SIAM J. COMPUT. © 1984 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, November 1984 002

EQUIVALENCE RELATIONS, INVARIANTS,
AND NORMAL FORMS*

ANDREAS BLASSt aAND YURI GUREVICH#

Abstract. For an equivalence relation E on the words in some finite alphabet, we consider the recognition
problem (decide whether two words are equivalent), the invariant problem (calculate a function constant
on precisely the equivalence classes), the normal form problem (calculate a particular member of an
equivalence class, given an arbitrary member) and the first member problem (calculate the first member of
an equivalence class, given an arbitrary member). A solution for any of these problems yields solutions for
all earlier ones in the list. We show that, for polynomial time recognizable E, the first member problem is
always in the class AY (solvable in polynomial time with an oracle for an NP set) and can be complete for
this class even when the normal form problem is solvable in polynomial time. To distinguish between the
other problems in the list, we construct an E whose invariant problem is not solvable in polynomial time
with an oracle for E (although the first member problem is in NPZ N co-NPE), and we construct an E
whose normal form problem is not solvable in polynomial time with an oracle for a certain solution of its
invariant problem.

Key words. polynomial time, Turing reducible, NP-complete, equivalence relation, certificate, normal
form

Introduction. This paper was stimulated by [3], where finite structures (e.g. graphs)
were considered as inputs for algorithms. Since one is usually interested only in the
isomorphism types of structures, it is natural to ask whether these types can be
represented in a form suitable for use as inputs in place of the structures themselves.
To avoid trivial “solutions”, we insist that the isomorphism type of a structure be
(rapidly) computable when the structure itself is given. For this to be possible, it is
necessary that the isomorphism problem, for the structures considered, be (rapidly)
solvable; indeed, to tell whether two structures are isomorphic, one just computes
their isomorphism types and checks whether they are equal. Is this necessary condition
sufficient as well? That is, does a solution of the isomorphism problem yield a presenta-
tion of the isomorphism classes as well? In many cases it does, because the solution
of the isomorphism problem proceeds by calculating an invariant (or a system of
invariants) such that two structures of the sort considered are isomorphic exactly when
their invariants agree. In such a case, the invariants themselves can be used as a
presentation of the isomorphism classes. It is not at all obvious, however, that every
solution of an isomorphism problem must yield such invariants. For example, the
solution in [2] for trivalent graphs does not appear to yield invariants. We shall show,
in the more general setting of arbitrary equivalence relations rather than isomorphism,
that one cannot, in general, calculate invariants even if one can tell when two objects
are equivalent.

We shall also consider two problems more difficult than the invariant problem.
One is obtained by insisting that the invariant be a member of the equivalence class
it represents. In the isomorphism-type situation discussed above, this amounts to
insisting that one can (rapidly) compute from an isomorphism type some structure in
it. An even more difficult problem arises if one insists that the invariant be the first
(in some suitable ordering) member of the equivalence class. We shall prove that each
of these problems is strictly more difficult than its predecessor.

* Received by the editors December 22, 1982, and in final form July, 1983.

+ Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109.

Department of Computer and Communication Sciences, University of Michigan, Ann Arbor, Michigan
48109.

682

EQUIVALENCE RELATIONS, INVARIANTS, NORMAL FORMS 683

To make these ideas precise, we consider an equivalence relation E over =*,
where X is a finite alphabet, and we consider the following four problems:

Recognition problem. Given x and y in 2*, determine whether xEy.

Invariant problem. Calculate, for x in ¥, an invariant F(x) (in 2} for some finite
alphabet X,) such that, for all x and y in =*, xEy if and only if F(x)=F(y).

Normal form problem. Calculate, for x in =¥, a “normal form” F(x) (in £*) such
that, for all x and y in =*, xEF(x) and if xEy then F(x)=F(y).

First member problem. Calculate, for x in 3*, the first y such that xEy.

In the first member problem, “first” refers to the following standard ordering of
3*: y precedes z if either y is shorter than z or they have the same length and y
lexicographically precedes z. For many of the equivalence relations we consider,
equivalent words have the same length, so “first”’ can be understood as “lexicographi-
cally first™.

It is clear that any solution of the first member problem solves the normal form
problem and that any solution to the normal form problem solves the invariant problem.
Furthermore, given a solution of the invariant problem, we can solve the recognition
problem by computing and comparing F(x) and F(y).

In the context of ordinary recursion theory, all four problems are equivalent, for,
if we know how to solve the recognition problem, then we can solve the first member
problem by testing each y in £* in turn (in standard order) until we find one equivalent
to x. Since the search is bounded by x, the problems remain equivalent if we consider
only primitive recursive computations. Our objective is to prove that all four problems
are inequivalent in the context of polynomial time computability. (They are also
inequivalent in higher-type recursion theory, but that does not concern us here.)
Unfortunately, this objective cannot be achieved without proving P # NP.

Indeed, the search procedure indicated above implies that, when the recognition
problem is in P, the first member problem is in the polynomial hierarchy of Stockmeyer
[4] and is therefore in P if P=NP. More precisely, the first member problem is in
Stockmeyer’s class A%, that is, it is computable in polynomial time with an oracle for
an NP set, if E is in P. The computation proceeds as follows, using an oracle for the
NP set

{(x, y)|some member of the equivalence class of x precedes y}.

Given x, we begin by querying the oracle about (x,1'), for various values of
I =length (x), to determine by binary search the length m of the first y in the equivalence
class of x; this takes approximately log (length (x)) steps. Then we query the oracle
about (x,10™™") to determine the first digit y, of the desired y. Then we query about
(x, y110™72) to determine the next digit y,, etc. In m such steps we determine all of .

We shall, in § 1, show that the complexity estimate just obtained is optimal, by
constructing an E whose first member problem is AZ-complete while the normal form
problem has a solution in P (and therefore so do the invariant and recognition
problems). This result implies that, if P# NP, the first member problem is strictly
harder than the normal form problem.

In § 2, we shall show that no problem in our list is polynomial time Turing reducible
to an earlier one. Specifically, we shall show that the invariant problem is strictly
harder than the recognition problem by constructing an equivalence relation E whose
invariant problem has no solution computable in polynomial time with an oracle for
E. We improve this result by showing that we can simultaneously arrange for the first
member problem to be in NP¥ N co-NPZ. Then we show that the normal form problem
is strictly harder than the invariant problem by constructing an equivalence relation

684 ANDREAS BLASS AND YURI GUREVICH

E and a solution F of its invariant problem such that no solution of the normal form
problem is computable in polynomial time with an oracle for F. The corresponding
result for the normal form and first member problems, namely the existence of an
equivalence relation E and a solution F of its normal form problem such that the first
member problem is not solvable in polynomial time with an oracle for F, follows
immediately from Theorem 1, relativized. to an oracle A such that PA#NP” [1].
Nevertheless, we present a direct and somewhat simpler construction of such E and
F using some of the same methods as the other constructions in § 2.

It is natural to ask whether the inequivalence of each pair of consecutive problems
in our list can be proved for absolute (without oracles) polynomial time computability.
As indicated above, this cannot be done without proving P# NP. Still, in view of
Theorem 1, one could hope to show that these questions are equivalent to natural
questions such as NP 2 co-NP. Results of this sort will be presented in a subsequent
paper (to appear in the proceedings of the Recursive Combinatorics Symposium,
Miinster, 1983, Springer Lecture Notes).

Finally, in § 3, we formulate some open problems.

1. The first member problem. We show, in this section, that the upper bound of
A%, for the complexity of the first member problem associated with a polynomial time
computable equivalence relation, is optimal, even if we require a polynomial time
solution for the normal form problem rather than just the recognition problem.

THEOREM 1. There is an equivalence relation E on {0, 1}* for which the normal
form problem is solvable in polynomial time, but the first member problem is A5-complete.

Remark 1. When we say that the problem of computing a certain function F from
3* to ¥ is complete for (or hard for, or in) a certain complexity class, we mean that
the following decision problem is complete for (or hard for, or in) that class: Given
a word x in =¥, a letter a in X, and a positive integer n (in unary notation), decide
whether the nth letter in F(x) is a.

Remark 2. In the statement and proof of Theorem 1, completeness refers to
log-space reductions. (The proof of the weaker result, where completeness refers to
polynomial time reduction, would be no easier, although the words w in the proof
could then be assumed to be empty by coding them into m.)

Remark 3. For the equivalence relation E that we shall construct, the last member
problem is solvable in polynomial time.

Proof of Theorem 1. We shall work with the alphabet {0, 1, 2}; the reduction to
{0, 1} is routine. Let A be a fixed NP-complete set in {0, 1}*, accepted by a particular
nondeterministic Turing machine N in time bounded by a polynomial. Let p be a
monotone increasing polynomial (essentially the square of the time bound) such that
every computation of N with an input of length / can be coded (in a standard way)
by some ¢ in {0, 1}* of length p(l). Henceforth, we shall not distinguish between ¢
and the computation it codes.

Consider the following auxiliary problem. An instance of the problem is m?2 w2k,
where m is a word in {0, 1}* coding, in some standard way, a query machine M (a
deterministic Turing machine with alphabet {0, 1} that is to interact with an as yet
unspecified oracle), w is a word in {0, 1}*, and k is a positive integer. The question
in the instance m2w2" of the auxiliary problem is whether machine M with oracle A,
henceforth written M, with input w, halts in fewer than k steps. It is routine to check
that this problem is A3-complete.

To prove the theorem, we shall, after some preliminary work, define an equivalence
relation E on {0, 1, 2}*, give a polynomial time computable solution for its normal

EQUIVALENCE RELATIONS, INVARIANTS, NORMAL FORMS 685

form problem, and give a log-space computable reduction of the auxiliary problem to
the first member problem for E. For each instance of the auxiliary problem, we define
its plausible computations to be the words in {0, 1, 2}* that consist of

(i) m2w2*, followed by

(ii) a string a4, - - -, a; of length k, followed by

(iii) a single digit h, followed by

(iv) a string of length k?, which we think of as consisting of k blocks ¢, * * , g«
each having length k, followed by

(v) astring of length k- p(k), which we think of as consisting of k blocks c;, - * -, ¢«

each having length p(k),
subject to the following requirements:

(a) When the query machine M coded by m is started with input w and allowed
to run for k—1 steps (or until it halts if this occurs earlier), its first query (if any) to
the oracle concerns the unique string g} such that g, = ¢;10" for some r. (Note that,
by the time bound, length (q}) <k =length (g,), so this makes sense.) If the answer
to this first query is a;, under the convention that 0 means ‘““Yes” and 1 means “No”,
then the next query, if any, concerns the g5 such that g, =¢510" for some r. If the
answer to the second query is a,, the next query (if any) concerns the g5 such that
q:= q510" for some r, etc. (Note that, by the time bound, there will be fewer than k
queries altogether.)

(B) If there are exactly j queries in the computation described in (a), then a;=1
and ¢;=0* and ¢;=0"" for j<i=<k.

(7y) If the computation in (a) reaches a halting state, then h =0; otherwise h=1.

(8) For each i such that a; =0, ¢; has the form ¢}10", where c} is a computation
showing that N accepts gi. If a;=1 then ¢; is a string of 0’s.

Observe that the property of being a plausible computation is decidable in
polynomial time.

For orientation and future reference, we construct, for each m2w2*, a particular
plausible computation, called the correct computation. Let the machine M# with input
w run for k—1 steps. Let g3, - -, g} be its queries to the oracle, and let a,, - -, a;
be the oracle’s answers, with 0 representing “Yes”. By the time bound, j and each
length (q}) must be smaller than k. For each i=j, define g; to be q/10", where r is
chosen (depending on i) so that length (q;) = k. For j<i=k,let a;=1, ¢; = 0%, ¢, = 0?®
as required by (B). Note that, with our choices of a’s and ¢’s, the computation of M
with oracle A is exactly the computation described in (a) above. Let h be 0 if this
computation enters a halting state, and 1 otherwise. Finally, define ¢; to be 07 if
a;=1 and to be ;10" if a;=0, where c] is a computation of N accepting g}, where r
is chosen to make length (¢;) = p(k), and where c; is chosen, among all computations
accepting q;, so that ¢; is lexicographically as early as possible. It is immediate that
s=m2w2%a; - - - aphq, - - - iy * ¢ is a plausible computation for m2w2*. We call
it the correct computation for m2w2*.

The important fact about this correct computation is that it lexicographically
precedes all other plausible computations for m2w2* Indeed, suppose s*=
m2w2¥a¥ - - - afh*q¥ - - gfct - - - ¢} were a lexicographically earlier plausible com-
putation for the same m2w2*. If the first difference between these two plausible
computations occurs at a;, then we would have af =0 and a; = 1. The computations
described in () for s and s* are identical up to, but not including, the oracle’s response
to the ith query. In particular, that query itself is the same: g; =q¥. Since a} =0,
condition (8) for s* guarantees that ¢ contains a computation ¢}’ of N accepting q¥.
So g; € A. But this contradicts the fact, expressed by a; = 1, that the A oracle responded

686 ANDREAS BLASS AND YURI GUREVICH

negatively to query g; Therefore, the first difference between s and s* must come
later than all the a;’s. The computations described in («) for s and s* are therefore
the same. Thus h = h* (by (7)) and ¢; = g} for all i (by (@) and (B)). The first difference
between s and s* must therefore be at some c;, and, by (8), we must have a; =0 for
this i. But then we cannot have c¥ lexicographically preceding ¢;, because of the way
we chose ¢; for the correct computation.

We are, at last, ready to define E. For each m2w2, we put into one equivalence
class all its plausible computations together with the extra word m2w2*1’, where
I=k(p(k)+k+1)+1. This value of ! was chosen so that the extra word has the same
length as the plausible computations for m2w2. Note that the extra word is always
the (lexicographically) last member of its equivalence class. To complete the definition
of E, we declare that any word that is neither a plausible computation nor an extra
word shall be equivalent only to itself.

The normal form problem for E is solved by the following polynomial time
algorithm. Given x, check whether it is a plausible computation for its maximal initial
segment ending with a 2. If not, give x as output. If so, give the extra word for that
initial segment as output. This algorithm always produces the last member of the
equivalence class of x.

The auxiliary problem is reduced to the first member problem for E by the
following algorithm. Given an instance m2w2* of the auxiliary problem, calculate
I=k(p(k)+k+1)+1, and then write m2w2*1". The answer to this instance is given
by the digit h in position length(m2w)+2k +1 of the first member of the equivalence
class of m2w2*1’. This algorithm works because the equivalence class of the extra
word m2w2*1’' contains all the plausible computations for m2w2* and its first member
is, as we saw above, the correct computation for m2w2*; the h digit in this correct
computation encodes the answer to the auxiliary problem for m2w2*. 0

2. Nonreducibility. The main result of this section is that, in the context of
polynomial time computability, the recognition problem, the invariant problem, the
normal form problem and the first member problem are of strictly increasing com-
plexity. None of these problems can be reduced in general to the previous problem
on the list.

THEOREM 2. (a) The invariant problem is not polynomial time Turing reducible to
the recognition problem. Indeed, there is an equivalence relation E on {0, 1}* such that
the invariant problem for E cannot be solved by a polynomial time algorithm with an
oracle for E.

(b) The normal form problem is not polynomial time Turing reducible to the invariant
problem. Indeed, there are an equivalence relation E on {0, 1}* and a polynomially
bounded solution F :{0, 1}* - {0, 1}* of its invariant problem, such that the normal form
problem for E cannot be solved by a polynomial time algorithm with an oracle for F.

(c) The first member problem is not polynomial time Turing reducible to the normal
form problem. Indeed, there are an equivalence relation E on {0, 1}* and a polynomially
bounded solution F of its normal form problem, such that the first member problem for
E cannot be solved by a polynomial time algorithm with an oracle for F.

Remark 4. To say that a function F is polynomially bounded means that the
length of F(x) is bounded by a polynomial in the length of x. We think of computation
with an oracle for a function F (rather than a predicate) as follows. The machine can
write a word x on its query tape and receive from the oracle, in a single computation
step, the value of F(x), printed on a special tape. A query of this sort can be simulated
by a sequence of queries concerning the predicate “The nth letter in F(x) is a”’.

EQUIVALENCE RELATIONS, INVARIANTS, NORMAL FORMS 687

Remark 5. Theorem 1 is relativizable to any oracle. By taking an oracle relative
to which P # NP, as in [1], we immediately obtain part (c) of Theorem 2. Nevertheless
we shall give another, more direct proof of (c).

Proof of Theorem 2. Fix an enumeration My, My, -+ of all polynomial time
bounded query machines with alphabet {0, 1}, and let p, be the polynomial clock
bound of M,

We construct the desired equivalence relation E in stages. Initially E is the equality
relation on {0, 1}*. At each stage n we may update E by putting into it two pairs
(x, y) and (y, x) for some binary strings x, y of the same length d,. Here dy<d; < - - -.
Thus the resulting equivalence relation has the special properties that each equivalence
class has at most two members, the two members of any nontrivial equivalence class
are words of the same length, and there is at most one nontrivial equivalence class for
each length.

In part (b) we construct the desired invariant function F simultaneously with E.
Initially F(x) = x1 for every binary word x. At a stage n we may update F by stipulating
that F(x)=0%""! for one or two words x of length d,. In part (c) we construct the
desired normal form function F simultaneously with E. Initially F is the identity
function F(x) = x. At each stage n we may update F by stipulating that F(x) = 1% for
one word of length d,.

The sequence dy<d; <d,< - - - is chosen in such a way that for each n, p,(d,) <
d,+, and p,(d,) <2%'. Thus, computing on an input of length d,, M,, asks fewer than
241 queries and each query is shorter than d,,..

In the rest of the proof we consider a stage n of the construction. Let x and y
range over the binary words of length d =d,. Let M =M, and p=p,.

(a) For each x let x' be the result produced by M on the input x, when it uses
the current E as an oracle. If there are distinct x, y with x’ =y’ go to the next stage.
MF fails to solve the invariant problem for E because M= (x)=x"=y =ME(y),
whereas'(x, y) € E. (Note that later stages of the construction will not affect the values
of M®(x) and M®(y), because they alter E only on words longer than any query
involved in the computation of these values.)

Suppose, on the other hand, that x'# y' for all x # y. We say that x affects y if
M queries E about (x, y) or (y, x) in the computation of y’. Each y is affected by at
most p(d) <2%! elements x.

LeEMMA 1. Let R be a binary relation on a nonempty set S of cardinality 2k. Suppose
that for each u € S there are fewer than k elements v € S with (u, v) € R. Then there exist
distinct u, v € S such that neither (u, v) nor (v, u) is in R.

Proof of Lemma 1. Otherwise, the set of all k(2k—1) two-element subsets of S
would be the union of the 2k sets

R, ={{u, v}: (u, v) e R}

each of which has cardinality = k —1. This is a contradiction. The lemma is proved. [

By the lemma (with $={0, 1} and R being the relation “is affected by”’) there
are distinct x, y such that neither of x and y affects the other. Put (x, y) and (y, x)
into E. This does not alter the computations of x’ and y’. Go to the next stage. M*
failhg to solve the invariant problem for E because (x, y) € E, whereas ME(x)=x"#y' =
M= (y).

(b) For each x let F, by the current F with the following change: F,(x)=0"".
Let x’ be the result computed by M with input x and the oracle F,.

If there is an x with x’ # x, then choose one such x, and update F by making it
equal to F,. This does not affect the computation of x’. Go to the next stage. Note

688 ANDREAS BLASS AND YURI GUREVICH

that the updated F is one-to-one on {0, 1}“ so that there is no need to update E. Since
(x, x') & E, M¥ fails to solve the normal problem for E.

Suppose, on the other hand, that x' = x for all x. Choose distinct x and y such
that M does not query F, about y in the computation of x’, and M does not query
F, about x in the computation of y’. This choice is possible, by Lemma 1, because
each computation involves at most p(d)<2%"' queries. Update F by stipulating
F(x)=F(y)=0%"", put pairs (x, y) and (y, x) into E, and go to the next stage. M~
fails to solve the normal form problem for E because M* (x) = x # y = M¥ (y), whereas
(x,y)e E.

(c) For each x let F, be the current F with the following change: F,(x)=1% Let
x' be the result computed by M with oracle F, on input x. If there is an x with x’ # x,
then choose one such x, update F by making it equal to F,, put (x, 1) and (1 x) into
E, and go to the next stage. M fails to solve the first member problem for E because
MF (x) = x' # x whereas x is the first member in its equivalence class.

Suppose, on the other hand, that x’ = x for every x. In particular (1¢)’ = 1% Choose
x<1% such that M does not query the oracle about x in the computation of (1¢)".
This choice is possible because the computation involves at most p(d) <2¢* queries.
Update F by making it equal to F,. This does not change the computations of x’ and
(1%)". Put (x,1%) and (1% x) into E, and go to the next stage. M¥ fails to solve the
first member problem for E because M (1%) =1¢, whereas 1¢ is not the first member
in its equivalence class. [

Our last result is an improvement of part (a) in Theorem 2. It asserts that the
invariant problem can be intractable even when the recognition problem is tractable
and the first member problem is nearly tractable.

THEOREM 3. There is an equivalence relation E on {0, 1}* such that

(i) the invariant problem for E is not solvable by a polynomial time algorithm with
an oracle for E; and

(ii) the first member problem for E is in NP and co-NP relative to E.

Proof. In the proof of part (a) of Theorem 2 we constructed an equivalence relation
E such that every equivalence class has at most two elements, the two members of
any nontrivial equivalence class are words of the same length, and there is at most
one nontrivial equivalence class for each length. We shall modify the construction so
that for each length /> 0 there is exactly one nontrivial equivalence class.

First make sure that 4p,(d,) <2% —3. Then turn to a stage n of the construction.
Here we first update E by adding to it all pairs (0’,1') and (1/,0") such that 0< < d,
if n=0, and d,_; <!<d, otherwise. We use the notation of the proof of Theorem 2.
Let x’ be the result produced by M on input x € {0, 1}* with an oracle for the current
E. If there is a pair x# y with x" =y’ pick one such pair x, y. Computing x’ and y’,
M queried E about =2p(d) pairs (u, v) altogether. Hence at most 4p(d)<2¢—3
words were involved in all those queries. Choose u, v € {0, 1}4 such that u, v, x, y are
different and u, v were not involved in the queries of the computations of x’, y’. Update
E by adding (u, v) and (v, u) to E. This does not alter the computations of x’, y'. Go
to the next stage. If, on the other hand, x’ # y’ for all x# y proceed as in the proof
of part (a) of Theorem 2.

To show that the function sending each x to the first member of its equivalence
class is in NP® N co-NP¥, we first observe that its graph, i.e. the binary relation “y is
the first member of the E-class of x,” is NP* by the following procedure. If y <x and
(x, y) € E, then accept; if y=x, then guess two distinct but E-related words of the
same length as x, and accept if x is not the later of these two words. To finish the
proof, we make the general remark that any polynomially bounded function F whose

EQUIVALENCE RELATIONS, INVARIANTS, NORMAL FORMS 689

graph is in NP* is itself in NPZ N co-NPE, The NP® procedure for determining that
the nth letter in F(x) is (resp. is not) a is to guess the value y of F(x) and a computation
showing that (x, y) belongs to the graph of F and then to accept if the nth letter of y
is (resp. is not) a.

3. Problems. The results in this paper suggest several natural problems. Two that
strike us as particularly interesting are the following.

1. Can results similar to ours be obtained if, instead of considering arbitrary
equivalence relations, one restricts attention to the relation of isomorphism between
(standard representations of) structures?

2. Are there analogues of Theorem 1 for the invariant and normal form problems?
That is, is there a polynomial time computable E such that every polynomially bounded
solution of its invariant problem is A5-hard? And is there an E such that the invariant
problem is solvable in polynomial time but every polynomially bounded solution of
the normal form problem is AZf-hard?

REFERENCES

[1] T. BAKER, J. GILL AND R. SOLOVAY, Relativizations of the P = INP question, this Journal, 4 (1975),
pp. 431-442.

[2] Z. GALIL, C. M. HOFFMANN, E. M. LUks, C. P. SCHNORR AND A. WEBER, An O(n®logn)
deterministic and an O(n®) probabilistic isomorphism test for trivalent graphs, Proc. 23rd Annual
IEEE Symposium on Foundations of Computer Science, 1982, pp. 118-125.

[3]1 Y. GUREVICH, Toward logic tailored for computational complexity, Proc. European Logic Colloquium,
Aachen, 1983, Springer Lecture Notes, to appear.

[4] L. J. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comp. Sci., 3 (1977), pp. 1-22.

