
iPlane: Measurements and Query Interface

Harsha V. Madhyastha Thomas Anderson Arvind Krishnamurthy Arun Venkataramani

June 18, 2007

In this document, we describe the application interface to iPlane, an information plane that continuously performs measure-
ments to generate and maintain an annotated map of the Internet with a rich set of link and router attributes. As outlined in [1],
applications can interface with iPlane in the following manner:

• Applications can query and obtain any of the measurements that were collected by iPlane.

• iPlane’s measurements are limited to those discovered using probes from its vantage points. However, applications might
desire path properties between arbitary end-hosts. Hence, iPlane exports a query interface through which applications can
request predictions of path properties between arbitrary end-hosts.

• Applications can choose to upload to iPlane a few (typically 10) traceroutes outgoing from their clients. The traceroutes
from a client help iPlane capture the routing diversity near that client for better predicting the performance of paths from
it. While this information improves prediction accuracy, iPlane can also operate without having this information.

iPlane maintains a database-like view of path properties between pairs of end-hosts. For every source-destination pair, there
exists a row in the view with iPlane’s predicted path between these hosts and the predicted performance of the path. Any query
to iPlane involves an SQL-like query on this view – selecting some rows and columns, joining the view with itself, sorting rows
based on values in certain columns, and so on.

We provide tools that applications can use for interacting with iPlane. We also make the source code for all our tools publicly
available. In subsequent sections, we describe the tools we provide for uploading traceroutes and for issuing queries to iPlane.

1 Uploading Traceroutes
We provide a Java class called iPlaneTracerouteUploader, which can be executed on clients to perform a small number of
traceroute probes and upload the measurements to the iPlane server.

The usage of this class file is as follows:

java iPlaneTracerouteUploader <server> [--trc cmd <traceroute command>] [dest 1] . . . [dest n]

iPlaneTracerouteUploader determines the operating system running on the client on which it is executed. It uses this in-
formation to determine the appropriate command to use for issuing traceroutes—tracert on Windows, and traceroute
on Linux and Mac OS X. Users can override the default traceroute command by specifying an alternate one with the trc cmd
command-line argument. The set of destinations to which traceroutes should be issued can also be provided as command-line
arguments. If no destinations are provided as arguments, iPlaneTracerouteUploader issues a HTTP GET request to a standard
webserver. This webserver, currently hosted on iplane.cs.washington.edu, returns a set of 10 destinations in randomly chosen
BGP prefixes. Traceroutes are then issued; each traceroute is terminated once three successive unresponsive hops are encoun-
tered. Finally, the output from these traceroutes is uploaded to a iPlane server, specified by the server argument, on port 7820.
An iPlane server is currently running on iplane.cs.washington.edu.

2 Issuing Queries
Applications can query iPlane for path properties between arbitrary end-hosts. If the requested path has been measured by iPlane,
it returns the measured properties for the path, else it uses its available measurements to predict the path properties. Every iPlane
server exports an SQL-like view of its predictions by means of a SUN RPC and XMLRPC interfaces.

1

2.1 SUN RPC interface
Client applications can issue queries on the exported view of performance predictions by uploading Ruby scripts through an RPC
interface. This can be done using the tool query iplane client described later. The uploaded script can issue multiple queries
to iPlane, thus providing performance improvements when compared to the direct approach of issuing each query as a separate
RPC.

The uploaded Ruby scripts should contain the statement require ’iplane’ to link with iPlane’s library. The library
implements two classes—IPlane and IPlaneResponse. The IPlane class exports the following methods in order to enable batched
execution of queries:

• addPath(src, dst)
IPlane maintains a queue of paths for which predictions need to be made. A call to addPath adds the path from src to
dst to this queue and immediately returns. src and dst need to be IP addresses; DNS names do not work in the current
implementation.

• queryPendingPaths
When a call to queryPendingPaths is made, iPlane’s prediction engine is invoked to predict the path properties along
the set of paths currently in IPlane’s queue. This call blocks until predictions for all enqueued paths have been determined.
An array of type IPlaneResponse is returned, with one element in the array for each predicted path.

The member variables of the class IPlaneResponse are src, dst, path, cluster path, as path, meas or pred, latency and loss.
These correspond to the source and destination, arrays containing the router interface level hops, cluster level hops, and AS level
hops along the path between these hosts, a flag that is set to false if this path exists in the measured atlas or to true if the path had
to be predicted, and the end-to-end latency and loss rate on this path.

Below is an example script that takes as input a client and a set of replicas. The script determines the replica closest, in terms
of latency, to the client.

#!/usr/bin/ruby

require ’iplane’

client = ARGV[0]
replicas = Array.new
(1..ARGV.length-1).each { |i|

replicas.push(ARGV[i])
}

iplane = IPlane.new
replicas.each{ |r|

iplane.addPath(client, r)
}
responses = iplane.queryPendingPaths

min_lat = 3000 #3 seconds
best_replica = ""
responses.each{ |r|

if (r.latency < min_lat)
min_lat = r.latency
best_replica = r.dst

end
}
puts "#{best_replica}"

Queries are issued via an RPC interface. The server end of this interface currently runs on iplane.cs.washington.edu. We
provide a tool called query iplane client that applications can use to issue queries 1. Versions of query iplane client that run on
Linux, Mac OS X, and Windows are provided. The usage of this tool is as follows:

1An as yet unimplemented feature is that clients can issue queries to a standard name, which resolves to the PlanetLab node closest to the client.

2

./query iplane client <server host> <script invoke type> <script filename> [argument list]

The server host command-line argument is the hostname or IP address of the node to which the query is to be issued
(currently, iplane.cs.washington.edu). The script invoke type argument specifies how the script that executes the query
is provided as input. A value of 1 corresponds to a call-by-value invocation; the script is read in from the filename specified
by the script filename argument. In addition, iPlane hosts a standard set of scripts (whose filenames will be published),
for scenarios such as predicting the path and path properties between a source-destination pair, predicting the best set of peers
for each host among a set of hosts, predicting the best replica to serve a given client among a set of hosts, and so on. While
using such predefined scripts, the script filename argument can also refer to any of these scripts by name, by using a value
of 2 for the script invoke type argument. argument list is an optional string argument that will be provided as the
command-line argument to the script, when executed by iPlane. Multiple arguments can be provided to the script by making
argument list a space-separated concatenation of all the arguments enclosed within single-quotes.

2.2 XMLRPC interface
iPlane’s query server also exports an XMLRPC interface, to which clients can issue queries. The XMLRPC interface exports a
single method iplane.query. To enable batching of queries, this method accepts as its argument an array of paths. Each path is
represented by a structure with two named members src and dst, which map to the source and destination IP addresses in string
format. The iplane.query method returns an array of structures as its response, where each structure in the array contains iPlane’s
predictions for one of the paths in the input argument. Each structure in the returned array has the following named members:

• src and dst are strings that map to the source and destination IP addresses.

• as path and cluster path are arrays of integers containing the AS level and cluster level hops on the path.

• path is an array of strings containing IP addresses of the router interface level hops on the path.

• meas or pred is an integer set to 0 if this path exists in the measured atlas, or to 1 if the path had to be predicted.

• latency is an integer value set to the end-to-end latency.

• loss is a double value set to the end-to-end loss rate.

The server end of this interface currently runs on tito.cs.washington.edu. Further details on how to issue queries to the XMLRPC
interface are available upon request.

References
[1] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and A. Venkataramani. iPlane: An

information plane for distributed services. In Proc. of the Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

3

