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The Decision Problem for Linear

Temporal Logic

JOHN P. BURGESS and YURI GUREVICH*

Introduction The aim of temporal logic is the analysis of arguments about
events and processes in time. To achieve this aim, truth-functional logic is
enriched by certain tense operators, among them:

Pp p was the case (at least once)
Fp p will be the case (at least once)
S(p, q) there has been an occasion when p was the case, ever since which q

has been the case
U(p, q) there is going to be an occasion when p will be the case, up until

which q is going to be the case.

Which sentences involving tense operators express valid principles of reasoning?
That turns out to depend on what is assumed about the structure of time.

Consider, for instance, this example:

(Fp Λ F(p Λ ~Pq) Λ ~(Λ? v q)) -* Fq

"If p is sometime going to be the case,
but not until q has previously been the case,
and q hasn't yet been the case,

then q is sometime going to be the case."

If it is assumed (as it will be throughout this paper) that the earlier/later

relation linearly orders the instants of time, then the above example counts as

valid; but not, in general, otherwise. There are even examples (see the survey
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[3]) whose validity depends on what additional assumptions (density? dis-
creteness? etc.) are made about the temporal order: Each important class of
linear orders gives rise to its own temporal theory.

The application of temporal logic to reasoning about the execution of
programs has been suggested by several computer science theorists; see for
instance [5], where it is shown that the tense operator U above is just what is
needed to express such properties of programs as responsiveness and fair
scheduling. (A related development is so-called dynamic logic, surveyed in
[ 13 ].) In this connection, two models of time are especially important: likening
the flow of time to the integers in their natural order is appropriate when
reasoning about basic features of the sequential functioning of a digital
machine, and likening time to the real numbers is appropriate to the continuous
workings of an analog device (and to certain special features of the digital case,
e.g., asynchronous parallel processing).

Our concern in this paper will be with the decidability of the temporal
theories of various classes of linear orders. It turns out that decidability for
such theories can often be immediately derived from results in so-called
monadic logic. For instance, we get the decidability of the temporal theory of
arbitrary linear orders (and of every elementary class of linear orders) from a
result of Gurevich [6]. For the integral order, we get decidability from a result
of Buchi [2]. (The methods of [6] are model-theoretic, those of [2] are
automata-theoretic.) The results of [6] and [2] are unified and extended by a
powerful result of Rabin [14], which gives us decidability for some new cases,
e.g., we//-orders. (The original proof in [14] is automata-theoretic; a model-
theoretic alternative proof is given in [ 16].) A case not covered by [14] is that
of complete orders, which (along with elementary classes of complete orders)
is covered by Gurevich [7] (where the methods are again model-theoretic,
following [12]).

The main result of this paper is the decidability of the temporal theory of
the real order. In Section 1 a detailed proof is given, involving an indirect
reduction to the main result of [14]. In Section 2 an alternative proof, by the
method of [7], is outlined. In Section 1 it is also shown that whenever a
sentence of temporal logic fails to be valid for the real order, then there is a
counterexample to validity which is fairly simple topologically speaking (viz.,
Borel). In Section 2 it is also shown that the temporal theory of the real order
differs from that of arbitrary continuous (unbounded, dense, complete)
orders.1

1 Decidability and Borel counterexamples

1.1 Syntax The set L of (well-formed) sentences of temporal logic is
defined inductively:

The atoms pQy plf p 2 , . . . are sentences
If 0, φ are sentences, then so are ~0, (φ Λ, φ), S(φ, φ), U(φ, φ).

In terms of negation (~) and conjunction (Λ) we can in the usual way define
disjunction (v), conditional (-*), biconditional («—•), constant truth ( t ) . In
terms of 'since' (S) and 'until' (U) we can define 'was' (P), 'will' (F), 'some-
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times' (0), and 'always' (D); thus:

Pφ abbreviates 5(0, t )
Fφ abbreviates U(φ, t )
00 abbreviates Pp v p v Fp
D0 abbreviates ~O~0.

1.2 Semantics Let £ = (Γ, <^) be a linear order. A valuation in ϊ is a
function assigning each atom pi a subset of T. Intuitively, think of T as the set
of instants of time, <τ as the earlier/later relation, and V{pt) as the set of times
when Pi is true. V can be extended to a function (by abuse of language still
called V) defined on all sentences thus:

F(~φ) =T-V(φ)
V(φ Λ φ) = K(0) n κ(ψ)
F ( S ( φ , ψ ) ) = i ί e Γ : 3w(w <τt Nue V(φ) Λ VU(M < r K Γ ί - > ι ; e F ( ψ ) ) ) i
F(£/(φ,ψ)) = {ίeΓ: lu(t<τuι\ue V{φ) N\iυ(t <τυ<τu-+υ e V(φ)))\.

Our definitions then tell us:

V(Pφ) = \teT: lu(u <τt /\ue V(φ))\

V(Fφ) =lteT: lu(t <τu/\ue V(φ))\.

We read "t e F(0)" as "0 is true at t in % under F". We say that φ is satisfίable
(respectively, valid) in % under V if it is true at some (respectively, every) t e T.
We say that φ is satisfiable (respectively, valid) in % if it is so under some
(respectively, every) valuation V in %. We say that φ is satisfiable (respectively,
valid) in a class $ of linear orders if it is so in some (respectively, every) % e ®.
The set of sentences of L valid in $ is called the temporal theory of $.
Z, Q, R will denote the sets of integers, rationals, and reals with their natural
order; superscripts (+,~) will denote restriction to positive or negative elements.
In this notation our promised result is:

1.3 Theorem The temporal theory of R is decidable.

We will offer two proofs, one in this section and one in the next, for this,
our main result. The method of the first proof will be familiar to specialists
from other applications. We show that: (1) a formula satisfiable in R is
satisfiable in Q under a "nice" valuation; (2) a formula satisfiable in Q under a
"nice" valuation is satisfiable in R; (3) the set of formulas satisfiable in Q under
"nice" valuations is decidable. (1) is easy; (3) is easy given the main result of
[14]; and (2) is proved by showing that a "nice" valuation in Q satisfying a
formula φ can be extended to a valuation in R satisfying φ. (Our rather compli-
cated definition of "niceness" is just what is needed to make this extension
lemma hold.) Unfortunately, the proof of this extension lemma, which is quite
easy for P, F-temporal logic, becomes more difficult for S, ̂ -temporal logic.

1.4 Definitions Ln is the set of φ e L containing no atoms pi with / > n.
For 0 e L or Φ C L, N(φ) or N(Φ) is the least n with φ e Ln+1 or Φ C Ln+1. For
Φ C L with N(Φ) = n and with conjunction ΛΦ, Φ # will denote the sentence
O(pn Λ ΛΦ). A sentence of the first species is one having one of the six forms:

Pi ^Pί S{pi,pj) '~S(pi,pf) U(pi,pj) ~U(pi,pj).
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A sentence of the second species is one having one of the four forms:

Pi +-> ~Pj Pi +-+ (Pj Λ Pk) Pi <-* S(pj, pk) Pi <-+ U{pjf pk).

A special sentence is one of form Φ # where Φ is a finite set of sentences of the
second species.

1.5 Reduction Our definitions tell us:

V(Oφ) = T or φ according as φ is satisfiable in £ under V or not
V(Ώφ) = T or φ according as φ is valid in ϊ under V or not.

Hence φ is valid iff ~0 is not satisfiable iff 0^0 is not satisfiable iff DO~0 is not
satisfiable; and to prove Theorem 1.3 it suffices to provide a decision procedure
for satisfiability in R of sentences beginning with D.

If D0 is such, enumerate the subformulas of φ as 0O, φί9 . . ., φm where
φm = φ itself and where for / <N(φ) φz = /?,-. Let Φ consist of just the following
biconditionals:

Pi +-+ ~pj for i, j with φ; = ~0 ;

Pi *-* (Pj *Pk) for i, J> k with ψ, = (0/ Λ φk)
Pi «-> S(pj, Pk) for i, /, k with φ, = S(φf,φk)
Pi <-* ί/(py, pΛ) for ί, /, Λ with 0, = U{φhφk).

Unpacking our definitions, a little thought shows that satisfiability for D0 is
equivalent to satisfiability for Φ # ; thus to prove Theorem 1.3 it suffices to
provide a decision procedure for satisfiability in R of special sentences. The
remainder of this section will be devoted to that task. We need some technical
notions.

1.6 Definitions Recall that an open subset of R is one that can be written
as a countable union of open intervals ]u, υ[ = \t\ u<t <υ\. Intervals maximal
with respect to the property of being contained in a given open set U are called
its components. The interior of a set A is the largest open set contained in it.
A set is closed if its complement is open, and is Fσ if it can be written as a
countable union of closed sets. For basic information about such topological
notions we refer the reader to [11].

It is easy to define a primitive recursive function / such that/Oi) properly
bounds the number of subsets of Ln+Ϊ consisting of formulas of the first and
second species. We call a subset of R n-rudimentary if it is a union of no more
than f(n) sets each of which is a difference of two Fσ sets. A valuation V in R is
n-rudimentary if V(pj) is always an π-rudimentary set. A sentence 0 is
rudimentarily satisfiable if it is satisfiable in R under an 7V(0)-rudimentary
valuation.

Recall that a linear order 2 = (Γ, <^) is (Dedekind) complete if the
following inf and sup axioms hold in it:

\/XCT(XΦφ/\ 3y ~3x(χ eX/\x <τy) -*
ly(~lx(x e X Λ x <τy) Λ Vz(.y <TZ -> 3x(x e X Λ X <TZ))))

\/XCT(XΦφ/\ 3y ~3x(x e X Λy <τx) -*
3y(~lx(x eX Ay <τx) Λ,\/Z(Z <τy -* 3x(x e XΛ Z <TX)))).
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Though Q, unlike R, is incomplete, a valuation V in Q will be called φ-complete
if these axioms hold for X C Q of either of the forms:

Ue(l:t<c/\\/ue(l(t<u<c->ue V(φ))\
{ί e Q: c < ί Λ VM e Q(c < M < ί -> M e V(φ))\

where c may be any element of Q, φ any element of F = first-species sentences
that are subformulas of φ or negations of such.

Let φ e F have form pt or ~pt. Note that if V is a 0-complete valuation in
Q, then the following conditions are equivalent for any irrational γ e R - Q.

(1) 3aed(a<y f\\fued(a<u<y->u€ V(φ)))
(2) 36 e Q(τ < b Λ \fu e Q(τ < u < b -> w e F(ψ))).

If they hold we say F imposes φ on 7.
Let φ e F have form S(pi,pj). We say F imposes φ or imposes ~ψ on 7

according as the following condition holds or not:

(3) 3a e Q(α < 7 Λ α e F(p, ) Λ VW e Q(a < a < 7 -+ u e V(pf))).

For φ e F of form ί/(pz , p ; ) or ~U(piy pj) the definition of imposition is similar.
Let 7(0, F, 7) denote the set of all φ e F imposed on 7 by F.

F is called φ-good if it is φ-complete and for each 7 e R - Q the set
Φ U 7(0, F, 7) is truth-functionally consistent, φ is well-satisfiable if it is
satisfiable in Q under a 0-good valuation.

We may suppose we have fixed in advance a method of associating to any
finite truth-functionally consistent set K of sentences of the first and second
species a maximal truth-functionally consistent extension K*. Let ΛΓ* denote
the set of atoms that both appear in K and belong to K*. The association can
be so arranged that K* will be, in an appropriate sense, a primitive recursive
function of A\ If F is a 0-good valuation in Q, we define its canonical extension
to a valuation W in R by setting:

W(Pi) = V(Pi) U ί 7 e R - Q: Pi e (Φ U 7(0, F, 7))*! .

To clarify these definitions we note the following: Suppose that φ is
satisfied in Q under the 0-complete valuation F. Suppose that Φ implies
p <—yS(q, r) and that F imposes p on 7. Then (1) above will hold for φ = S(q, r),
but in general this does not imply that F will impose φ on 7 according to
definition (3) above; that only follows if we assume in addition that V is
0-good. Suppose that Φ implies s <—> (t v ύ) and that F imposes s on 7. Then
even if we assume that F is 0-good this in general does not imply that F will
impose either t or u on 7. However, our definition of the canonical extension W
guarantees that we will have either 7 e W(t) or 7 e W(u).

1.7 Lemma The canonical extension of a φ-good valuation V in Q is an
N(φ)-rudimentary valuation W in R.

Proof: With notation as above, conditions (l)-(3) each have the form
"3x e Q\/y e Q . . ." and hence by techniques used repeatedly in [11] define
Fσ sets. Hence for each pertinent K, the set {7 e R - Q: 7(0, F, 7) = K\ is (the
restriction to the irrationals of) a finite intersection of sets each of which is an
Fσ or the complement of one. This makes it a difference of two Fσ sets. Now
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W(pi) has the form:

V(pi) U U ίγ e R - Q: 7(0, V, 7) = K\
certain K

(the union being over those K with pz e K*). V(pj), like any countable set, is
an Fσ. The number of pertinent K is properly bounded by /(«), where n = Λf(0).
Hence W{p{) is ^-rudimentary, as required.

1.8 Lemma Let φ be a special formula. If φ is satisfiable in R under some
valuation W, then φ is satisfiable in Q under some φ-good valuation V.

Proof: Assume the hypotheses of the lemma. Let F be as in Definition 1.6. For
each φ e F and each open interval with rational bounds ]a, b[ in R containing a
point of W(φ), choose one such point, and let the set of points so chosen be Eo.
Let E1 be the set of bounds α, β of components ]α, β[ of the interiors of the sets
W(φ) for φ e F. Eo U Eι being countable and dense in R (between any two
points of R lies a point of this set), there is an order-isormorphism of R
carrying this set onto Q. So we may as well assume EQ U E1 = Q to begin with.
This assumption more or less immediately implies the following for open
intervals ]θί,β[ in R and φ e F:

1.9 Claim If ]a,β[ Π W(φ)Φφ, then ]a,β[ Π W(φ) Π QΦφ. And if ]a,β[ Π
QC W(φ), then ]α,j8[ C R/(ψ).

1.10 Claim If ]α,γ[ C W(φ), then there exist α, c e Q with ]α,7[ C
]a,c[ CW(φ).

Let now V be the restriction of W to Q. We must prove: (a) that V is
φ-complete, (b) that V is φ-good, (c) that φ is satisfied in Q under V. Now (a) is
more or less immediate from Claim 1.10. As for (b) and (c), it will suffice to
establish:

1.11 Claim If φ e F and γ e R - Q and V imposes φ on 7, then 7 e W(φ).

1.12 Claim If φ e F and c e Q and c e W(φ), then c e V(φ).

As they are similar we treat only the former. Even it is more or less immediate
from Claim 1.9, except for the case of φ of form ~S{pj,pk) (or, similarly,
~U(pj,pk)). In this case we attack the contrapositive, assuming that 7 e
H>(S(p/,p*)),thatis:

(4) 3α(α < 7 Λ a e W(pf) Λ Vftα < β < 7 *+ β e W(pk)))

in order to prove that V imposes S(pj, pjc) on 7, that is:

(5) 3aeQ(a<y Λae V(pf) Λ \/b e Q(a <b <7->* e V(pk))).

Fixing a as in (4) and assuming it to be irrational, Claim 1.10 gives us a
rational a0 < a with ]ao,y[ C W{pk). Fixing ax e d with a < ax < 7, since
ue ]ciQ,a1[ Π W(pj), Claim 1.9 gives us a rational a belonging to the same set.
This will do for (5).

1.13 Lemma Let φ be a special formula. If φ is satisfiable in Q under a
φ-good valuation V, then φ is satisfiable in R under the canonical extension
WofV.
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Proof: Assume the hypotheses of the lemma. Let φ = Φ#, N(φ) = n. What we
must show is that if y e R and θ is a conjunct of pn Λ ΛΦ, then y e W(θ). We
treat the case where 7 is irrational, the rational case being similar. Let
/ = (Φ U 7(0, V, 7))+. The facts needed from the construction are summed
up by:

(6) θeJ
(7) φ e J whenever V imposes ψ on 7
(8) Pi eJ iff yeW(pi)
(9) ~σeJiffσ4J

(10) (σ Λ r) e / iff σ e / and τ e /.

(Here (9) and (10) hold for all formulas by maximal truth-functional con-
sistency.) Using (6)—(10) one can more or less immediately show 7 e W(θ)
except in the case where θ is of form pt «—• S(pj, pk) (or, similarly, pi +-•»
U(PjtPk)) Even in this case, (6)—(10) reduce the proof that 7 e W(θ) to the
two claims below:

1.14 Claim If V imposes S(pj, pk) on 7, then 7 e W(S(pj, pk)).

This says that (5) above implies (4) above. And indeed the a of (5) can
serve as the a of (4). To see this, just note that if a < β < 7, then by (5) (and
definition (1)) V imposes p^ on |3, whence, by (7) and (8), β e W(pk).

1.15 Claim If V imposes ~S(pj, p^) on 7, then 7 e W(~S(p/, p^)).

The antecedent and consequent respectively say:

(11) V α e Q ( α < 7 Λ α e V(p, ) -> 3Z> e Q(α <b <y r\b 4 V(pk)))

(12) Vα(α < 7 Λ α e H/(P/) -> 3j3(o: < β < 7 Λ β ^ H/(p^))).

In case V does ^oί impose ~pj on 7, then given o: for which the antecedent
of (12) holds, definition (1) provides a n α e Q with a < a < 7 and a e V(pj).
Then (11) provides a b which can serve as the β of (12).

In case V does impose ~p ; on 7, then taking a as in definition (1) and
applying (11) to obtain a b, we have:

b eQι\b<y Nb i V(pk) Λ \fu e Q(b < u < 7 -> w ̂  F(py )).

This in effect says that K imposes S(^pk, ~Pj) on 7 and, arguing as in the proof
of Claim 1.14, we see that 7 e W(S(~~pk, ~pf) and 7 ^ W(S(p;, pk))).

Lemmas 1.7, 1.8, and 1.13 above show that for special sentences satis-
fiability in R, well-satisfiability, and rudimentary- satisfiability coincide. We
will see in the next section that decidability for well-satisfiability and equally
for rudimentary satisfiability follows directly from the main theorem of [14],
thus completing the proof of Theorem 1.3. Let us make explicit a bonus
implicit in this proof: A Borel set is one obtainable from open sets by iterated
application of complementation and countable union, e.g., rudimentary sets
are Borel. Borel-satisfiability is satisfiability in R under a valuation V for which
V(pi) is always Borel. We have:

1.16 Corollary Any sentence of temporal logic satisfiable in R is Borel-
satisfiable.
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2 Continuous orders and decidability again

2.1 Universal monadic theories First-order logic, the logic of the textbooks,
allows quantification only over individual elements of the universe of discourse.
Quantification over subsets of the universe as well is allowed by monadic logic,
a fragment of second-order logic. We follow the terminology and notation (e.g.,
t= for modeling, f •£j for substitutionj of [ 1 ], which is recommended for
developing intuition about the scope and limits of first-order logic. To illus-
trate, let JLlst and I m o n o be respectively the sets of sentences of first-order and
of monadic logic involving a single nonlogical symbol, the binary predicate <.
Then the usual axioms for linear order (irreflexivity, transitivity, trichotomy)
belong to Llst:

\/x~(x <x)
Vx My Vz (x < y Λ y < z -> x < z)
Vx Vy(x <yvx=yvy<x),

as do the axioms for density, discreteness, etc. (which we leave to the reader).
By contrast, the axiom for well-ordering only belongs to Lmono:

\/X(3x(x eX)^ lx(x e X Λ ~3y(y eX/\y<x))) .

So, too, for the inf and sup axioms for completeness given in the preceding
section.

A monadic sentence is universal if it consists of zero, one, or more uni-
versally quantified set-variables followed by a formula without further bound
set-variables. For example, the well-ordering and completeness axioms are.
universal. The first-order (respectively, universal monadic) (respectively, (full)
monadic) theory of a class ® of linear orders is the set of all first-order
(respectively, universal monadic) (respectively, monadic) sentences that hold in
all ί e f i . To connect this subject with temporal logic we have:

2.2 Reduction To each sentence φ of temporal logic we will associate a
formula φ+ of monadic logic. If the atoms of φ are p0, pl9 . . ., pn, then φ+ will
have the free individual variable* and free set-variablesXo, Xl9 . . ., Xn, and no
bound set-variables:

pi =xeXi

(~0) + = ~(0+)
(φΛψ)+ = ( φ + / ψ + )

(5(0, φ))+
 = ^ < X Λ 0 + g) Λ \/z(y < z < x -+ Φ+(χ)))

(U(φ, φ))+ = 3y(x<yA φ+(ζ) *\/z(x<z<y + Ψ+(Z

χ)))
Here the variables y, z substituted for x are the alphabetically first ones that
have not already been used. To each sentence φ of temporal logic we will
associate a universal monadic sentence 0*, namely the universal closure
\IXJJXx . . . \/Xn\fxφ+ of 0+. Comparison of the semantics for temporal logic
(Subsection 1.2 above) with that for first- and higher-order logic (as in [1])
discloses:

2.3 Proposition Let φ(p0, . . ., pn) be a sentence of temporal logic,
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φ+(x, Xo* . . ., Xn) and 0* its transforms. Let Z = (T, <γ) be a linear order, Va
valuation in Z, a e T, At = V{p{) C T. Then:

(a) aeV(φ) iffZ\=φ+[a,A0)...,An]
(b) φ is valid in Z iffZ\=φ* .

Since the transforms are effective we have:

2.4 Corollary For any class S of linear orders, the decision problem for the
temporal theory of $ is reducible to the decision problem for the universal
monadic theory of S.

There exists a partial converse to Proposition 2.3 and Corollary 2.4, but
unlike them it is no trivial consequence of the definitions. Its complicated
original proof [9] has recently been simplified [4].

2.5 Theorem (J. W. A. Kamp) Let σ(x, Xo, . . ., Xn) be a formula of
monadic logic with the free variables shown and no bound set-variables. Then
there exists a sentence φ(p0, . . ., pn) of temporal logic such that σ is equivalent
to φ+ over all complete linear orders. Hence for any class S of complete linear
orders, the decision problem for the universal monadic theory of S is reducible
to the decision problem for the temporal theory of S.

The main theorem of [14] has as direct corollaries many previously known
and many new decidability results; see the survey [ 15 ]. For our purposes, what
is most important is:

2.6 Theorem (M. O. Rabin) The following are decidable:

(a) The monadic theory of Q
(b) The monadic theory of R with set variables restricted to range only over
Fσ sets.

Some remarks are in order:

(i) The full monadic theory of R is known to be undecidable. Indeed,
allowing just one quantification over arbitrary sets of reals produces undecid-
ability even if all other set-quantifiers are restricted to range only over sets of
rationals. A new proof of this negative result will be found in [8], superseding
the old proof of [16], which used the Continuum Hypothesis.

(ii) By the transform method (Proposition 2.3, Corollary 2.4), parts (a)
and (b) of Theorem 2.6 yield, respectively, the decidability of the set of well-
satisfiable and rudimentarily satisfiable sentences of temporal logic, as required
for Theorem 1.3.

(iii) Theorem 2.6(a) has as immediate corollaries decidability for the
monadic theories of Q+, Q", Z, etc. Less immediate corollaries are obtainable
by combining Theorem 2.6(a) with Cantor's Theorem (to the effect that any
countable linear order is isomorphic to a suborder of Q) and the Lowenheim-
Skolem Theorem (which implies that when a universal monadic sentence fails
in a linear order, then it fails in some countable suborder). Some corollaries are
summed up in Corollary 2.7 below. As noted there (and in [15]), many such
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corollaries were previously known (e.g., from [2] or [6]). A subclass $ ' of a
class S of linear orders is elementary relative to $ (or when S = all linear
orders, simply elementary) if $ ' is the class of all 2 e $ in which some given
first-order sentence holds. For example, the class of dense orders, discrete
orders, and of orders with (without) minimum (maximum) elements are
elementary.

(iv) Shelah has recently announced the analogue of Theorem 2.6(b) with
Borel in place of Fσ.

2.7 Corollary The universal monadic theories of the following classes of
linear orders are decidable:

(a) (Gurevich) arbitrary linear orders
(b) (Gurevich) any elementary class of linear orders
(c) (Rabin) well-orders
(d) (Buchi) the integral order Z.

2.8 Definitions A linear order will be called unbounded if it has neither a
minimum nor a maximum; continuous if it is unbounded, dense, and complete;
and separable if it has a countable dense subset. Any separable continuous
order is isomorphic to R. A typical inseparable continuous order is © = (S, <$),
the horizontal unit strip in the plane with the lexicographic order:

S=l(a,β)eR2:0<β<l\
(a, β) <s (α\ 0') iff (α < a' v {a = a Λ β < β')) .

The following does not follow directly from results in [ 14]:

2.9 Theorem The universal monadic theories of the following classes of
complete linear orders are decidable:

(a) arbitrary complete linear orders
(b) continuous orders
(c) separable complete linear orders
(d) the real order R.

Note that (a) and (c) imply the decidability of any relatively elementary
class of continuous orders. This gives (b) and (d). Alternatively, (d) can be
derived in a very roundabout fashion by combining Theorems 1.3 and 2.5. We
defer the proof of (a) and (c) until we have shown that the universal monadic
theories in (b) and (d) differ from each other.

2.10 Counterexample Let % - (T,<τ) be a linear order. Degenerate will
mean: having only one element. A convex set U C T in ϊ is one for which
a < j b <7 c and a, c e U always imply b e U. An antichain in 2 is a collection
of pairwise disjoint nondegenerate convex sets. A congruence on % is an
equivalence relation = whose equivalence classes are convex. The quotient 2/=
is then the linear order (T',<f) obtained as follows, where 5 is the equivalence
class of a:

JΓ'=ia:aeT\
a< biϊϊaψb /\a<τb .
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Let 2 U , y, X) be the formula:

(x=y)v (x<y ι\\/z(x <z <y ^(z e X *~+x e X)))
v(y<x Λ \/z(y<z<χ-+(z eX+-+xeX))) .

Note that if A C T and we define a =4 b to hold iff 2 t= τ(a, b,A), then =4 is a
congruence. Let σo(X) be the conjunction of:

(1) \fx3y(χφy ι\τ(x,y,X))
(2) Mx3y~τ(x,y,X)
(3) VxMy{x < y Λ ~T(X, y, X) -* 3z(x < z < y Λ ~r(x, z, X) Λ ~r(z, .y, X))).

Note that if 2 t= σo[^4], and =4 is as above, then (1) tells us that each =4-
congruence class is nondegenerate, (2) tells us that the quotient 2/=4 is
nondegenerate, and (3) tells us that that quotient is dense.

Let σUfV(X) be the result of replacing each quantification \/t or 3t in
σo(X) by W(a < t < υ - > . . . ) or 3r(w < t < υ Λ . . .). Let po(X) = 3ulv(3t(u <
t < υ) Λ σu>v). Let σ = \/X~σQ(X), p = \/X~po(X). So p says that σ holds
relative to any nonempty open interval.

2.11 Proposition Let % = (Γ, <T) be a linear order. Then % 1= ~σ iff there
exists a congruence = on %such that:

(a) Each ^-congruence class a is nondegenerate
(b) The quotient %/= is nondegenerate
(c) The quotient 2 / = is densely ordered.

Proof: We have already seen one direction. For the other, suppose that the
congruence = satisfies (a), (b), (c). We claim it is of form =4 for some ACT
with I t= σ o [ ^ ] . Indeed, if U is dense in and has dense complement in the
quotient ϊ / = , then A ~{a\ a e U] will do.

2.12 Proposition The following hold for p as well as for σ:

(a) // X is a separable complete linear order, then % t= σ. Thus σ belongs to the
universal monadic theory of R.
(b) @ 1= ~σ. Thus σ does not belong to the universal monadic theory of
continuous orders.

Proof: (a) If ϊ is a complete linear order and = a congruence, then the quotient
£/= is also complete. If (b) and (c) of Proposition 2.11 are assumed, then the
quotient is uncountable. If (a) of Proposition 2.11 is also assumed, then the set
of =-equivalence classes forms an uncountable antichain in 2. In that case, 2
cannot be separable.

(b) We have© 1= σo[A] where A = \(oc,β) e S: a is rational!. In that case

(α,β)=4(α',i5/)iffα = α;.

2.13 Proof of Theorem 2.9(a) We refer the reader to the Appendix of [6].
An n-chain is a structure 21 = {A, <^, P^, . . ., P£) consisting of a linear order
with n + 1 designated subsets. To prove the decidability of the universal
monadic theory of complete linear orders, it suffices to prove for all n
uniformly in n the decidability of the first-order theory of ^-chains. Fix n.
[7] is concerned with weak second-order logic (monadic logic with set-variables
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restricted to range only over finite sets). In Section 14 decidability is proved
for: (i) the weak second-order theory of complete linear orders. In Section 15
decidability is deduced for: (ii) the weak second-order theory of complete
^-chains. This proves Theorem 2.9(a). Actually, the method of (i) applies
directly to the first-order theory of complete ^-chains, and can be adapted to
separable complete ^-chains.

2.14 Proof of Theorem 2.9(c) We outline this adaptation: Let % = (T, <τ)
be a linear order, (21?: t e T) a family of n-chains 21, = (At,<t, Pf) indexed by
2. Its sum is the n-chain 33 = (B, <B, Pf) given by:

B = {(t,a)\ t eT r\a e At\
(Λ a) <B (Λ a) iff {t <τt'v(t = t' ι\a <t a1))
Pf = \(t,a):teT AaePJ\.

When 2 is the two-element order ίO, 1! we simply write 2ί0

 + 211 for the sum.
When all %t are the same structure 2t, we write 21 2 for the sum. The family
(21,: t e T) and its sum are called %-dense (respectively, an %-shuffling) if 2 is
nondegenerate and dense (respectively, 2 = Q) and % is a finite set of ^-chains
with:

V21 e %({t e T: 2lf = 2I1! is dense in 2).

We claim any two g-dense sums have the same first-order theory, and any two
^-shufflings are isomorphic. The proof uses the back-and-forth method (cf. [7],
Lemma 14.1).

Let 9ft be the smallest class of ^-chains containing the degenerate ones and
closed under isomorphism and the following conditions:

(1) If 21, 93 e 9ft and 21 has a maximum or 33 has a minimum, then 21 +93 e 9ft
(2) If 2ί e 9ft has either a minimum or a maximum, and % = Z+ or Z", then

a ϊeSW
(3) If % C Wl is finite, and each 21 e 9ft has both a minimum and a maximum,

and some 2ί e 9ft is degenerate, and 93 is an g-shuffling, then 93 e 9ft.

Let $ 0 be the class of all separable complete ^-chains, ®x the class of all
complete ^-chains in which p holds. Write "0( )" for "first-order theory of".
Since $ 0 Q $i by Proposition 2.12(a), 0 ( ^ 0 C 0 ( t o ) . To prove Theorem 2.9(c)
it will thus suffice to show:

(4) Θ(m) is decidable

(5) β(» 0 ) C ΘW)
(6) 0(9ft) C Θ(9X).

The proof of (4) uses an analysis of types realized in elements of 9ft,
borrowed (like so much of this proof) from [12] (cf. [7], Theorem 14.2).

To prove (5) it suffices to show that for every 93 e 9ft there exists a93; e $ 0

with 0(93) = 0(93'). The proof is inductive like the definition of 9ft (cf. [7],
Lemma 14.2). The key step occurs when 93 is an g-shuffling for some %
satisfying the hypotheses of (3) above. As induction hypothesis we assume that
to each 21 e % has been associated an 21' e ®0 with 0(8) = 0(21'). Let %' =
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{21': 2ί e 51; it contains a degenerate element. Let (2Ir: t e R) be an g-dense
family indexed by R,33' its sum. Then 33' is complete, and by taking %t to be
degenerate except when t e Q we can guarantee that it will be separable. That
#(93) = 0(33') is again proved by the back-and-forth method.

To prove (6): Let 0&(S) be the set of sentences in 0($) having no nesting
of quantifiers of depth >k. It suffices to prove for all k that for every 2ί e B1

there exists a 33 e Wl with θk{%) = 0*©). Fix k. Call 21 e $ 1 good if such a 33 e 2R
exists; call 21 quasi-good if for every nonempty half-open interval [#, &[ the
restriction 211 [α, b[ of 21 to that interval is good. We claim quasi-goodness
implies goodness. The proof uses Ramsey's Theorem from combinatorics
(cf. [7], Lemma 14.3). To complete the proof it suffices to derive a contradic-
tion from the assumption that some 21 = (At<A,Pf) e $Ί is bad. Define a
relation on A by setting:

a = b iff (a = b) v (a < b Λ 211 [a, b [ is quasi-good)
v (b <a Λ 211 [b, a[ is quasi-good).

We claim = is a congruence; in fact, each equivalence class # is a closed interval,
and the restriction 21 \a quasi-good and hence good; moreover the quotient
(A,<A)/= is nondegenerate and dense (cf. [7], Proof of Lemma 14.4). Since
21 1= p, any nonempty open interval I in the quotient must contain a degenerate
equivalence class. For each such /, quasi-goodness provides a finite %i Cffll such
that for each a e I we have 0 (̂2115) = 0*(5B) for some 33 e g/. Take / for which g 7

has the least possible cardinality. We claim a contradiction can be derived by
comparing any ^/-shuffling, which belongs to ffll by (3), with the restriction of
2t to { α : α e / ! (again cf. [7]).

This concludes our sketch of the proof. The italicized passages are the
main points of difference from [7]. Let us make explicit a bonus result:

2.15 Corollary Let %be a continuous order in which p holds. Then %is a
model of the universal monadic theory of R.

2.16 Examples Here are some inseparable continuous orders in which p
holds:

The Long Line: This results from the countable ordinals when each point
is replaced by a copy of the half-open unit interval [0, 1 [.

Suslin Lines: The hypothesis that they exist has the same status as the
Continuum Hypothesis; see [10].

NOTE

1. Roughly, the material in Section 1 is due to Burgess, that in Section 2 to Gurevich.

REFERENCES

[1] Barwise, K. J., "An introduction to first-order logic," pp. 5-46 in Handbook of
Mathematical Logic, North Holland, Amsterdam, 1977.



128 JOHN P. BURGESS and YURI GUREVICH

[2] Buchi, J. R., "On a decision method in restricted second-order arithmetic,"
pp. 1-11 in Proceedings of the 1960 International Congress on Logic, Philosophy,
and Methodology of Science, Stanford University Press, Palo Alto, California,
1962.

[3] Burgess, J. P., "Logic and time," The Journal of Symbolic Logic, vol. 44 (1979),
pp. 566-582.

[4] Gabbay, D. M., "The separation property for tense logics," to appear.

[5] Gabbay, D. M., A. Pnueli, S. Shelah, and Y. Stavi, "On the temporal analysis of
fairness," in Proceedings of the Seventh (1980) A. C. M. Symposium on Principles
of Programming Languages, to appear.

[6] Gurevich, Y., "Elementary properties of ordered Abelian groups," Algebra and
Logic, vol. 3 (1964), pp. 5-39 (in Russian); English translation in American Math-
ematical Society Translations, vol. 46 (1965), pp. 165-192.

[7] Gurevich, Y., "Expanded theory of ordered Abelian groups," Annals of Mathemat-
ical Logic, vol. 12 (1977), pp. 193-228.

[8] Gurevich, Y. and S. Shelah, "Monadic theory of order and topology in ZFC," to
appear.

[9] Kamp, J. W. A., Tense Logic and the Theory of Linear Order, doctoral disserta-
tion, University of California at Los Angeles, 1968.

[10] Kunen, K., "Combinatories," pp. 371-402 in Handbook of Mathematical Logic,
North Holland, Amsterdam, 1977.

[11] Kuratowski, K., Topology, Vol. 1, 2nd English Ed., Academic Press, New York,
1966.

[12] Lauchli, H. and J. Leonard, "On the elementary theory of linear order," Fun-
damenta Mathematicae, vol. 59 (1966), pp. 109-116.

[13] Pratt, V. R., "Application of modal logic to programming," Studia Logica, vol.
39 (1980), pp. 257-274.

[14] Rabin, M. O., "Decidability of second order theories and automata on infinite
trees," American Mathematical Society Transactions, vol. 141 (1969), pp. 1-35.

[15] Rabin, M. O., "Decidable theories," pp. 595-629 in Handbook of Mathematical
Logic, North Holland, Amsterdam, 1977.

[16] Shelah, S., "The monadic theory of order," Annals of Mathematics, vol. 102
(1975), pp. 379-419.

J. P. Burgess Y. Gurevich
Department of Philosophy Department of Computer Science
Princeton University The University of Michigan
Princeton, New Jersey 08544 Ann Arbor, Michigan 48106




