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1 Introduction

Software industry can use a good specification language. This specification lan-
guage should be executable, and so ASMs become relevant. The language should
allow one to integrate specifications with existing technologies. To meet this
need, our group in Microsoft Research builds a powerful extension of the orig-
inal ASMs. We call it ASML (for “ASM Language”). ASML has a rich type
system, is object oriented, and is being integrated with Microsoft programming
environment. Here we are not concerned with the precise syntax of ASML. We
view the original ASMs as mathematical objects and we extend the theory of
original ASMs to provide a solid semantic foundation for ASML. The explicitly
distributed version of ASML is yet to be implemented; accordingly we deal only
with sequential-time computing in this paper.

2 Extension Layers

Our starting point is the ASM model of the Michigan guide [2]. We extend
that model with rich background structure (of the kind introduced in [1]) which
includes (finite) maps. Then we introduce creation of new elements together with
initialization. This allows us to introduce classes and objects in a natural and
easy way. After that we merge expressions and rules into one syntactic category:
rule expressions, or rexes. A rex may return a value and may produce updates.
Finally we introduce exception handling and subASMs. We do not introduce
typing; it is not needed for semantical purposes.

3 Maps

Maps are convenient. They allow us to view dynamic functions as elements
(namely maps) and therefore treat finite dynamic functions of positive arity
as nullary. This convenience comes at a price. Consider a map µ whose range
contains a map µ(a) whose range contains a map µ(a)(b), and so on. This cannot
go forever because µ is finite, but it can go for a while. Now imagine that you
want to update µ at a, and update µ(a) at b, and so on, all in the same time. This
poses a challenging update-consistency problem which is solved in the paper.



We illustrate the difficulties with an example. It is useful to depict a map µ as
a (finite) tree with an immediate subtree that is a depiction of µ(x) for each
element x in the domain of µ. Let f be a dynamic function whose value is the
map {1 7→ a, 2 7→ {3 7→ b}}, f can be depicted as
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Suppose that we wish to update f(2) to the map {5 7→ c}, by firing the rule

f(2) := {5 7→ c}. (1)

Moreover, suppose that we wish to update f(2)(3) to d. To this end we may use
the rule

f(2)(3) := d. (2)

If both rules are fired in parallel then the resulting update is clearly contradictory,
because, according to the first rule the value of f(2) in the sequel of the given
state is the map {5 7→ c} and thus the value of f(2)(3) undefined, and according
to the second rule, the value of f(2)(3) in the same state is d.

If we instead of firing the rule (1) fire the rule

f(2)(5) := c (3)

in parallel with the rule (2) then the resulting update set is consistent and the
value of f in the sequel of the given state is, as expected, the map
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3.1 Update Inconsistency as an Exception

The rich world of maps allows us to represent updates as values for expressions
involving appropriate map operations. Those operations check that their argu-
ments are compatible and if not yield an exception indicating inconsistency. As
a result, the exception handling mechanism can treat update inconsistency as
just another exception.



3.2 The Initialization Problem

You want to import a new element from the reserve and at the same time
initialize certain dynamic functions at the new element. But you don’t want to
have a special initialization step, and of course you don’t want to change the
state in the middle of a step. What can you do? The solution is facilitated by
the background structure. We explain the solution on a simple example. Suppose
that you want to import a new element x and set color(x) to white. Let p be
the ordered pair of elements (denoted by) color and white. The pair 〈x, p〉
exists in the background structure. Put it into a special depository. Consult the
depository whenever you need the attribute color of x.

4 A Pleasant Surprise

It turns out that ASMs, enriched with background and initialization depository,
fit nicely to deal with classes and objects; compare this with [3]. Indeed what
is a class C? First of all, the name C is a nullary dynamic function. In a legal
state, the interpretation of C is a set of atoms (in the sense of the underlying
background structure) which is typically empty in the beginning of the compu-
tation. The objects (or instances) of C are elements of that set. An instance field
F of a class C has an implicit argument in addition to the explicit parameters
that it can have; this implicit argument is an instance of C. A method M of C

is a named rule with a similar implicit argument.
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