
Annals of Pure and Applied Logic 32 (1986) 265-280
North-Holland

265

FIXED-POINT EXTENSIONS OF FIRST-ORDER LOGIC

Yuri GUREVICH*
Electrical Engineering and Computer Science Department, The University of Michigan, Ann
Arbor, All 48109-1109, USA

Saharon SHELAHt
Institute of Mathematics and Computer Science, The Hebrew University, 91904 Jerusalem,
Israel, and EECS Department and Mathematics Department, The University of Michigan, Ann
Arbor, MI 48109, USA

Communicated by A. Nerode
Received 28 May 1985

We prove that the three extensions of first-order logic by means of positive inductions,
monotone inductions, and so-called non-monotone (in our terminology, inflationary) induc-
tions respectively, all have the same expressive power in the case of finite structures.

0. Introduction

In 1979 Aho and Ullman [3] noted that the relational calculus is unable to
express the transitive closure of a given relation, and suggested extending the
relational calculus by adding the least fixed-point operator. The relational calculus
[25] is a standard relational query language; from the point of view of expressive
power, the relational calculus is exactly first-order logic. Aho and Ullman's paper
triggered an extensive study of the expressive power of fixed-point extensions of
first-order logic [5, 15, 26, 17, 9, 4, etc.] with emphasis on finite structures.

There are two fields where fixed-point extension of first-order logic were
extensively studied earlier. One is the theory of inductive definitions [1, 10, 13,
19, 20, 22, 24, etc]. The other is semantics of programming languages where a
fixed-point extension of first-order logic is known as first-order/t-calculus [7, 14,
21, 23, etc]. But neither of the two fields put finite structures into the center of
attention.

Proviso. All structures are finite unless the contrary is said explicitly.

Let us explain how fixed-point operators arise in the frame of first-order logic.
A first-order formula qg(P, x) with a distinguished predicate variable P and a

* Partially supported by NSF grants MCS 83-01022 and DCR 85-03275.
• t Partially supported by NSF grant MCS 81-01560.

016~-(X1721R61.~3_~fl ~ IC~6_ l~.l~w.~wr .~r ipnee P 1 1 h l i ~ h ~ R V (N n r t h H n l l ~ n r l ~

266 Y. Gurevich, S. Shelah

distinguished sequence x of free individual variables yields an operator F(P)=
{x:qg(P, x)}. The formula q9 may have additional free individual variables; they
are viewed as parameters. If the arity of P equals the length of x, then the
operator F can be applied repetitively. If this operator is monotone, then it has a
least (with respect to the inclusion relation) fixed point LFP(F) which is the union
of the predicates I~, F(I~), F(F(~J)), etc., see Section 1.

For example, if Edge is a binary predicate constant, P is a binary predicate
variable, and qg(P, x, y) is the formula

Edge(x, y) or 3z [P(x, z) and P(z, y)],

then LPF(F) is the transitive closure of Edge. If f is a binary function symbol, P
is a unary predicate variable and q0(P, x, u, v) is the formula

x=u or x = v or 3y 3z [P(y) and e(z) andx=f(y,z)],

then LFP(F) is the closure of the set {u, v} under the operation f.
This suggests extending first-order logic by the following formation rule: if

tp(P, x) is a well-formed formula, ari ty(P)= length(x) and the operator F(P)=
{x:qg(P,x)} is monotone (on all structures where it is defined), then
LFPp.xtp(P, x) is a well-formed predicate. This extension (let us call it FO +
LFP') does not form a nice logic because recognizing well-formed formulas is
undecidable (whether infinite structures are allowed or not) [9]. Fortunately,
there is a simply recognizable syntactic property which is a sufficient condition for
monotonicity: if a first-order formula q~(P,x) is positive in P, i.e., every
occurrence of P in qg(P, x) is positive, then the operator F(P)= {x:tp(P, x)} is
monotone on every structure where it is defined. Using positively instead of
monotonicity gives the most popular fixed-point extension FO + LFP of first-
order logic, see details in Section 2. Neil Immerman announced [15] that every
FO + LFP formula is equivalent to an FO + LFP formula with only one
application of LFP.

The monotonicity of an operator F (P) = {x:tp(P, x)} ensures that the se-
quence F~(~) increases and the union is a least fixed point of F. Call F inductive if
the sequence F'~(~I) increases. If F is inductive, then U,~ F~(~) is a fixed point of
F that will be called the inductive fixed point IFP(F) of F; the inductive fixed
point may be not a least fixed point of F (an inductive F may have no least fixed
point) but it is very natural from the computational point of view. Call an
operator F inflationary if '¢P [P _~ F(P)]. The inflation property guarantees that F
is inductive. Note that the operator F ' (P) = {x: P(x) or tp(P,x)} is always
inflationary, and if F is monotone, then IFP(F ')= LFP(F). This suggests the
following formation rule: if tp(P, x) is a well-formed formula and arity(P)=
length(x), then IFP~,;x[P(x) or tp(P, x)] is a well-formed predicate. The resulting
extension of first-order logic will be called FO + IFP, see details in Section 2.

Obviously, FO < FO + LFP ~< FO + LFP' ~< FO + IFP by expressive power.
The expressive power of FO + LFP vastly exceeds the expressive power of

Fixed-point extensions of first-order logic 267

first-order logic. On the other hand, every FO + IFP query is computable within
time polynomial in the size of a given structure. In the presence of linear order,
every polynomial time computable relational query is expressible in FO + LFP
[15, 26]; hence in the case of finite structures with linear order, FO + LFP and
FO +IFP have the same expressive power. In general, however, not every
polynomial time computable query is expressible in FO + LFP [5] or even in
FO + IFP [4]. (This general case is important computationally: a query may
depend on the isomorphism types of structures rather than the presentations.)

Main Theorem (see Section 3). For every FO + L F P formula qg(P, x) with
ari ty(P)=length(x) there is an F O + L F P formula cp*(x) that expresses the
inductive fixed point of the inflationary operator e~-* {x: P(x) or qg(P, x)}.

Corollary. FO + LFP, FO + LFP' and FO + IFP have the same expressive power.

Dana Scott has asked whether the proof gives q0*(x) as a formula with a
parameter qg. The answer is yes except the parameter is not tp(P, x) itself but the
formula ~(P, P ' , x) obtained from q0(P, x) by replacing the negative occurrences
of P by the negation of a new predicate variable P ' of the same arity. To make
this answer apparent we have changed the exposition. A stronger theorem is
proved in Section 3 which implies Main Theorem. A related result is proved in
Appendix.

Even though the expressive power of FO + LFP equals that of FO + IFP,
sometimes things are naturally expressible in FO + IFP but not in FO + LFP. For
example, Tim Fernando, a student of Kechris, proved that every polynomial time
recognizable class of finite groups with a fixed number of generators is definable
in FO + IFP.

In connection to the Corollary let us mention Lyndon's Theorem: If qv(P, x) is
first-order and the operator F(P)= {x: qg(P, x)} is monotone on al l --f ini te or
infinite structures where it is defined, then ti0(P, x) is logically equivalent to a
first-order formula qg'(P, x) that is positive in P. (Lyndon's Theorem does not
require ar i ty(P)= length(x).) However, there is no total recursive function that
constructs the desired tp' from the given tp [8, 9, 16] (though Lyndon's proof
provides a partial recursive function for the purpose). In the case of finite
structures Lyndon's Theorem fails [2].

The proof of Main theorem uses finiteness of structures. We did not investigate
the infinite case but on some point we had an impression that the proof of a
weaker version of Main Theorem does not use finiteness; Alekos Kechris and
Phokion Kolaitis caught the error. After seeing a version of this paper Kechris
sent us unpublished manuscripts [11, 12, 13] with related results in the infinite
case. Alekos Kechris and Yiannis Moschovakis informed us that the following
seems to be deducible from those manuscripts: the expressive power of FO + LFP
equals to that of F O + L F P ' on all (necessarily infinite) structures, called

268 Y. Gurevich, S. Shelah

acceptable in [19]; and the expressive power of FO + L F P ' equals to that of
FO + IFP on all (finite or infinite) structures.

We are thankful to Alekos Kechris, Phokian Kolaitis, Yiannis Moschovakis
and Dana Scott.

Added during proof-reading. Meantime the authors made some additional
progress, see Proceedings of the 26th Annual Symposium on Foundation of
Computer Science, IEEE Computer Society Press, 1985, 346-353.

1. The least fixed point and the inductive fixed point

We start with recalling some well known definitions and facts. (The proviso of
Section 0 is not in force in this section.) A partially ordered set A is complete if
every subset of A has a supremum and an infimum in A. It suffices to request the
existence of suprema: the supremum of the set of lower bounds for a set X is the
infirnum of X. In particular, a complete partially ordered set A has the least
element inf (A)= sup(~t) and the greatest element sup(A)= inf(~). Thus the real
line is not complete but the usual extension of the real line by means of + ~ and
-oo is complete.

A function f from a partially ordered set A to a partially ordered set B is
monotone if for all x, y in A, x ~< y implies fx <~fy. Let f be a function from a
partially ordered set A to the same partially ordered set A; an element x of A is a
fixed point of f if fx = x, and a fixed point x of f is a least fixed point of f if for
every fixed point y of f, x ~< y. To indicate that x is the least fixed point of f, we
write x = LFP(f). The following theorem is well known.

Theorem 1. Let A be a complete partial ordered set with a least element A, and let
f : A---~ A. I f f is monotone, then it has a least fixed point.

Proof. By a transfinite induction define f f ' (A) = sup{fa(A): fl < a~}. There is an
ordinal # such that tr < fl <- ~ ---> f~ (A) < fa(A) and /z ~< te--->f~(A) = f" (A) . In
particular, f~(A) is a fixed point of f. Given any fixed point y of f, prove by
induction on a~ that f~(A) <- y. Thus f " (A) = LFP(f). []

Recall that the direct product A x B of partially ordered sets A, B is the direct
product of their universes ordered componentwise: (x, y) ~ (x', y ') ~ [x ~< x' and
y ~< y']. The direct product of complete partially ordered sets A, B is complete:
for every Z c_ A x B,

sup(Z) = (sup{x : :ly ((x, y) e Z)}, (sup{), :=Ix ((x, y) ~ Z})).

In our applications of Theorem 1, a typical complete partially ordered set is the
collection Predr(U) of all predicates of a given arity r on a given nonempty set U
ordered by inclusion. Theorem 1 allows to define new predicates by induction.
The next theorem reduces an induction in Pred / (U)x Predr(U), satisfying a

Fixed-point extensions of first-order logic 269

certain restriction, to an induction in Predt+~(U). To simplify notation, we
identify pairs ((x l , . . . ,Xl), (Y l , . . . , Y~)) with tuples (X l , . . . ,Xl, Y l , . . . , Yr);
this makes Predt(U) x Pred,(U) a subset of Predt+r(U).

Theorem 2. Suppose
U is a nonempty set, and l, r are positive integers,
L: Predt(U) x Predr(U)---> Predt(U) is monotone,
R : Pred/(U) x Predr(U) --> Predr(U) is monotone,
F(X, Y) = (L(X, Y), R(X, Y)) for all X e Predl(U) and Y e Pred,(U),
G :Pred/+~(U) ; Pred/+r(U), and for every Z • Predl+r(U),
G (Z) = L (X , Y) x R (X , Y) where X = { x : 3 y ((x , y) • Z) } , Y = {y:3x

((x, y) • z)) .
Then F and G are monotone and have least fixed points, and if L(~J, O)~ ~J,

R(O, O) ¢ O, and (X*, Y*) is the least fixed point of F, then X* × Y* is the least
fixed point of G.

Proof. Clearly, F and G are monotone. By Theorem 1 they have least fixed
points. Suppose that L(0, 0) :/: 0, R(0, 0) 4: t, and (X*, Y*) is the least fixed point
of F. Since (X*, Y*) is a fixed point of F, we have L(X*, Y *) = X * and
R(X*, Y*) -- Y*. Hence G(X* x Y*) = L(X*, Y*) x R(X*, Y*) = X* x Y*, i.e.,
X* x Y* is a fixed point of F.

It remains to prove that every fixed point Z of G includes X * x Y*. Let
X = {x" 3y ((x, y) • Z)) , Y = {y : 3x ((x, y) • Z)}. Then Z = G(Z) = L(X, Y) x
R(X, Y). Note that L(X, Y) x R (X , Y) is not empty because it includes
L(0, ¢) x R(fl, t) which is not empty. Hence L(X, Y) = {x" 3y ((x, y) • Z)} = X
and R(X, Y) = Sty" ~r ((x, y) • Z)} = Y. Thus (X, Y) is a fixed point of F. Then
(X*, Y*) ~< (X, Y) and X* x Y* __ X x Y = Z. []

Coming back to the proof of Theorem 1, let us note that the elements f~(A)
are defined in the general case when f is not necessarily monotone. If they form
an increasing sequence then their supremum is a fixed point of f.

Definition. Let A be a partially ordered set with a least element A, and let
f :A---> A. By induction on ordinal a~ define f"(A) = sup{ft'(A) :fl < a~}. If the
sequence f"(A) is (non-strictly) increasing, i.e., if tr < fl--->f~(A)<~fa(A), then
the function f is inductive. If f is inductive, then there is # = inf{tr:f'~+l(A)=
f'~(A)} and f~(A) is a fixed point of f ; f~(A) is the inductive fixed point IFP(f)
off.

Definition. Let A be a partially ordered set. A function f:A---> A is inflationary if
fx >1 x for every x e A.

Theorem 3. Let A be an arbitrary complete partially ordered set.

270 Y. Gurevich, S. Shelah

(a) Every inflationary function f rom A to A is inductive.
(b) f f f is an arbitrary function from A to A, then the function f ' = sup{x, fx} is

inflationary.
(c) l f f :A---~ A is monotone and f ' =sup{x, fx} , then IFP(f ') = LFP(f).

Proof is dear. []

Examples. Let U = {0, 1, 2} and X range over A = Predl(U).
(i) Define F(X) = X LI {the cardinality of X} if X ~ U, and F(U) = U. Clearly,

F is inflationary. F~(0) = {/" :] < i) for i ~< 3, and IFP(F) = U. However, F is not
monotone: {0, 2} includes {0) but F{0, 2} = {0, 2} does not include F{0} =
{0, 1}. Moreover, F does not have a least fixed point: {1} and {0, 2} are fixed
points of F but 0 is not a fixed point of F.

(ii) Define G (X) = F (X) if X is an initial segment of U, and G (X) = 0
otherwise. Then G is inductive but neither inflationary nor monotone.

(iii) Any constant function H:A---~A with H(X):/: U is monotone but not
inflationary (this example was suggested by several people).

Remark. Our treatment of inductive fixed points follows [9] but the phenomena
of Theorem 3 were well known much earlier by the name of non-monotone
induction [20].

L Two fixed-points logics

We describe in this section the extension FO + LFP of first-order logic by the
east fixed point operator and the extension FO + IFP of first-order logic by the
nductive fixed point operator. The proviso of Section 0 is not in force in this
',ection. Our treatment follows [9]. For definiteness we deal with the version of
irst-order logic that allows free and bound occurrences of the same individual
rariable in the same formula, and uses substitution as a formation rule.

The syntax of logic FO + LFP is the result of augmenting the syntax of
irst-order logic by the following formation rule.

7he LFP formation rule. Let r be a positive integer, x be an r-tuple xl, • • •, xr of
adividual variables, P be an r-ary predicate variable, and qg(P,x) be a
~ell-formed formula where all free occurrences of P are positive. Then
,FPe;xqg(P, x) is a well-formed predicate, and [LFPp.xqg(P, x)](x) is a well-
armed formula.

All occurrences of P and x l , . . . , xr in the new predicate are bounded; the
ccurrences of individual variables in the tail (x) of the new formula are free. If Q
; a predicate variable different from P, then every free (respectively, bound)

Fixed-point extensions of first-order logic 271

occurrence of Q in qg(P,x) remains free (respectively, bound) in the new
predicate and the new formula, and every positive (respectively, negative)
occurrence of Q in tp(P, x) remains positive (respectively, negative) in the new
predicate and the new formula. If y is an individual variable different from
x l , . . . , x,, then every free (respectively, bound) occurrence of y in tp(P, x)
remains free (respectively, bound) in the new predicate and the new formula.

Remark. We do not give a complete definition of well-forned predicates: one can
easily avoid speaking about well-formed predicates altogether and speak only
about well-formed formulas (as it is customary in first-order logic). However, the
LFP formation rule creates a new predicate more naturally than a new formula.
Note that a simplified notation LFPpqg(P, x) for the formula [LFPp.xtp(P, x)](x)
is deficient: just try to express the formula [LFPe, xqg(P, x)](t) in the simplified
notation.

To be on the safe side, let us emphasize that logic F O + L F P allows
interleaving of the LFP formation rule with propositional connectives (including
aegation) and quantifiers; in particular, one can negate anLFP formula then use
the LFP formation rule again, etc.

Definition. Let q9 be an FO + LFP formula or predicate. An individual (respec-
tively predicate) variable with free occurrences in q9 is a free individual
(respectively predicate) variable of tp. The vocabulary of tp consists of:

the individual constants and the free individual variables of tp, the predicate
constants and the free predicate variables of qg, and the function symbols of qg.

The meaning of the predicate LFPp;xtp(P, x) is the least fixed point of the
)perator F(P)= (x:tp(P, x)}. This operator is defined in every structure M
vhose vocabulary (also called signature and similarity type) includes the
,ocabulary of qg(P, x) without the predicate symbol P and the individual variables
:. Since the formula q0(P, x) is positive in P, the operator F is monotone in M
md therefore has a least fixed point in M.

Logic FO + LFP is closed under simultaneous induction, see Simultaneous
nduction Lemma in [19]. A minor drawback of that Lemma is the use of
ndividual constants. The following theorem will suffice for our purposes here.

theorem 1. Suppose that
qg(P, Q, x) and ~p(P, Q, y) are FO + LFP formulas,
arity(P) = length(x) - 1 and arity(Q) = length(y) = r,
P, Q have only positive occurrences in the two formulas,
F is the operator (P, Q)~--> ({x : q~(P, Q,x)}, {y: Ip(P, Q, y)}),
R is a predicate variable of arity 1 + r that occurs neither in q9 nor in lp,
x(R, x, y) = tp(3y R(_, y), ~ R(x, _), x) & lp(3y R(_, y), 3x R(x, _), y).

272 Y. Gurevich, S. Shelah

Then F is monotone and has a least fixed point (X*, Y*), and the con~unction
[3x(~p(0,0, x)) and 3y(W(0,0 , y))] implies the equivalence xeX*<-->
:ly [LFPR;x.,x(R, x, y)](x, y).

Proof. Use Theorem 2 in Section 1. []

Extending the usual terminology, an FO + LFP formula tp will be called
positive in a predicate symbol P if every free occurrence of P in q) is positive.
Since the formula qg(P, x) in the LFP formation rule is required to be positive in
P, the operator F(P) = {x: qo(P, x)} is monotone and therefore has a least fixed
point. As we have mentioned in the introduction, direct replacing positivity by
monotonicity does not lead to a nice logic. Note, however, that the operator
F'(P) = {x :P(x) or q)(P, x)) is always inflationary and therefore has an inductive
fixed point. According to Theorem 3 in Section 1, if F is monotone, then
IFP(F') = LFP(F). This leads to a more liberal extension FO + IFP of first-order
logic. The syntax of logic FO + IFP is the result of augmenting the syntax of
first-order logic by the following formation rule.

The IFP formation rule. Let r be a positive integer, x be an r-tuple of individual
variables, P be an r-ary predicate variable, and qg(P,x) be an arbitrary
well-formed formula. Then IFPp;x(P(x)) is a well-formed predicate, and
[IFPp;x(P(x) or qg(P, x))](x) is a well-formed formula.

With respect to free versus bound occurrences as well as positive versus
negative occurrences the IFP formation rule behaves exactly as the LFP
formation rule. The definition of vocabulary remains valid for FO +IFP
formulas.

The meaning of the predicate IFPe.x(P(x) or qo(P, x)) is the inductive fixed
point of the operator F'(P) = {x: P(x) or qg(e, x)).

3. Expressing the inductive fixed point

Extend first-order logic by means of a symbol F of an operator that, given two
unary relations and an element, produces a boolean value; formulas of the
extended logic will be called pseudo first-order. F is supposed to be monotone in
predicate arguments. View F as a positive (in predicate arguments) operator. The
notion of positivity is generalized to pseudo first-order formulas in the obvious
way. Let P and P ' be unary predicate variables. The sign --- will denote both the
negation and the complementation. Let qg(P, x) = [P(x) or F(P,-~P, x)]. The
operator F(P) = {x : qg(P, x)} is inflationary. We express the inductive fixed point
of F as (essentially) a projection of the least fixed point of a monotone operator
definable by a positive pseudo first-order formula. Then we present this result in a
vector from that implies Main Theorem.

The proviso of Section 0 is in force: all structures are finite. For expositary

Fixed -point extensions of first-order logic 273

purposes we choose a nonempty finite set U as our universe of discourse. For
every natural number n, let P,, =Fn(~); thus Po=t~ and P,,+I=F(P,,). The
sequence Pn is (non-strictly) increasing. Let m =min{n:Pn =P,+I}; P,,, is the
inductive fixed point of F. In addition, let P== U. For every x e U, let
stage(x) = min{n :x e P,}. Note that stage(x) > 0. Let x ~<y abbreviate the
conjunction Ix e P,,, and stage(x) ~< stage(y)], and let x < y abbreviate s tage(x)<
stage(y). Note that x<~x~---~x e P,,,. We start with constructing an inductive
operator G whose inductive fixed point is the relation ~<.

Lemma 1. (Stage Comparison Theorem, [19])

x<~y,,--~ep({x':x'<y},x), x < y ~ - q ~ ({ y ' : ' - . x ~ y ' } , y) ,

x <~ y ~ q~({x' : .--cp({y' : - x ' <~ y ') }, y) }, x).

and

Proof sketch. To check the first equivalence, consider separately the cases
s t age (y)<~ and s tage(y)=~ . To check the second equivalence, consider
separately the cases stage(x) < oo and stage(x) -- oo. The third equivalence follows
from the first two. We skip details because, formally speaking, the lemma will be
not used. But in essence the lemma gives the desired G. []

Let O and Q' be binary predicate variables,

A(Q, a ' , x ' , y) = Q'(x', y) or F({y' :Q'(x', y')}, {y' :Q(x', y')}, y), and

A'(Q, Q' , x ' , y) = -A(- - -Q ' , ~Q, x ' , y).

Obviously, A and A' are positive in Q and Q',

Let

A (Q , - Q , x ' , y)<-->qg((y':-Q(x', y')}, y), and

A'(Q, -~Q, x', y)<->-A(Q, ~Q, x', y)<-->---qg({y' :---Q(x', y')}, y).

~p(Q, Q', x, y) = A'(Q, Q', x', y) or F((x' : A'(Q, Q', x', y)},
{x': A(Q, Q' ,x ' , y)}, x), ~p(Q,x, y) = gt(Q, - Q , x , y). Obviously, gt is positive
in Q and Q'.

Lemma 2. ~p(Q,x, y)*--~ qg({x' : -q0({y ' : -Q(x ' , y')}, y),x).

Proof.
~U(Q, --Q, x, y) = A'(Q, ---Q, x', y) or

F({x':A'(Q, ---Q,x', y)}, {x': A (Q , - Q , x ' , y)}, x)

~--~---A(Q, ---Q, x', y) or

r ((x ' : - A (a , - Q , x ' , y)}, { x ' : A (Q , - Q , x ' , y)}, x)

• -~ tp((x' : - A (Q , - Q , x ' , y)}, x)

~rp((x':.-.q~({y':--.a(x', y')}, y)},x). []

Let G(Q)= {(x, y):~p(Q,x, y)} and Qk = Gk(0).

274 Y. Gurevich, S. Shelah

Lemma 3. For every natural number k, Qk = [..J { (Pi x Pa) : k >i i <~ fl} where fl
may be equal to oo.

Proof. By induction on k. The case k = 0 is clear. We suppose

Q k = U {(P/x Pt~) : k >~ i <~ fl }

and prove Q1,+1 =L.3 {(P/x Pa):k + 1 >>-i<~fl).
First, we analyze the formula ---tp({y' :--Qk(X', y')}, y). If i ' = stage(x') ~<k,

then --Qk(X', y') <-> stage(y ') < i ' , {y' :--Qk(X', y')} = P/'-I, and ~-q0(Pr_l, y)~->
stage(y) > i'. If i ' = stage(x') > k, then ~Qk(X' , y ') ~ TRUE, {y ' : - -Qk(x ' , y')} =
U, and -qg(U, y)<-->FALSE. ThUS, ~tp({y' : "Qk(X ' , y')}, y)<-->stage(y)>
stage(x') ~< k.

Second, let fl = stage(y). We have { x ' : ~ q g ((y ' : ~ Q k (X ' , y')}, y)} = {x' : f l >
stage(x') <~ k} = Pj where j + 1 = min{fl, k + 1}.

Third, let i = stage(x). Then (x, y) ~ Qk + l ~ q~(Pj, x) ~-> i <<- j + 1 ~-> (i <~ fl and
i<-..k + l)÷->(x, y)e(. .J{ (PixPt~): f l>l i<--k + l }. []

Corollary 4. The operator G is inductive, Qm is the inductive fixed point o f G, and
the relation <~ coincides with Qm.

Let R and S be ternary predicate variables. Let p(R, S, x, u, v) be the pseudo
first-order formula

x e/'1 and (u, v) e Q1, or R(x , u, v), or there is y such that R(y, y, y),

_, _) , S (y , _ , _) , u, o), S(Y, x, x), and

~ (R (y , _, _), S(y , _, _), x, x).

Let a(R, S, x, u, v) be the pseudo first-order formula

x e P1 and (u, v) ~ Q1, or S(x, u, v), or there is y such that R(y, y, y),

-.-tP(--.S(y, _, _), -.-R(y, _, _), u, v), S(y , x, x) , and

~ (R (y , _, _), S(y , _, _), x, x).

Here the expressions x e/>1 and (u, v) e Q~ abbreviate pseudo first-order formulas
q0(0, x) and ~P(0, u, v) respectively. Obviously, p and a are positive in R and S.
Therefore the operator

H(R, S) = ({(x, u, v) : p (R , S , x , u, v)}, {(x, u, v) : o (R , S , x , u, v)}).

is monotone and has a least fixed point.

Lenuna 5. The least f ixed point o f H is

(kU<m [(ek+l- Pk) × Qk+l], k<mU [(ek+l- Pk) × ""Qk+l])"

Fixed-point extensions of first-order logic 275

Proof. For each natural number k, let (Rk, Sk)= Hk(fJ, fJ). It suffices to prove

that
Rk "- [-J [(e / + l - e/) x a i+ l] and Sk = U [(P~+l- P/) x - a i + l] .

i < k i < k

The case k = 0 is clear. The case k = l is clear too: the formulas
p(Ro, So, x, u, v), a(Ro, So, x, u, v) are equivalent to their first disjuncts, and
those disjuncts describe Rx, 3'1 explicitly. Assuming that the claim is proved for
k >I 1, we prove that

p(Rk, Sk, X,U, V)<-->(x,u, v) e R ' where R'=RkU[(Pk+I--Pk) X Qk+I],

and

a(Rk, Sk, X, U, V) ~--> (X, U, v) e S' where S' = Sk t.J [(Pk+l -- Pk) X --Qk+l].

First, suppose (x, u, v) ~ R' and check p(Rk, Sk, X, U, V). The case (x, u, v) e
Rk is clear. If (x, u, v) e [(Pk+l -- Pk) × Qk+l] choose any y e Pk -- Pk-~. Note that
Rk(Y, _, _) = Qk, Sk(y, _, _) = "~Qk, and ~ (a k , --Ok, U, V) ~ lp(ak, U, V)
(U, V)e Qk+l" It is easy tO see that all statements Rk(y, y, y), ~(Rk(y , _, _),
Sk(y, _, _), U, V), Sk(y, X, X), and tP(Rk(y, _, _), Sk(Y, _, _), x, x) are true.

Second, the implication (x, u, v) ~ S'---> O(Rk, Sk, X, U, V) is proved similarly.
Note that - ~ (- S (y , _, _), - R (y , _, _), u, v) ~ ' ~ t P (a k , "~Qk, u, v) ~ - -
~P(Qk, u, v)~-->(u, v) ~ Qk+l.

Third, suppose p(Rk, Sk, x, u, v) and check that (x, u, v) E R ' . The first
disjunct of p(Rk, Sk, X, u, v) obviously implies (x, u, v) ~ R', and the second
disjunct of p(Rk, Sk, x, u, v) obviously implies (x, u, v) ~ R'. Let y be a witness
for the third disjunct of p(Rk, Sk, x, u, v). Note that Rk(y, y, y) implies that
y e P~ - Pj_~ for some positive i ~< k, Rk(y, _, _) = Qi, and Sk(y, _, _) equals the
complement of Qi. Hence ~(Qi, ~Qi, u,)3)<--> ~(Qi, u, v)<-->(u, 13) E Qi+l,
Sk(y,x,x)-->x ~Pi, and ~ (a i , -Q i , x , x) ~ (x , x) e a i + l ~ x ePi+i; thus

(x,u, v)eR'.
Fourth, the implication O(Rk, Sk, X, U, V)---> (X, U, V) e S'. Note that if Rk(y, _, _)

= Qi and Sk(Y, _, _) equals the complement of Q~, then

- - ~ (" S k (y , _, _), ~Rk(Y, _, _), U, 13)~-'>~P(Qi, u, v)<-->(u, v) ~ ai+l. []

Let T be a 6-ary predicate, and ~(T, x, y, z, u, v, w) be the conjunction of
variable positive pseudo first-order formulas

p(3u 3v 3w T(_, _, _, u, v, w), 3x 3y 3z T(x ,y, z, _, _, _), x, y, z)

and
a(3u 3v :lw T(Z, _, _, u, v, w), :Ix :ly :lz T(x, y, z, _, _, _), u, v, w).

Let #r(F, x) be disjunction

Vx qg(~t, x) or =lu =iv =lw ([LFPr~,y,z,,,,~,wz(T, x, y, z, u, v, w)](x, x, x, u, v, w)).

276 Y. Gurevich, S. Shelah

Theorem 1. x e IFP(F) ~ :r(F, x)}.

Proof. If/ '1 = U, then the equivalence is obvious. We assume P1 :/: U and prove

x e LFP(F) <--> 3u ::]v 3w ([LFPT;x,y,z,u,v,w-t;(T , x, y, z, u, v, w)](x, x, x, u, v, w)).

If P1 = 0, then LFP(F) = 0, R1 = IJ hence p(O, 0, x, y, z) <--> FALSE,

Z(O,x, y, z, u, v, w)~-->FALSE, LFPr.~,y,z,u,o, wr(T,x, y, z, u, v, w)=l~, and the
equivalence is dear.

Suppose that P1 :/: t~. Then R1 :/: I~ and $1 6: t~. Let H be as in Lemma 2, and let
(X*, Y*) = LFP(H). Clearly, (x, x, x) e X* if and only if x e LFP(F). But by
Theorem 1 in Section 2 (with R, S, p, a, H, T, r playing the roles of P, Q, qg, ~p,
F, R, X respectively) we have

(x, x, x) e X* .-> 3u 3v :lw ([LFPr~,y,z,,,,~,wr(T, x, y, z, u, v, w)](x, x, x, u, v, w)).
[]

Theorem 2. Let ~(P, P', x) be an arbitrary F O + L F P formula (such that
substituting ~(P, P', x) for F in :r(F, x) does not cause a collision of variables)
which is positive in P, P'. Then the FO + LFP formula :r(~, x) expresses the
inductive fixed point of the operator P ~ {x :P(x) or ~(P, - e , x)}.

Proof. This is an immediate consequence of Theorem 1. []

Let r be a positive integer, suppose that U is the cartesian product of r copies of
a set V, and consider V as the main universe. Then F is an operator that, given
two r-ary relations and an r-tuple of elements, produces a boolean value. The
predicate variables P, Q, R, S and T are respectively r-ary, 2r-ary, 3r-ary, 3r-ary
and 6r-ary. Individual variables in the formula :r are abbreviations for r-tuples of
individual variables. This turns :r(F, x) into a statement about V and F. Theorem
1 remains true and implies

Theorem 3. Let q~(P, P', x) be an FO + LFP formula where P and P' are r-ary
predicate variables and x is an r-tuple of individual variables. Suppose that
• (P, P', x) i s positive in P and P', and substituting ~(P, P', x) for F in :r(F, x)
does not cause a collision of variables. Then the FO + LFP formula :r(~, x)
expresses the inductive fixed point of the operator P ~ {x :P(x) or ~/,(P, - P , x)}.

Theorem 3 implies Main Theorem.

Appendix: From inflationary to monotone

We redefine F and present the formula of main interest in a more direct way.
In this section pseudo first-order formulas are formulas of the extension of

Fixed-point extensions of first-order logic 277

first-order logic by a symbol F of an operator that, given one unary relation and
one element, produces a boolean value. Let P be a unary predicate variable,
tp(e, x) = [P(x) or F(P, x)], and F(P) = {x: tp(P, x)}. We express the inductive
fixed point of F as the diagonal of the least fixed point of a monotone operator
definable by a pseudo first-order formula.

Again the proviso of Section 0 is in force, and again we choose a nonempty
finite set U as our universe of discourse. Let P~ = Fi(t~) for every natural number
i, and let m = m i n { i : P / = P / + l } ; Pm is the inductive fixed point of F. Let
stage(x) = min{i :x • P~} for x • Pm, and let x ~< y mean that x ~ Pro, Y • Pm, and
stage(x) ~< stage(y). (Note that the relation ~< is defined here somewhat differently
than in Section 3.)

Definition. A unary relation P is downward closed with respect to a binary
relation Q if for all elements x and y, (x, y) • Q and y e P imply x E P.

Recall that a binary relation Q on a nonempty set S is called a linear (reflexive)
quasi-order if it is reflexive, transitive, and for all elements x, y of S, either xQy
or yQx. If Q is a linear quasi-order on S, then

the relation E = {(x, y) :xQy and yQx} is an equivalence relation on S, and
the relation {(A, B):Vx e A Vy • B (xQy)} on the equivalence classes of E is a
linear order.
Let Q be a binary predicate variable, and Nice(Q, x) be a pseudo first-order

formula saying that

the restriction of Q to the set {u:uQx} is a linear quasi-order, and
for every v e {u:uQx} , F ({u :uQv and - (v a u) }) = {u:uQv} .

If Nice(Q, x) holds we say that x is nice with respect to Q.

Lemma 1. I f P~ is downward closed with respect to a binary relation Q and i f
uQv ~ u <~ v for all u, v in P~, then every x • P,. is Q-nice.

Proof. Is clear. []

Lemma 2. I f an element x is nice with respect to a binary relation Q, then there is a
positive integer k <<- m such that x • Pk, and Pk is downward closed with respect to
Q, and uQv ~ u <~ v for all u, v e Pk.

Proof. Let S = {u:uQx} , E be the equivalence relation {(u, v) :uQv and vQu}
on S, and A1, A2, • • •, Ak be the equivalence classes of E ordered with respect to
Q (so that if i < j , u e Ai, v • Aj then uQv but not vQu).

It suffices to prove that for every i and every v • Ai, [,_Jj~i Ai = P~. If i = 1, then
A l = { u : u Q v } = F ({ u : u Q v and ~-(vQu)})=F(~)=P1. Let i > l, v • A i and

278 Y. Gurevich, S. Shelah

W 6Ai-1. Then [._Jj~iAi = {u .uQv} = F({u .uQv and - (vQu)}) =
F({u 'uQw})= F(13i<~Aj). By the induction hypothesis, F([._Jj<iAj)= F(P~_I) =
P/. []

Corollary 3. For every binary relation Q there is a natural number i <<- m such that
Pi is exactly the set of Q-nice elements, Pi is downward closed with respect to Q,
and the restriction of Q to P~ coincides with the restriction of the relation <~ to P~.

Let V(Q, x, y) be a pseudo first-order formula saying the following where
5;= {x :Nice(Q, x)} and G (Q) = {(x, y) :V (Q ,x , y)}:

If F(S) = S, then G(Q) = Q,
Else, if F(S) is not downward closed with respect to Q, then G(Q)= U x U,
Else, G(Q) = Q 13 [F(S) x (F(S) - S)].

~,emma 4. The operator G is inflationary and monotone.

~roof. The first statement is clear. Let Q _c Q'. By Corollary 3, there are natural
mmbers i, j ~<m such that {x ' x is Q-nice} = P/and {x:x is Q'-nice} = P/.

First suppose i < j . Then F(P~)= P~+I #=P~. Since P~+a _cP/, P~+I is downward
losed with respect to Q' , hence it is downward closed with respect to Q. Thus,
~(Q)= Q 13 [P/+I x (P /+ I - P/)] and therefore G(Q) is included into the restric-
ion of ~< to P/which is the restriction of Q' to P/. Hence G(Q) c_ Q' c_ G(Q').

Second suppose j < i. The restriction of Q' to P/+a coincides with the restriction
f Q to P/+I; for, otherwise xQ'y for some x e P j+ I -P j and y e P/, which
antradicts the fact that Pj is downward closed with respect to Q'. If Pj+a is
ownward closed with respect to Q' , then every x in Pj+I is Q'-nice which is not
le case. But P/+I = F(P/) :/: P/. Hence G(Q') = U x U and G(Q) c_ G(Q').
Third suppose i =]. If F(P~)= P~, then G (Q) = Q c_ Q' c_ G(Q'). Suppose that

'(P,.) properly includes P/. If F(P/) is not downward closed with respect to Q' ,
len G(Q)c_ U x U= G(Q'). Suppose that F(P~) is downward closed with
;spect to Q'. Then it is downward closed with respect to Q, and

G(Q) = Q 13 [F(P/) x (F(P~) - P~)]

c_ Q' 13[F(P~) x (F(P~) - P~)] = G(Q'). []

~mma 5. The relation <<- is a least fixed point of G.

roof. Obviously, the set of elements nice with respect to ~<, equals Pro- Since
',Pm)= Pro, G(~) coincides with ~<, i.e. ~< is a fixed point of G.
For every natural number i, let Qi = G/(0) • By induction on i we prove that Q~
the restriction of ~< to P~. As a result, the relation ~< coincide with Qm and
erefore is a least fixed point of G.
The case i = 0 is trivial. Suppose that i < m and Qi is the restriction of ~< to P~.

Fixed-point extensions of first-order logic 279

Obviously, the set of Qi-nice elements equals P/. Since F(P~) = Pi+l $ P/and P~+I
is downward closed with respect to Qi, G(Q~) = Qi u [P~+I x (Pi+~ - P/)] which is
the restriction of ~< to P~+~. []

Let ~r(F, x) = [LFPo~,y~p(Q, x, y)](x, y).

Theorem 1. x e IFP(F) ~ ~r(F, x)} .

Proof. This is a consequence of Lemma 5 and the equivalence x e IFP(F)
x <.x. []

Theorem 2. Let O(P, x) be an arbitrary FO + LFP formula (such that substituting
O(P,x) for F in ~r(F, x) does not cause a collision of variables). Then the
FO + LFP formula ~r(O, x) expresses the inductive fixed point of the operator

o r x)}.

Theorem 2 is an obvious consequence on Theorem 1. It can be generalized in
the same way that Theorem 2 of Section 3 was generalized in Section 3.

References

[1] P. Aczel, An introduction to inductive definitions, in: J. Barwise, ed., Handbook of
Mathematical Logic (North-Holland, Amsterdam, 1977) 739-782.

[2] M. A]tai and Y. Gurevich, Monotone versus positive, J. ACM, to appear.
[3] A.V. Aho and J.D. Ullman, Universality of data retrieval languages,, 6th ACM Symp. on

Principles of Program. Languages (1979) 110-120.
[4] A. Blass, Y. Gurevich and D. Kozen, A zero-one law for a logic with fixed-point operator,

Information and Control 67 (1985) 70-90.
[5] A. Chandara and D. Harel, Structure and complexity of relational queries, 21st IEEE Syrup. on

Found. of Comp. Sci., (1980) 333-347.
[6] C.C. Chang and H.J. Keisler, Model Theory. (North-Holland, Amsterdam, 1973).
[7] J.W. De Bakker and W. De Roever, A calculus for recursive program schemes, Proc. 1st

International Colloquium on Automata, Languages and Programming (North-Holland, Amster-
dam 1972) 167-196.

[8] H. Friedman, The complexity of explicit definitions, Adv. in Math. 20 (1976) 18-29.
[9] Y. Gurevich, Toward logic tailored for computational complexity, in: M. M. Richter et al., eds.,

Lecture Notes in Math. 1104 (Springer, Berlin) 175-216.
[10] L.A. Harrington and A.S. Kechris, On monotone vs. non-monotone induction, Bull. Amer.

Math. Soc. 82 (1976) 888-890.
[11] L.A. Harrington and A.S. Kechris, On monotone first-order inductive definitions, Unpublished

manuscript, 1975.
[12] L.A. Harrington and A.S. Kechris, On monotone vs. non-monotone induction, Unpublished

manuscript, 1975.
[13] L.A. Harrington and Y.N. Moschovakis, On positive induction vs. non-monotone induction,

Unpublished manuscript, 1974.
[14] P. Hitchcock and D.M.R. Park, Induction rules and termination proofs, 1st International

Colloquium on Automata, Languages, and Programming, (North-Holland, Amsterdam, 1973)
225-251.

280 Y. Gurevich, S. Shelah

[15] N. Immerman, Relational queries computable in polynomial time, Proc. 14th ACM Symp. on
Theory of Computing (1982) 147-152.

[16] G. Kreisel, Technical Report Number 3, Applied Mathematics and Statistic Labs., Stanford
University, Jan. 1961.

[17] A.B. Livchak, The relational model for processs control, Automatic Documentation and
Mathematical Linguistics 4 (1983) pages 27-29 of Russian original.

[18] R.C. Lyndon, An interpolation theorem in the predicate calculus, Pacific. J. Math. 9 (1959)
155-164.

[19] Y.N. Moschovakis, Elementary induction on Abstract structures (North-Holland, Amsterdam,
1974).

[20] Y.N. Moschovakis, On non-monotone inductive definability, Fund. Math. 82 (1974) 39-83.
[21] D.M.R. Park, Fixpoint induction and proof of program semantics, Machine Intelligence 5

(Edinburgh University Press, 1970) 59-78.
[22] W. Richter, Recursively Mahlo ordinals and inductive definitions, Logic Colloquium 1969

(North-Holland, Amsterdam, 1971) 273-288.
[23] D. Scott and J.W. De Bakker, A theory of programs, Unpublished manuscript, IBM, Vienna,

1969.
[24] C. Spector, Inductively defined sets of natural numbers, in: Infmitistic Methods (Proc. 1959

Symposium on Foundation of Mathematics in Warsaw), (Pergamon Press, Oxford, 1961) 97-102.
[25] J.D. Ullman, principles of database systems (Computer Science Press, Rockville, MD), (1982).
[26] M. Vardi, Relational queries computable in polynomial time, Proc. 14th ACM Symp. on Theory

of Computing (1982) 137-146.

