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o Introduction

A randomized decision problem is a decision problem together

with a probability function on the instances. Leonid Levin

[Lev1] generalized the NP completeness theory to the case of

properly defined randomized NP (shortly, RNP) problems and

proved the completeness of a randomized version of the

bounded tiling problem with respect to (appropriately general

ized) Ptime reductions. Levin's proof naturally splits into two

parts; a randomized version of the bounded halting problem is

proved complete and then reduced to Randomized Tiling.

David Johnson [Jo] provided some intuition behind Levin's

definitions and proofs, and challenged readers to find

additional natural complete RNP problems.

A randomized version of the bounded Post Correspondence

Problem and some othere Ptime complete RNP problems are

presented in Section 3 of this paper. A natural complete

(though not Ptime complete) RNP problem (Randomized

Graph Coloring) was recently found by Venkatesan

Ramarathnam and his advisor Leonid Levin [Lev2]. We do

not know any other announcements of complete RNP

problems.

A partial explanation of the difficulty in finding natural Ptime

complete RNP problems is given in Section 4. Assuming

NEXPtime :1: DEXPtime, we prove there the incompleteness

of any so-called flat RNP problem with respect to Ptime or

even expected Ptime reductions. The natural randomizations

of usual NP complete problems very often are flat. For

example, consider any RNP graph problem where the

conditional probability ~{G IG has n vertices} is determined
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by some edge probability function e(n); if there is a positive

c < 2 such that 'n-2+c < e(n) < 1 - n-2+c for sufficiently big n

then the problem is flat.

It is important to stress that flat RNP problem are not

necessarily easy on average. Randomized Graph Coloring

mentioned above and some versions of Randomized Halting

and Randomized Tiling are flat but complete for RNP with

respect to randomizing (coin-flipping) Ptime reductions

introduced and advocated by Levin [Lev2]. If such a problem

is decidable in expected Ptime then every RNP problem is

decided in expected Ptime by some coin-flipping algorithm.

One possible implication of the incompleteness theorem is an

increased role of randomizing algorithms in the field of RNP

problems.

The sections of this paper not mentioned above are as follows.

Section 1 contains basic definitions of the RNP theory, a

simplified proof of the Ptime completeness of Randomized

Halting is given in Section 2, and in Section 5 we prove the

completeness of any RNP companion of any NEXPtime

complete decision problem for the class of sparse RNP

problems with respect to expected Ptime reductions.

1 Randomized NP Problems

Definition 1.1. A randomized decision problem is a pair

(D,J..!) where D is a decision problem and ~ is a probability

function on the instances of D.

It is supposed that, in principle, the set of instances of any

decision problem D is the set A* of strings in some ordered

alphabet A. The set of yes-instances of D is the language L(D)

of D. A-strings themselves are ordered too: first by length

and then lexicographically. The successor of a string x is



denoted x+• The letter A is reserved to denote ordered

alphabets. The binary alphabet {O,I} is taken to be ordered in

the natural way.

A probability function Jl on a nonempty finite or infinite

countable set X assigns probabilities to elements of X; Jl is

positive if every value of Jl is positive. If Jl is a probability

function on some A* then Jl*(x) = Ly<x Jly is the

corresponding probability distribution.

Convention. On any nonempty finite set, the uniform

probability function is standard. On positive (resp.

nonnegative) integers, the standard probability of a number n

is proportional to n-2 (resp. (n+lr2). On any A*, the

standard probability of a string w of length n is proportional to

(n+l)-2 * lAID. Choosing randomly means choosing with

respect to the standard function.

Definition 1.2. Let Jl be a probability function on some A*.

(a) A function T from A* to nonnegative reals is

polynomial sm~ with respect to Il if there is a positive

integer k such that the expectation L Jlx * [(Tx)l/k I Ixl]

converges.

(b) A function f from A* to strings in some alphabet is

~ (for 'expected Ptime') computable with respect to Jl if

some Turing machine computes f within time which is

polynomial on average wrt Jl. A decision problem over A * is

~ decidable wrt Il if its characteristic function is EPtime

computable wrt Jl.

For justification of Definition 1.2(a), see [LevI], [101 or the

full version of this paper. Strictly speaking, the sum should

be restricted to nonempty strings. Notice that

L [Jlx * (Tx)l/k * lxi-I] < 00 if L [JlX * Tx * Ixl-k] < 00,

but the converse is not necessarily true.

Definition 1.3. Let Jll' J.11, be probability functions on some

Al*, ~* respectively, and fbe a function from Al* to ~*.

(a) ~ dominates (or P-dorninates) Jll if Al =~ and there

is a polynomial p such that Jl2x * p(lxl) ~ Jll x, and

Jl2 EP-dQminates Jll if Al = A2 and there is a function p

polynomial on average wrt III such that ~x *p(lxl) ~ Jllx.

(b) f transforms Jll into~ if ~y =L fx-y Jllx.
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(c) f~ (or P-reduces) Jll to~ if some Jl dominates

Jll and is f-transformed into Jl2. f EP-reduces Jll to Jl2 if

some Jl EP-dominates III and is f-transformed into ~.

(d) f~ (resp.~~ a randomized decision

problem (Dl,Jll) to a randomized decision problem (D2,Jl2) if
it reduces Dl to D2, P-reduces (resp. EP-reduces) III to~,

and is Ptime computable (resp. EPtime computable wrt Jll).

Lemma 1.1. (a) f P-~ (resp. EP-reduces) III to Jl2

if Jl2 P-dominates (resp. EP-dominates) the result of the

f-transformation of Jll.

(b) Ptime (resp. EPtime) reductions are closed under

composition.

Definition 1.4. A function f from some A* to reals is~

computable if there exis~ a Ptime Turing machine which,

given an A-string ·xand the unary notation for a natural

number k, computes the binary notation for an integer i with

Ifx - i/2kl < Il2k.

Definition 1.5. A randomized decision. problem (O,Il) is

Mf. (for 'Randolllized NP') if D is NP and the probability

distribution J..L* is-Ptime computable.

The responsibility for Definition 1.4 lies entirely with us;

cf. [Ko]. Levin had in mind -probability functions with

rational values [Lev2].

Lemma 1.2. Every RNP problem Ptime reduces to some

RNP problem over the binary alphabet.

Proof. If the alphabet A of the given problem contains at

l~ast two letters then the desired reduction assigns the n-th

binary string to the n-th A-string. Q.E.D.

Lemma 1.3. On binary strings, every probability function J.l

with Ptime computable J.l * is dominated by a positive
probability function J.11 with Ptime computable J..Ll* such that

every value of Jll is a (finite) binary fraction.

Proof. Let x andy be binary-strings and dx = 1/221xl. With

out loss of generality, every J.1*x < 1. Since Jl* is Ptime com

putable, some Ptime computable function N assigns a binary

fraction Nx =O.y to each binary string x in such a way that

IYI S; 21xl and IJl*x - Nxl < dx. Let e be the empty string.
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4Jl1x = Nx+ - Nx + 2dx if x ':# e, and 4J.1tC = Ne+ + 1. (3) If ·2-lxl > Jlx or x' ':# w then loop.

Then 4Jl1x = Nx+ - Nx + 2dx > (JJ.*x+ - dx) - (J.1*x + dx) +

2dx = J.1x if x;lf: e, and 4J.11e> Jl*e+ - de+ + 1 > J.1e,

4Jll*x = 1 + Nx + ~<y<x 2dy if x :1= e, and

limlxl__>oo 4J.11*x =1+ 1 +2~11/2-n =4. Q.E.D.

(4) Simulate the D-machine on x.

There exist a polynomial q such that M has a halting computa

tion on x" with at most q~lxl) steps if and only if M has a halt

ingcomputation on x" if and only if x is in L(D). The desired

reduction is fx = x"OIq(lxl). The probability function of

RH(M) dominates the result of 'f-transformation of Jl:

2 Randomized Halting (1t2/3) * Ifxl3 * Prob(fx) > 2*2-lx"l > JlX. Q.E.D.

Question: Is there a halting computation of M on w with

at most n steps ?

Randomized Halting Problem RH(M) for a non-deter

ministic Turing machine M with binary input alphabet is

defined as follows.

Probability: (6/1t2) * n-3 * 2-k where k= Iwl.

(Randomly choose n; randomly choose k < n;

randomly choose a string w of length k.)

Randomized Halting Problem:

An NTM M with binary input alphabet and an

instance wOlD ofRH(M).

Instance:

Question: Is there a halting computation of M on w with

at most n steps?

Probability: Choose M with respect to your favorite positive

Ptime computable probability distribution, and

then choose an instance ofRH(M) as above.

A binary string wOlD with n > Iwl.Instance:

Corollaries.
Theorem 2.1. For every RNP problem (D,Jl) there is an

NTM M with binary input alphabet such that (D,Jl) Ptime

reduces to RH(M).

Proof. By virtue of Lemmas 1.2 and 1.3, we may suppose

that the alphabet ofD is {O,I} and every value of Jl is a binary

fraction. Since D is NP, there exist an NTM, called the

D-machine below, and a polynomial p such that a binary

string x is in L(D) if and only if the D-machine has a halting

(1) Randomized Halting is Ptime complete for RNP.

(2) There is an NTM M with binary input alphabet such

that RH(M) is Ptime complete for RNP.

3 Randomized Post Correspondence Problem et aI.

The bounded PCP is NP complete [CHS]. We define

computation on x if and only if the D-machine has a halting

computation on x with at most P(lxl) steps.
Randomized Post Correspondence Problem (RPCP):

Let x' be the shortest binary string with Jl*x < O.x'i S Jl*(x+).

Then O.x'i - 2- lx'll S Jl*x S Jl*(x+) < O.x'i + 2-lx'll, and

therefore 2*2-lx'll > Jlx. Set x" = [if 2-lx1 > J.1x then Ox, else

Ix']. Then 2*2-lx"l > Jlx.

Given a binary bit b followed by a string w, the desired NTM

M does the following:

Instance:

Question:

A nonempty list (uh VI), ... , (Uk, Vk) of pairs

of binary strings, and the unary notation for a

positive integer n.

Are there m S n and a function

F:· {O, ... , m} ==> {I, , k}

with upO ... uPm =vpO vPm ?

(1) Ifb = othen

, if 2-lw1 S Jlw then loop else set x = w and go to (4).

Probability: Randomly choose k and n; then randomly (and

independently) choose 2k binary strings.

(2) Find the unique x with Jl*x < O.wI S Jl*(x+). Theorem 3.1. RPCP is Ptime complete for RNP.
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Corollary. The following. RANDOMIZED PALINDROME

PROBLEM is Ptime complete for RNP :

4 Incompleteness

Instance:

Question:

A context-free grammar with productions
S --> u1Sv11 ... 1ukSVtl e,

and the unary notation for a positive integer n.
(u., v. are binary strings; e is the empty string.)

1 1

Is it possible to derive a nonempty palindrome

in at most n steps ?

Definition 4.1. A probability function J.I. on strings in some
alphabet is fia1 if there exists a positive real c such that
I.1x S 2**-lxlc, i.e. -log2J.1x ~ Ixlc, for all sufficiently long x.

A randomized decision problem (0,1.1) is .tlit if Il is.

The intuition behind the definition is that all values of a flat

probability function are small; none of them juts out.

Probability: Randomly choose k and n; then randomly (and

independently) choose 2k binary strings.

Theorem 3.2. The following problems are Ptime complete

for RNP.

(a) A RANDOMIZED VERSION OF SATISFIABILITY IN

FINITE ARI1HMETIC (Gurevich and Shelah):

Instance: A formula F(P) in the fU'St-order language of

arithmetic augmented with the unary predicate

symbol P, the unary notation for a positive

integer n~ a positive integer k :s; n, and a unary

relation Ron {O, ..., k-l}.

Question: Is there an extension R' of R to {O, ..., n-l}

such that F(R') holds in the arithmetic modulo

n1

Probability: Choose F(P) with respect to your favorite

positive Ptime computable probability distri

bution, randomly choose n, randomly choose

k, randomly choose R.

(b) A RANDOMIZED VERSION OF SATISFIABILITY OF

FIRST-ORDER FORMULAS:

Instance: A fIrSt-order sentence F(P), the unary notation

for a positive integer n, a positive integer k S n,

and a unary relation R on {O, ..., k-l}.

Question: Is there a model for F(P) on {O, ..., n-l} with

the interpretation ofP extending R ?

Probability: Similar to that in (a).

Remark. Utilizing the undecidability proofs for different
fragments of first-order logic, one can put severe restrictions

on the sentence F(P) in (b).
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In this section the term "exponential" and its relatives are used

in the broader sense. A function T from some A* to non

negative reals is eXPQnentia!if there is a polynomial p with
T(x) :s; 2P(lxl). A decision problem 0 is pEXPtirne (resp.

NEXPtirne) decidable if there is an exponential-time determin

istic (resp. nondeterministic) Turing machine that recognizes
L(D).

Theorem 4.1. Let (O,Il) be a flat randomized decision

problem such that 0 is DEXPtime (e.g. NP). If (0,1.1) is

EPtime hard for RNP then NEXPtime = DEXPtime.

Proof. We assume that (0,1.1) is EPtime hard for RNP and
show that an arbitrary NEXPtime decision problem Do is

DEXPtime decidable. Without loss of generality, the alphabet
of Do is {O,I}.

Fix a polynomial p such that some 2P-time-bounded NTM
recognizes L(Do). Let x range over nonempty binary strings,

n = Ixl and x' be the string xO followed by 2P(D) occurrences of
1.. Consider a randomized decision problem (01'1.11) where

L(DI) ={x': x belong to L(Do) and 1.11x' =(6/1t2) * n-2 * 2-D
•

(01,1.11) is RNP; hence there is an EPtime reduction f of

(D1,Ill) to (O,J,1). -This gives the following decision algorithm

for nonempty instances x of DO: compute y =fx', and then

check whether y belongs to L(D). We prove the decision

algorithm to be EXPtime.

Firstly, we show that y is computable from x in time

exponential in n. It suffices to show that Y is computable from

x' in time exponential in n. Since f is EPtime computable wrt

J,11' one can compute y from x' within time T(x') polynomial

on average wrt 1.11. We have

L [l.1lx' * (Tx,)lIi * Ix'r1] S a < 00 for some i and a.



Secondly, we show that the question whether y belongs to

L(D) is decidable in time exponential in n. Let m =IYI. Since

D is DEXPtime, it suffices to show that m is bounded by a

polynomial of n. Since 1.1 is flat, it suffices to show that
-log2J.1Y is bounded by a polynomial ofn.

Since f EP-reduces 1.11 to 1.1, there is a probability distribution

fl2 which EP-dominates J.Ll and is f-transformed into fl.

Hence, IlY ~ ~x' and there is a function p(x'), polynomial on

average wrt Ill' such that fl2 x' * p(x') ~ 1.1 1x'. Thus,

fly ~ (px'r1 * J.11 x' and -log2llY S log2(px') - log2J.1 1x'.

Since -log2J.Llx' is bounded by a polynomial ofn, it remains

to prove that log2(px') is bounded by a polynomial of n.

But P is polynomial on average wrt 1.11; hence there are j and b

such that L (px,)l/j * Ix'l- l * III x' = b < 00. Then

(px,)lIj * Ix'r l * Illx' < band (l/j) * log2(Px') is bounded by

log2b + log2lx'l-Iog21l1x' which is bounded by a polynomial

ofn. Q.E.D.

Examples. (1) Let M be an NTM M with binary input al

phabet and i be a positive integer. The restriction of the ran

domized halting problem for M to inputs w01n with Iwl ~ n lli

is flat

(2) Let i be a positive integer. The restriction of

Randomized Tiling Problem [LevI] to inputs where the length

of the given portion of the frrst row is at least the i-th root of

the row length, is flat.

(3) Let J.1 be any probability function on graphs such that

the conditional probability Il{G I G has n vertices} is

detennined by some edge probability function e(n) :

Jl{G IG has n vertices} = [e(n)]m * [1 - e(n)]n(n-l)/2 - m

where m is the number of edges of G. If there is a positive

real c < 2 with n-2+c < e(n) < 1 - n-2+c for each sufficiently

big n then Il is flat.

Corollary. Let Il be any probability function on graphs such

that the conditional probability Il{G I G has n vertices} is

determined by some edge probability function e(n).

The Il-randomization of Hamiltonian Path Problem is not

EPtime complete for RNP unless NEXPtime = DEXPtime.
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Flat RNP problems are not necessarily easy on average.

Contrast the first two examples with the following easy

modifications of Ptime completeness results discussed earlier.

Theorem 4.2. (a) There is an NTM M with binary input

alphabet such that the restriction of RH(M) to inputs wO1n

with n = Iwl+1 is complete for RNP with respect to RPtime

(randomizing Ptime) reductions.

(b) The restriction ofRandomized Tiling Problem to inputs

where the given portion of the first row is the whole row, is

RPtime complete for RNP.

5 Sparse problems

Definition 5.1. A probability function J.1 on strings in some

alphabet is~ if there is a polynomial p with I{x: J.1X > 0

and Ixl = n}1 < pen). A randomized decision problem (O,Il) is

mm:& if J.1 is sparse.

If the definition is tightened by requiring D to be sparse as

well, Theorem 5.1 below will remain true.

In this section, the term 'exponential' and its relatives are used

in the narrow sense. A function T from some A* to nonnega

tive reals is exponential if there is a constant c with T(x) S c1x1•

A function f is Exptime computable if some exponential-time

Turing machine computes f. A decision problem D is

NEXPtime if some exponential-time NTM recognizes L(D). A

NEXPtime decision problem D EXPtime~ [Lew] to a

NEXPtime decision problem E if there exist a constant c and

an exponential-time computable function f such that x belongs

to L(D) if and only if fx belongs to L(E), and Ifxl S clxl.

Definition 5.2. Let D be a NEXPtime decision problem

over strings in an m-Ietter alphabet. An exponential function

gn = cn with an integer c > 1 is a~ for D if some g-time

bounded NTM accepts L(D). The RNP companion ofD wrt a

guard g is the randomized decision problem (E,J.!) such that

L(E) = {w01glwl: w belongs to L(D)} and

J.!(w01glwl) = (6/i2) * (Iwl + 1r2 * m-1w1•

The companion is a sparse RNP problem. The requirement

that c is integer can be relaxed of course.



Lemma 5.1. (a) Suppose that (Dl' J,11) is an RNP

companion of some NEXPtime decision problem, and F is a
function from some A* to {y: J,11Y~ OJ. Then F P-reduces

any probability function J,1 on A* to J,11.

(b) H a NEXPtime decision problem D 1 EXPtime reduces

to a NEXPtime decision problem D2 then any RNP com 

panion of D1 Ptime reduces to any RNP companion ofD2.

Proof. (a) There is a polynomial p such that if J.11Y ~ 0

then p(lyl) * J.11Y > 1.

(b) Let c and f witness the EXPtime reducibility, and
(Ej,J,lj) be an RNP companion of Dr Let x be an instance of

DI' x' be the corresponding instance of E1, y = fx, and y' be

the corresponding instance of E2. The function F(x') = y'

reduces E 1 to E2. By (a), F reduces J,ll to J.12. F(x') is

computable in time exponential in Ixl + Iyl. Since Iyl S clxl, Fx'

is computable in time exponential in lxi, hence in time

polynomial in Ix'i. Q.E.D.

simulates M on bu.· There is a polynomial q such that ifx is a

binary string of some length n and v is a string of 1's of length
log2q(n) then x belongs to L(D) ifand only if there is a halting

computation of M1 on x"Ov if and only if there is a halting

computation of M 1 on x"Ov of length at most q(n).

Let F(x) =x"O IioIj where i = 10g2q(lxl) and log~ = Ix"l + 1+

i. We show that F EPtime reduces (D,J.1o) to the RNP com-

panion (Dl,J,ll) of EH(Ml) wrt guard gn = 2n• Fx belongs to

L(D1) if and only if there is a halting computation of M
1

on

x"01i of length at most j .if and only if there is a halting
computation of M 1on X"Oll of length at most qlxl if and only

if x belongs to L(D). Thus, F reduces D to D
1
. By Lemma

5.1(a), F reduces J,lo to Jl1.

To show that F is EPtime computable, it suffices to check that
the function q(lxl) *21x"l is polynomial on average wrt J,lo.

if

(by the remark after Defmition 1.2)

Theorem 5.1. Let E be any decision problem EXPtime

complete for NEXPtime. Any RNP companion of E is EPtime

complete for the class of sparse RNP problems.

Proof. For every NTM M with binary input alphabet, define

the exponential h.a11ini problem EH(M) for M as follows:

L [J.1ox *q(lxf) * 2'x"l * Ixrk] < co

L {[flaX * q(lxl) * 21x"l * Ixrk]: J.1ox > O} < co

(since 4J.lX > J.10x)

L {[J.1x * q(lxl) * 21x"l * Ixrk]: Jlox > O} < co

if

if

if

Instance:

Question:

A binary string w.

Is there a halting computation of M on w with

at most 21wl steps ?

(since 2*2-lx"l > J.1x)

L {[q(lxl) * Ixrk]: fl<f > O} < 00.

It suffices to prove that for every sparse RNP problem (D,J,lo)

there is some NTM M 1 with binary input alphabet such that

(D,J,lO> EPtime reduces to an RNP companion of EH(M1).

For, by Lemma. 5.1, this companion of EH(M1) EPtime

reduces to the designated companion Eo of E, and therefore

(D,Ilo) EPtime reduces to Eo.

Without loss of generality, instances of D are binary strings.

By the proof of Lemma 1.3, there is a probability function J,l

with Ptime computable J.1* such that values of J.1 are binary
fractions and 4J.1x > J.1ox. The rest of the proof is similar to

that of Theorem 2.1. Let the D-machine, x" and M be as in the

proof of Theorem 2.1. Given an input buOv, where b is a
binary bit and v is a string of 1's, the desired machine M 1
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But the last inequality is true for sufficiently large k depending

on q and the polynomial witnessing that J.1o is sparse. Q.E.D.

Some NEXPtime complete problems can be found in [KV]

and [Lew].
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