosen from a
thread pool, to service each valid API call. The server stores whis-
per mappings in a MySQL database. In order to ensure that writing
to the database does not become a bottleneck we have multiple con-
nections to the database; we observed that without this, the server
performance was affected. These connections are used by worker
threads in a round-robin schedule. Note that our server does not
store any personal information or credentials of any user. The flow
of information in case of a tweet (public) or a Direct Message re-
mains unchanged. Only in the case of a whisper does the use of our
system become necessary. The contents of a whisper are never sent
to our server; only encrypted metadata is sent as discussed earlier.
This ensures that the server can never “overhear” conversations be-
tween users or derive user-specific information unless it has either
a user’s password, which, with Twitsper, is never transmitted.

Client implementation details: Our client was written for An-
droid OS v1.6 and was tested on the Android emulator as well as on
three types of Android phones (Android G1 dev, Motorola Droid X,
and HTC Hero). We use the freely available twitter4j package to ac-
cess the Twitter API. The client is also multi-threaded and separates
the UI (user-interface) thread from the processing, the network, and
disk I/O threads. This ensures a seamless experience to the user
without causing the screen to “freeze” when the client performs
disk or network I/O. We profiled the power consumption of our im-
plementation to identify inefficiencies and iteratively improved the
relevant code. These iterative refinements helped us decrease the
dependence on the network by caching frequently retrieved user
profile images, while maintaining a thread pool rather than the fork
and forget model adopted by most open source implementations of
other Twitter clients, so as to not over-commit resources.

When the Twitsper server is unavailable, we cache whisper
mappings on the client and piggyback this data with future inter-
actions with the server. On the other hand, recipients of whis-
pers interpret them as Direct Messages and cannot reply back to
the group until the server is again reachable. In future versions of
Twitsper, we will enable recipients to directly query the client
of the original sender if Twitsper’s server is unavailable.

We color code tweets, Direct Messages and whispers, while main-
taining a simple and interactive UI. Example screen shots from our
Twitsper client are shown in Figure 4. Our client application is
freely available on the Android market, and to date, our Twitsper
Android application has been downloaded by over 1000 users.

8. EVALUATION
Next we present our evaluation of Twitsper. For the purposes

of benchmarking, we also implement a version of Twitsper
wherein a client posts a whisper by transmitting the message to the

Twitsper server, which in turn posts Direct Messages to all the
recipients on the client’s behalf. Though, as previously acknowl-
edged, this design clearly violates our design goal of users not
having to trust Twitsper’s server, we use this thin client model
(TCM) (we refer to our default implementation as the fat client
model or Twitsper itself) as a benchmark to compare against.
One primary motivation for using TCM as a point of comparison
is that it can reduce the power consumption on phones (since bat-
tery drainage is a key issue on these devices). We also compare
Twitsper’s energy consumption on a smartphone with that of a
popular Twitter client to demonstrate its energy thriftiness.

Server-side results: First, we stress test our server by increas-
ing the rate of connections it has to handle. In this experiment, we
use one or more clients to establish connections and send dummy
metadata to our server. All clients and the server were on the same
local network and thus, network bandwidth was not the constrain-
ing factor. We monitored CPU utilization, disk I/O, and network
bandwidth with Ganglia [6] and iostat to detect bottlenecks. We
vary the target group size of whispers as well as the number of si-
multaneous connections to the server.

Disk. In Figure 5b, we plot the time taken by each thread to read
information relevant to a message from the database (we preloaded
the database with 10 million entries to emulate server state after
widespread adoption); Figure 5a depicts the CDFs of the write
times to the database. We see that as the number of clients in-
crease, so do the database write times, but not the read times. Thus,
as the system scales, the bottleneck is likely going to be the I/O for
writing to the disk.

CPU. Next, we compare the server performance of TCM and
Twitsper. We will refer to the version of the server which works
in tandem with Twitsper, and handles only whisper metadata,
as the Twitsper server. The TCM server must, in addition, han-
dle the actual sending of whispers to their recipients. It is to be
expected that the overhead of the TCM server would increase the
computational power needed to service each client. Figures 6a
and 6b show the average CPU utilization and user service time,
respectively, for each server version. We see in Figure 6a that
the Twitsper server has a higher CPU utilization than the TCM
server. This is because the TCM server spends more idle time (Fig-
ure 6b) while servicing each client since it needs to wait on com-
munications with Twitter. So even though more CPU resources are
being spent per client with the TCM server, the average CPU uti-
lization is lower.

Another interesting feature noted from these graphs is that cer-
tain increases in group size cause the server to more than double
its service time. These sharp increases in service time in Figure 6b
have corresponding drops in CPU utilization in Figure 6a. This
is due to our server’s disk writes being the throughput bottleneck.
Since in each test we either double the number of client connections
or the group size, we would expect a CPU bottleneck to manifest
itself with drastic service time increases (of ≈ 200%). Instead, the
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Figure 8: Comparison of power con-
sumption

data points to a disk write bottleneck where the client must wait
for an acknowledgment of the server database’s successful write.
We verify with iostat that our hard drive is used at 100% utilization
during these periods. We are currently investigating the effect of
adding more disks.

Network. Figure 7a shows the number of bytes in and out with
the TCM and Twitsper servers for a single client connection.
Each line in Figure 7a represents a single client sending one whis-
per message to a group size which is varied (x-axis). We see that
increasing the group size does not cause a large increase in the
received bytes as compared to the case with only 2 group mem-
bers. This illustrates that the overhead increase with recipient group
size (which causes either the receipt of more message IDs with the
Twitsper server or the receipt of more recipient user IDs with
the TCM server) is very minor when compared to the resources
consumed by the SSL connection between the client and the server.
The only additional overhead with the TCM server is the transfer of
the actual whisper messages from the client; this manifests as the
constant offset between these two curves. Since the Twitsper
server has to only send a confirmation to the user that its whisper
meta data was received correctly, the bytes out is independent of
the recipient group size (all meta data corresponding to a whisper
is sent as a single atomic block). In contrast, the burden of having
to send whispers to each recipient (as a separate Direct Message)
is on the TCM server. Increasing group size (x-axis) increases the
number of Direct Messages sent to Twitter and this quickly results
in an overshoot of the single client SSL connection overhead.

Figures 7b and 7c show the bandwidth consumed at the server as
the number of bytes in and out per second. In Figure 7b, we see that
the Twitsper server does not experience a reduction in transmis-
sion rate until it hits 128 clients and a group size of 16. At this
point, we hit a disk bottleneck in writing client message metadata
to our database. For the TCM server, we see a rate reduction even
in the 16 clients case as we increase the group size; this is due to
the latency incurred in the message exchange with Twitter. We hit
a similar hard disk bottleneck at 128 concurrent client connections
with the TCM server, as similar metadata needs to be stored with
both server setups.

Comparing Twitsper and TCM clients: While Twitsper
offers higher CPU utilization as well as lower bandwidth require-
ments, the energy (power∗time) consumption at the client is a key
factor in ensuring adoption of the service. To evaluate its client side
energy performance, we measure the amount of energy needed to
make a single post with Twitsper to Twitter and to send a mes-
sage to our server. We also use the PowerTutor [12] application
to measure the power consumed at the client. We made 100 posts
back to back and measure the average energy consumed.

Figure 10 compares TCM and Twitsper based on the energy
consumed on a phone. The figure shows the energy consumption
per day on an Android phone, for an average Twitter user who sends
10 messages per day and has 200 followers [9]. Our experiments
suggest that the best implementation depends on the fraction of a

Interface Twitsper Other
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Figure 9: Total energy con-
sumption (mJ)
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user’s messages that are private (denoted by f ) and the typical size
of a list to which private messages are posted. The energy con-
sumption with Twitsper is significantly greater than that with
the TCM client when f is large or the group sizes are big. How-
ever, since we expect private postings to constitute a small frac-
tion of all information sharing and that such communication will
typically be restricted to small groups, energy consumption over-
head with Twitsper is minimal. Even in the scenarios where
client-side energy consumption increases, the energy consumed is
still within reason, e.g., the energy consumed per client across var-
ious scenarios is within the range of 1.9 J to 2.5 J, which is less
than 0.005% of the energy capacity of typical batteries (10 KJ,
as shown in [12]). Further, as we show next, the majority of the
energy consumed in practice is by the user’s interaction with the
phone’s display, whereas the energy we consider here is only that
required to simply send messages, and does not include displaying
and drawing graphics on the screen.

Comparison with another popular Twitter client: We next
compare the power consumption of Twitsper with that of a pop-
ular Twitter client (TweetCaster[18]), which supports the default
privacy options on Twitter. We begin the test after both clients
had been initialized and had run for 15 seconds. We then send
a message from each of the clients and refresh the home screen;
there was at least one update to the home screen. As seen from
the traces of the power consumed in Figure 8, Twitsper’s power
consumption is comparable. This shows that Twitsper only im-
poses energy requirements on the mobile device that are compara-
ble to other Twitter clients. We observe that there is no noticeable
loss in performance since both clients were made to carry out the
same tasks functionally.

In the above test, even though the screen was kept on for as lit-
tle a time as possible (less than 10% of the total time) the LCD
accounted for close to 50% of the aggregate energy consumed, as
seen from Figure 9. Referring the reader back to Figure 10, we see
that as the group size increases there is only a marginal increase in
the energy consumption associated with the sending of messages.
Even if 25% of the messages are whispers and the average group
size is 32 (which we believe is quite large), the energy consumed
only increases from 1.92 J (for a single tweet) to 2.05 J—an in-
crease of less than 15%; given that the LCD power consumption
dominates, this is not a significant energy cost.



9. CONCLUSIONS
Today, for users locked in to hugely popular OSNs, the primary

hope for improved privacy controls is to coerce OSN providers via
the media or via organizations such as EFF and FTC. In this paper,
to achieve privacy without explicit OSN support, we design and
implement Twitsper to enable fine-grained private group mes-
saging on Twitter, while ensuring that Twitter’s commercial inter-
ests are preserved. By building Twitsper as a wrapper around
Twitter, we show that it is possible to offer better privacy controls
on existing OSNs without waiting for the OSN provider to do so.

Next, we plan to implement fine-grained privacy controls on
other OSNs such as Facebook and Google+ as well, using a sim-
ilar approach of building on the API exported by the OSN. Given
the warm feedback received by Twitsper, we hope that the adop-
tion of Twitsper and its follow-ons for other OSNs will persuade
OSN providers themselves to offer fine-grained privacy controls to
their users.
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