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1. INTRODUCTION.

At the Logic Meeting in Storrs, Connecticut (November 1979), the

first author presented a survey of the research being done classifying

linearly ordered sets by the elementary theory of their

groups. In this paper we wish to present some aspects of our more

recent research which may be of interest to logicians. A more up-to-

date survey will appear in the Proceedings of the Conference,

Carbondale (1980)--to be published by Springer-Verlag in their lecture

note series.

In the early 970's, (unordered) sets were

elementary (first order) group-theoretic

groups--i.e., automorphism groups (see [lOJ, [llJ and [13J). A natural

extension of this work is to try to classify structures of a given

signature by the first order properties of their groups.

One such problem is to take the models as linearly ordered

sets (or chains, for short). Besides its obvious naturalness, there

are two further reasons to study the of chains. The

The second reason is by the

every lattice-ordered froup can be

group of a chain. Vie will write A(n)

first is that if r is any set of sentences (of first order language)

having an infinite model and is a chain, there is a model O(Si

of r containing Si as a subset such that each automorphism of <, >
extends to an automorphism of the model ()(n; i. e ., Aut ») is a

subgroup of Aut(d-( n) (See [l2J for this and further motivating

reasons for model theorists).

theorem [3; Appendix IJ that

embedded in the automorphism

for i.e., A([l) is the group of all order-preserving

permutations of the chain n. The classification in this case was

begun in [7J, [8J and [5J. This paper provides further results.

lAo M. W. Glass wishes to thank N.S.F. for providing his expenses
at Storrs, and the University of Connecticut for its hospitality--
especially Manny Lerman and Jim Schmerl.

2Yuri Gurevich and Michele Jambu-Giraudet wish to thank Bowling
Green State University for its in the Spring and Fa1
Quarters (respectively) of 1980.
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The presence of linear orderins complicates matters in two ways.

Whereas the symmetric group on a set is always transitive, the same is

not necessarily true of .,+Cfl)--e.g., if Q = w, then A(Q) {e }

(e is the identity element of the group -4(Q)). So ..4(T) =A (to V T)

for any chain T, where w T is w U T ordered by: n < T for all

T 'T, new. In order to obtain any nice classification of chains Q

by the elementary properties of the group fi(Q), we will assume that

Q is homogeneous (i.e., for each a,S E Q, there exists f f A(Q)

such that f(a) = S; so homogeneous in our sense means I-homogeneous

in the usual model-theoretic sense). If Q is homogeneous, we will

say that -4(Q) is transitive. The second complication is that the

symmetric group On a set is always primitive (i.e., there is no non-

trivial equivalence relation on the set which is respected by the

symmetric group). However, even when Q is homogeneous, there may

exist non-trivial equivalence relations on Q (having convex classes)

which are rcspected by A(Q). for example, let Q = i Z, the

lexicographic product of the real line, I, and the integers, Z

(Le., i (2) Z ordered by: (r,m) > (s,n) if I' > S or (I' s &

m > n»). Then (r,m) - (s,n) if I' is an equivalence relation of

the desired kind. (Two points of Q are equivalent only if there are

only finitely many points of Q between them.) Such chains are said

to be non-primitive. Fortunately, there is a group-theoretic sentence

which is satisfied 1n a transitive fi(Q) if and only if Q is

primitive (see [3; Theorem4DJ or [7; Lemma 4J); so we will confine

ourselves to primitive chains in this article. The non-primitive case

will be investigated in a later paper.

If Q is primitive, then [3; Theorem 4.BJ either

(i) is abelian, or

(ii) Q is homogeneous (for each ,Si E Q (i 1,2)

with a l a 2 and 61 < 62, there exists f E 4(Q) such that

f( = Si (i = 1,2)).

Moreover, (i) and (ii) are disjoint ([3, Lemma 1.6.8J) and so can be

distinguished by a group-theoretic sentence about A(Q). Hence we may

deal with them separately in attempting to classify homogeneous chains

by the elementary properties of their automorphism groups. Case (i),

the rigidly homogeneous case, was completely studied in [5J. SO we

will confine ourselves to doubly homogeneous chains in this article.

Our maln thrust will be to establish that

groups doubly
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Although we are interested in the an

auxiliary relation on it will simplify matters. This auxiliary

relation is the pointwise ordering on ACQ), with respect to which

ACQ) becomes a lattice-ordered group: f 2 g if fCa) 2 gCa) for all

a E Q; so g > e if g moves no points down. In [8J Cor [9J) it was

shown that there is a formula of the group language such that

ACQ) if and only if e < f,g or e > f,g. Hence if

AU» "ACA) as groups, <ACQ)'2> - <ACI\) <> or

<AU),) < - <ACI\) '21'> as lattice-ordered groups where lS the

reverse of the pointwise ordering. Since in most of our results,

<.kCI\) '2> satisfies the desired properties if and only if <ACI\) '21'>
does, we will assume that the pointwise ordering and the inherited

lattice operations v and A are explicitly in the language. CWe use

fiG" and. "or" for the conjunction and disjunction of the language.)

For g let suppCg) = {a (; Q: £Ca) f. a}, the of

g. If f,g E .A-CQ) arid suppCf) < suppCg) Ci.e., a < S for all

a E suppCf) and S E suppCg», we say that f is to the of g.

Since suppChgh- l) hCsuppCg», it follows that if f,g> e, then f

is to the left of g if and only if

.4CQ) F CIi h) Ch > e ->- f " 1 = e). We abbreviate this formula to

LCf,g). Hence g > e has bounded support can be expressed in our

language by the formula C3 > e)C] f 2 > e)CLCfl,g) G LCg,f2».
Let IT be the Dedekind completion of Q. Each g e.ACQ) has a

unique extension g to an element of AcIT) given by:

gCa) = sup{gCa): a E Q G a < a} Ca IT). We will identify g with

g. If Q is doubly homogeneous and a E IT, there is e < g ACQ)

of bounded support such that a = supCsuppCg». Moreover, if

e<g'EACQ) and at sup t s upp Cg t j ) ,

a = a' if and only if

1= Ciih > e)(LCg,h) LCg' ,h»;

and a < a' precisely when

.ACQ) F CVh> e)(LCg',h) ->- LCg,h».

We can therefore interpret IT in A un
in this uniform way Cthe formulae are

independent of the particular doubly

homogeneous chain Q). That is, we

can interpret Cuniformly)

<AUn ,IT", -1 ,e'2AUn '2?l> in
-1

<A-CQ),', ,e,2A.(Q»' Moreover,

fCa) a if and only if
-1.ACQ) F Cli h > e)CLCfgf -, ) +->- LCg' ,h»).
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Consequently, we will assume that our language is explicitly

with variable for the points of 0 together with relations for the

order on iT and the action of AU)) on rI. If AUn := ACh) as

groups only <.4 ([n > <.4 Ch) ), we would obtain

This means that any results

of the form: .4CrI) := ACh) ies 0:= II, really should have the

weaker conclusion that the homogeneous chains r;J and h ordermorphic

or anti-ordermorphic. This makes a difference in Theorem 12 CCases Ca)

and Cb) become one since ACi) := Act) as groups; an isomorphism is

furnished by conjugat

Points a,S E IT
by an anti-ordermorphism between i and

lie in the same orbit of A-Cr;J) if fCa) = for

some f f ACr;J). As we saw above, this is in our language.

Hence the orbits of .ACr;J) 1n iT are interpretable 1n our language.

Now r;J is an orbit of ACr;J). We may not always be able to distinguish

it in our language from another orbit of .4CrI) in IT since it is

possible that .A-Cr;J) := ACT) as lattice-ordered groups, wi t h the

isomorphism furnished by extending an element of A-CrI) to its

unique extension in ACiT) and then restricting the domain to T.

However, we will assume that variables for of r;J are included

in our language; thus we can dist

ACr;J). This means that any resc t

rI from any other orbit of

the form: AC[I) := ACh) implies

r;J := h, really should have the weaker conclu ion that the homogeneous

chain A is ordermorphic Cor anti-crdcrmorphic) to an orbit of ,-+Cr;J)

in IT; i.e., A:= C/1- Cr;J)) Ca) for s orne a E. iT. For example, in

Theorem 5, the conclusion should be: h is ordermorphic to the rationals

or irrationals.

Throughout this paper, then, our language will be the first order

language of lattice-ordered groups, together with variables for points

of [I and for points of and a symbol fCa) for the action of

f E ACr;J) on a c iT. CSo if a E c, fCa) E Q.) However, we will use

.4CQ) as a shorthand for the structures of this language. Our most

powerful result 1S:

THEOREM A: Let r;J be homogeneous chain. Then countable sub-

seTS of

AC[I) .

1n them are interpretable 1n

From this we will be able to characterize many chains whose

defining properties involve countability; e.g., Suslin, Luzin, Specker.

We will also simpler proofs than those in [ ] to show that the

1 ...LlneS,the real long

language can express that r;J is Ci s cmor-oh Lc to) the real line R, the

and certain long rational lines.rational line
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Also, we will be able to tell (in the language) if can be embedded

in E, and whether it can bear the arithmetic structure of an additive

subgroup or a subfield of E.

If this background is inadequate, see [3], [4], [7], [8] or [9].

2. RESULTS.

The language .t is the first order language with the usual logical

symbols, variables f ,g,h, ... for members of , a,l3, y, ...

for members of and a,-S-,:Y, ... for members of IT(2 ; a constant

e for the ident element of symbols for multiplication,

inverse, least upper bound (v) and greatest lower bound (A) for

as well as the pointwise order < on (as a shorthand: f g

stands for fAg = g); the total order relation «) on IT and the

inherited order on , and the action of on

b

are

iffis a bump of

Note that if

An element e < g E -4(rl) is said to have one bump if whenever

a < 13 < y with a,y E supp(g), g(S) S. This is equivalent to

fi( F (\I' u)( V v)( u !\ V = e I> u v v = g -T U = e or v = e).

(See [3J, [7J, [8] or [9J.) We will write Bump(g) for this formula

of (in one free variable g).

Let e < f E and e < bE: AUt). b

has just one bump and flsupp(b) = b!supp(b).

distinct bumps of f, then b l A b
2

e.

LEMMA 0: Let

is a bump of

Proof:

f Co) = b(a),

b 1\ b-lf = e.

b (cd = a

a bump of f.

Q be a homogeneous and e < b,f fA-(Q). Then b

f if and if F (b 1\ b- l = e) I> Bump Cb ) .
---

Lp.t b be a bump of f and a Esupp(b). Since

b-If(a) = a. U 13 (j. supp(b), b(l3) = 13. Thus

Conversely, if b 1\ b = e and a E supp(b),

so f(a) = b(a). Hence f[supp(b) blsupp(b) and b is

LEMMA 1: Let = (3f

8r (3f > e)[Bump(f) I>

8F (3f > e)[Bump(f) I>

then Ci ) A(rl) F 8T if

(ii) A(Q) F 8 r if and

(iii) A(Q) 1= 8F if and

Proof: (i) Since

> e)[Bump(f) I> I>

and

If doubly homogeneous,

only if Q has countable coterminality,

if has countable coinitiality,

if Q countable cofinality.

(a): n f Z} is oo t e r-m.i.n aL in s upp Cf ) if

has one bump, it remains to prove that A(Q) 8T if Q is doubly

homogeneous and has countable coterminality. Let {an: n Z} be

coterminal in Q. Since Q is doubly homogeneous, there is an order-

morphism f n: [an,an+lJ =[an+ l,an+ 2J. Let f = U{fn : n £ :1':}. Then



£ump, then g E <f> if and only

g E C(C(£», then g E <r >, the other direction being obvious.

g f CCCCf) )\ <f> , let be the s Ie open interval of support

f in Q. i.e. , is the convexification (in of supp Cf ) •,

LEMMA 3: The
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e < f E and fixes no point of Moreover, supp(f) = Q so

.}}(Q) Fo 8
T.

If X let C(X) = {f EAQ): (V'g EO X)(fg = g£)}, the

centralizer of X ln A(Q). If f EO ACQ), write <f> for the sub

group generated by f: i.e., <f> = {fn: n E 'l}.

The following lemma is very similar to Lemma 16 of [6J where the

condition of having one bump is removed and ACQ) is replaced by an

existentially complete latticeordered group.

LEMMA 2: If f E A(Q) and

if gECCCCf».

Proof: Since

f has one bump, £Ca) > a for all a E s upp t f ) . He must s how that

if

If

of

for each n Z, the sets E < and

E > fn+ are closed Cin and disioint Csince

(6) = implies contradicting 6 E. Since B

is connected, there exists a E such that g(a) {fn(a): n E 2}.
 n+l 

Either g(a) fl or, for some n E '1, Ca) < g(a) < f (a). In

the first case, there exists h E A(Q) such that hg(a) t g(a) and

s upp Ch) n = 0. Then h E. C( f ) but g \£ C(h) (hg(a) t g(a) = ghCa),

a contradiction. In the second case there is h E.A-Un such that

g(a) E supp(h) S (a) ,fn+l(a». Let h* E A(Q) be the identity of

and agree with fmhf m on Cfn+m(a),fn+m+ICa» (for all m E 7).

Since a = f O Ca), h;'(cd a. Then h", E C(f) but g rt C(h;'), the

desired contradiction.

We have shown that g E <f> is expressible in our language if f

has one bump. vie can therefore assume "g E. <f>" is in ;t; if f

has one bump.

"B is a countable bounded subset of n" is

in A(Q), as is the formula "et E Bl'. Hence C between

countable bounded subsets of n interpretable in A(Q).

Proof: Let B be a countable bounded nonempty subset of Q.

Let B Band y < B. Since .A(Q) is transitive, there exists

e < g E A(Q) such that B < gCy) and g has one bump. Let B be

enumerated { : nEw} with So S. By double homogeneity, there

exists e < f E A(n) such that f has one bump and for all nEw,

fn(s) = gn(Sn) and (y) Cy).
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It follows that B = {g-nfn(S): nEw} = {k-Ih(S): e < h ( <f>

e < k <g>} n (y,g(y)). By Lemma 2, this last expression is an

interpretation of B In via the quadruple (S,y,f,g), where

S,y £ with y < S, and e < f,g have one bump with

{h(y): h E <f>} = {k(y): k E « g »l . This last condition can be

expressed in our language by (Vh E <f»(3k E <g>)(h(y) key))

(Yk E <g»(3h f: <f»(h(y) = key)). Thus we can determine in .;c which

quadruples determine the same bounded countable set, etc. Since any

quadruple satisfying the above conditions yields a countable bounded

set, the lemma is proved.

Note that the interpretation is uniform; i.e., the formulae of £
for interpretation are independent of the particular doubly homogeneous

chain Also, we could choose f,g of the proof of the lemma so

that their supports are contained in any open interval (O,T) with

° < inf(B) sup(B) < T.

We now prove Theorem A.

Let be a doubly homogeneous chi.lin i.lnd /I, be countable.

If /I, lS bounded, /I, = {b-Ia(S): e < a E <f> e < b E <z>! n (y,g(y))

for some S,y,f,g where f and g have one bump. If /I, is

unbounded in let {Sm: m E Z}, {Ym: m E Z}, {o : m E Z} andm
h: m E Z} be coterminal in /I, (and hence In with

m
Sm < 0 < Ym < T < Sm+l (m E Z) . Let /l,O,m /I, n [Y2m-I'Y2m] and

m m

r--·
hi ( ( ( / I ( I... ) ) , >9' j / 7 , , --,

l 8,""':1IW>
"",-,

ll/ ::>A
-
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CO 2 ) = '2m',m .m-l
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By the remark following the proof of Lemma 3, there are

e < f., E A(g) (i = 0,1) having one bump with
l,ITI ,ill

SUPp(fo,m) U supp(go,m) £ (B2m-l,B2m+l)'
n

f O (02 1) = (02 (n (. Z),,m m- ,m m-
-n n

{go f O CB 2 ) : nEw},m ,m ,m m

e < aO,m E <-fO,m> &, e < bO,m E <go,m>}' and

SUPPCfl,m) U suPPCgl,m) £ CB2m,B2m+2)' gl,mC02m)
n n

f l (° 2 ) = gl Co2 ) (n E Z),,m m ,m m
-n n -1

= {gl,mfl,m CB2m+l): nEW} = (02m"2m+l) n {bl,mal,m(B2m+l):
e < a l E <.f l > &, e < b l f < gl >} (rn E Z). Let f. and g. be,ill,m ,In ,m l l

the supremum of the pairwise disjoint set of elements {f. : m E Z}
l,m

and {g. : m E Z} respectively Ci = 0,1). Thenl,m

U { -n n -n n
f O(B2): n E. w}U U { f

l(B 2m+l): nEw}. As in the
mE£' m mE£'

proof of Lemma 1 (i), there is e < h E AU» having one bump such that

h( Bm) = Bm+l, h(om) 0m+ and helm) 'm+l (rn E Z). So

{ -n n 2m } {-n n 2mgo fOh (13 0): m E. Z,n E w U flh h(B O): mE z ,» E w}. We

have coded by (gO,gl,fO,f l,h,130,00"0) In the following sense:

o E 6 if and only if there are k E <h 2 > , e < E <.c.> and

e < b. E <d.> with 0 = b-:-la.kCB.) for l = 0 or where
l l l l l

13 1 = h(BO)' 01 h(oO)' '1 = h(,O)' and c i and d i are the

bumps of f. and g. respectively with Co.) = ,. dl·kCo.'L) and
-1 l_l l l l

h . k(oi) < b i aikCB i) < kC'i)' By Lemmas 0 and 2, this is expressible

in £. Moreover, any octuple Cgo' ,fO' ,h,l3 o'oo"o) with

130 < 00 < '0 < hCBo)' e < h has one bump, and e < gO,gl,fO,f l with

gih2nCoi) h
2n+1C'i) f

ih
2nCo

i) Ci 0,1) where G l = heo O) and

'1 hC,O) gives a countable subset of Q via

-n n 2m E w} U { r w,n C Hence{go fOh (13 0): m E :l,n gl 0 . m t &

Theorem A is proved.

From now on, we will assume that includes variables for

countable subsets of as well as and between them, and

membership of elements of g In them.

Actually, the following can be proved:

THEOREM B: Let Q be doubly chain. countable

subsets IT with them are interpretable in

..4CQ) •
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0} ,

Let

For

n Abe countable.

(36 E rt)(0,6J n A

choose a = a(ol) E
with the closure of

Let

We sketch the proof of Theorem B:

Let 6 1 = rs E 6: (;) a E rt)[ a, ° )

0} and 6
3
= 6\(6

1
U (

2),
rt with [al,ol) n 61 = 0.

suPP(g6 ) = [al,olJ; so
1

e L(f,gS) or ,f».
( 1 u 1

pairwise disjoint set

Let gl E A(0,) be the

{go: ° 1 E AI}' Now
1

Al = {a = a(ol): ° 1 E 61} is a countable subset of 0,. Thus Al can

be recognized by Theorem A. Hence, using Al and gl we can

recognize 61 and that it is countable. Dually for 6 2, Now each

point of A
3

is the supremum and infimum of a countable subset of 6

(and hence of 0,). But, by double--and hence m for all m E w--

transitivity, there is at most one ./t(rt) orbit of such points of

rt\rt. Therefore, 6
3

comprises at most two countable orbits of ./t(0,).

Hence A3 can be captured in L by Theorem A. Consequently, so can

6 and Theorem B is proved.

6
2

= {o E 6'\6
1
:

each ° 1 E 61 ,

e < go E A- (r2)
1

(\If> e)(f 1\ go
1

pointwise supremum of the

We can now express that 0, is separable (i.e., has a countable

subset whose topological closure is 0,) by:

U countable 6)(l!a)(VS)(a < 6 (3,\,° 2,° 3
E. 6)(° 1 < a < ° 2 < 6 < ° 3» ,

But rt can be embedded In JR if and only if it is separable. Hence

COROLLARY 4. There is a sentence a such that, for homogeneous 0"
-----

A( rt) 1= a if and only if 0, can be embedded in JR.

We next give easy proofs of the main theorems of [7].

THEOREM 5. There lS a sentence ljJ of et such that, for any homo-

geneous chain 0" A (0,) F ljJ if and only if rt - 0).

Proof: Apply Theorem A. (The only doubly homogeneous countable

chain is 0) . )

THEOREM 6. There is a sentence p of .;: such that, for any homo-

geneous chain rt, A(0,) F p if and only if rt = JR.

Proof: It was shown In [7J that a homogeneous chain rt is

Dedekind complete if and only if A(0,) F (\If> e)(supp(f)bounded

(3h)[L(f,h- lfh) & (Vg > e),(L(f,g) & L(g,h-lfh»J). The theorem now

follows from Corollary 4.

A chain rt is said to enjoy the property if every pair-

wise disjoint collection of open intervals of 0, is countable. A

homogeneous Dedekind complete chain other than JR that satisfies the

Suslin property is called a Suslin line. If they exist at all, they

exist in profusion (see [lJ).
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recognizable in £--with parameter
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f E are pairwise disjoint and

f (Lemma 0).

THEOREM 7. A doubly homogeneous has the ?uslin property if and

only if for e < f E. A-Ull, a countable 11 supp(f)

that each pump f moves one point 11. Consequently,

there are sentences °1 , of;t such (1) F 01 and

only if enj oys the Sus property, (2) A( J::. O2 and only if

is a lin line.

Proof: Since the bumps of have disjoint open intervals of

support, the condition is clearly necessary. For sufficiency, by

double , each open interval A contains the support of some

one bump e < Let f have {fA: AE f} as its set

of bumps. Hence IJ'[ and enjoys the Suslin property.

As noted in the introduction, we may assume that f E .A-(i:J) is

identified with its unique extension to A(IT). The set of fixed

points of f in Q is always a closed set; the complementary set is

a disjoint union of open intervals each being the convexification (in

IT) of the support of a bump of f. Hence each connected component of

this complementary set has countable coterminality. Conversely, if

is doubly homogeneous and K is a closed subset of IT with each

connected component of its complement having countable coterminality,

then 11 is the fixed point set (in IT) of some f E For, as

in the proof of Lemma 1, we may construct a one bump fA E. k(Q) on

each component A of the complement with supp(fA) = A. The desired

function is f E whose set of bumps is just the set of's. If

i:J is separable, every interval has countable coterminality. Hence we

have proved:

LEMMA 8 : If Q lS separable doubly homogeneous chain, the closed

subsets IT are precisely the fixed point sets functions-- ._-- ------
f E A-( Q) • Hence the closed subsets of IT are interpretable in

for such chains i:J.

A subset of a chain Q is said to be a Cantor set if is

closed, nowhere dense, and has no isolated points.

LEMMA 9: If Q is separable doubly homogeneous chain, the Cantor

sets of IT are in AU)).

Proof: If is doubly homogeneous and is the fixed point

set of e < f A(Q), then C is nowhere dense if and only if

contains no non-empty open interval, which is equivalent to

(Vg)(f A g = e + g = e) since every open interval contains the support
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of some e < h E C has no isolated points when the

following formula of holds in

(Vbl,b2 bumps of f)(LCb l,b2
) + C3b

3
bump of f)CL(b

l,b 3
) G LCb 3,b 2» .

Lemma 9 now follows from Lemma 8.

the interpretation is uniform Cfor such in X.
A chain is said to have the Luzin property if every Cantor

set of meets in a countable set.

By Theorem A and Lemma 9 we have:

THEOREM 10: There is a sentence

separable doubly homogeneous

has the property.

8 of .;( such

then r- 8

if lS

and only if

is

of h). Multi-

so A Ch) is not

arbitrary qxo
f E. A-Ch) such that

is primitive and

is obviously

Since Cy <;;. My'

is uncountable--itAMoreover,h n C
Y

contains : jJ < WI}' Since h is a rational vector space, it is

homogeneous CACh) contains translations by members

plication by 2 is also an automorphism of CA,':::'),

abelian. Because of the small translations Csay by

Cq Em», for every interval I of A, there is

o 1 I n fCI) 1 I. This is enough to ensure that h

hence doubly homogeneous Csee the introduction). A

separable as required.

A doubly homogeneous chain Q is short if it has countable

coterminality and for each a there exist countable bounded

r ,11 Q such that sup r = a inf ts . By Lemma 1 Ci) and Lemma 3,

shortness is definable in and we will assume that it is explicitly

in An uncountable short chain Q that contains no uncountable

m clearly is separable, doubly homogeneous and has the Luzin

property. We now show that there are uncountable chains enjoyinf

these properties, by modifying the standard Luzin construction.

We assume the Coniinuum Hypothesis. Enumerate the Cantor subsets

of a, : IJ < wI}' For each IJ < wI' let MIJ U { : A .:::. IJ}·

Then each lS meager; that is, M is a countable union of nowhere
IJ

dense sets. Let «3)) denote the rational subspace generated by

3 JR. Now choose, inductively, xIJ E JR CIJ < so that Xo mMO'

the rational multiples of members of MO' and for each IJ < WI'

x C/ mM + «{x,: A < u l > This is possible since each N
IJ IJ A u

meager. We now claim that h «{x
IJ:

IJ < WI}» has the Luzin

property. Note that for each y < WI' if 0 1 x f h n My' then

x = qlx
Yl

+ ... + qnxYn for 0 1 qi E m and Yl < < Yn < WI' This

implies that x c mM + «t A < Yn }» and hence Yn < v . There-
Y
n

Y

fore My n h £;. «{xA: A < Y};», a countable set.

is countable, as
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separable subset is said to enjoy the "Separable"

here means in the interval topology of the subset (not

necessarily the interval topolof,y of Thus has the Specker

property if and only if it is uncountable, short and doubly homo

geneous, and for all countable subsets r of there exists a

countable subset A of such for al.l a E there is

6 E A with no member of between a and 6. Thus

THEOREM 11: There is a

geneous, .A( n) 1= X if
X

smly if

if is homo

The long (to

the smallest

I where Ix WI'
define and IfJR

the ) real line t is constructed by removing

from the antilexicographically ordered chain

is the half open real interval [0,1). We can

similarly.

THEOREM 12:

(i = 1,2,3)

be homogeneous set.

that

There are sentences cp.
l

if
->

only n JR.

ifonly n JR.

if
+-->

only JR.

(a) .A( n) F CPl if

(b) A-Un i= CP2 if

(c) A- 1= CP3 if

Proof: (a) t is

it lS Dedekind complete

completely characterized by the statement that

and not separable, yet every subset

{a: a < S} is separable. All of these clauses, together with double

homogeneity, are describable in X. CPI is their unction.

(b) and (c) are similar.

The long (to the right) rational lines n are constructed as

follows. Let 1 0 be the set of all rational numbers in the real open

interval (0, ) . Choose M s;. WI with 0 1 M. Let

n = {(q,v): q E. IO'v E } U { ( 0 ,)J) : )J E M} £;;, i, with the induced

order. All the constructions In which M contains a closed unbounded

subset of (or club for short) with

clubgive rise to ordermorphic chains. Likewise, all constructions

in which the complement of M contains a club (the rationals with

club). The two cases are not ordermorphic and are distinct

from all other cases (in which neither M nor its complement contains

a club).

that if isTHEOREM 13: There are sentences of

homogeneous,

(a) A(n) F if and only if n is ordermorphic to the

line internal

(b) A(Q) F if is ordermorphic to the

rational line
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(c) AUt) 1= t: 3 if and only if

rational line with neither

to long

club.

Proof: Consider a long rational line with internal club. We

may assume that M = wl \ {O}. Then is uncountable but every subset

{a E a < S} is countable. Moreover, r M} is a

closed unbounded above subset of that is well-ordered; and if

Y r
let

and y = sUPr{o E f: 0 < y}, then y

e < f C. have one bump on each interval

oEr:o<y}. Now

{a: (0,11) < a < (0,11 + l)} (11 E wI)' Then the set of bumps of f is

well-ordered and (Vh)(f A h = e -7- h = e). Furthermore, for each bump

b of f (except the left-most), there exist a,S E such that

b(6) ¥ 6 if and only if a < 6 < B. All of these facts are

expressible in

Conversely, suppose that is a doubly homogeneous uncountable

chain with {a E a < B} countable for each S Assume there

exists e < f such that (Vh)(f A h e -7- h e), the set of

bumps of f is well-ordered, and for each bump b of f (except the

left-most), there exist a,S E such that b(6) ¥ 6 if and only if

a < 0 < B. Let r be the set of left s of supports of bumps

of f (other than the left-most). Then r is a well-ordered

uncountable subset of and hence r Also if y E rand

y = sUPf{o E r . 0 < v l , then y = E r: 0 < y}. For a bump b

of f, we may call the end points of the support of b, 11 and

+ 1 (11 E wI)' Then is the disjoint union of the intervals

+ 1) together with (-00,0), each of which is countable and so

ordermorphic to the rational interval [0,1) or (0,1). Hence is

ordermorphic to [0,1) wI with least (0,0) removed.

(b) is proved similarly, except that we need an f such that all

bumps of f have supporting intervals with no endpoints in 0.

(c) now follows from (a) and (b).

We may also obtain long rational lines inside K and

Analogous results then hold in these cases.

The characterization of Rand m in [7] was achieved with

heavy reliance on the arithmetic structure. We have avoided that here

by using Theorem A. Still, it is of interest to know whether, for a

given chain 0, it is possible to define an arithmetic on so that

o becomes an ordered group or an ordered field. We call a chain

Archimedean groupable if it is possible to define an operation + on

o so that becomes an Archimedean ordered group. Such groups

are abelian and are isomorphic to subgroups of R (see [2, p. 45J).

If, in addition, it is possible to define an x on 0 so
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that (Q,+,x) becomes an Archimedean ordered field, we say that Q

is Archimedean The "field" part of the next theorem is

due to Greg Cherlin.

THEOREM 14: are sentences T,T'

homogeneous chain, A (Q) 1= T (A( Q) 1=

such that if Q is a-----
I) if and only if Q is

Archimedean (Archimedean

e < f E C,

Proof: Let Q be Archimedean groupable; so Q is a subgroup

of JR without loss of generality. If fiCQ) is abelian, the result

follows from [5J, and if Q is countable the result follows from

Theorem 4 (or [5] if Q lS discrete). Since Q is primitive, we are

reduced to the doubly homogeneous uncountable case. We may assume

E Q for some irrational > O. Let E ACQ) be trans-

lations by 1 and z , respectively; i. e., t l: a t+ a + 1,

a t+ a As in [7, proof of Theorem], the centralizer

C = in A(Q) consists exact of the translations

f: a t+ a + S CS Q). In particular, C lS transitive on Q, is

an abelian totally ordered subgroup of ACQ), and no element of C

except e fixes any point of Q C= JR). Now let A be any uncount-

able doubly homogeneous chain such that there exist e < r,s E fiCA)

with CCr,s), the centralizer of rand s in fiCA), transitive

on A, abelian and totally ordered, and no element of CCr,s) other

than e fixes any point of X. Choose any a E A. For each SEA,

there is a unique f
S
E err,s) such that fSCa) S. The

correspondence S ++ f
S

provides an ordermorphism between A and

C(r,s), so it is enough to show that CCr,s) is Archimedean group-

able. But C(r,s) is an Archimedean ordered group, for if e < f < g

with f,g E CCr,s), then for any SEA, {fnCB): nEw} can have no

upper bound (otherwise f would fix the least upper bound in X). SO

for some nEw, CB) > gCB). Since CCr,s) is totally ordered,

fn > g.

Now assume that Q lS an Archimedean ordered field. Then Q lS

doubly homogeneous and we may assume that it is a subfield of JR. If

Q is countable, the result follows from Theorem 4, so assume Q is

uncountable. For any 0 < B E Q, the function hS: a as belongs

to A(Q). Indeed, h
B

E the normalizer of

since if g E C Csay g: a t+ a + y), then
-1ChBgh
B
Ha) = (a/S + y)B = a + yB. So for any h N = NCC), the map
-1g t+ hgh is an order-preservinv, automorphism of the Archimedean

ordered group C, and so must correspond to multiplication by a

positive real number by Hion's Lemma [2, p. 46]. In particular, if
. f h- l Ci.fthere lS hEN such that = ht l
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f: a a + y, f = h t ); and if h l,h 2 E Nand
1 -1 Y 1

hltlhi = h 2t lh2, then h 2gh21 for all g C. Now

suppose that in h(A), for every e < f f: C(r,s) there exists

h N', the normalizer of C(r,s), such that hrh- l f, and that
.i f h h r N' " -1 -1l' 2 wlth = h 2rh2, then hlghl for all

g E C(r,s)" We can define a product on C(r,s) as follows: Let

f,g E C(r,s) with e < f. There exists hEN' such that hrh- l f.

Define g f hgh- l This is well-defined and the extension of

to all products

straightforward

ordered field.

the proof.

(when f < e) is done in the obvious way. It is

to check that this makes C(r,s) an Archimedean

Since A is ordermorphic to C(r,s), this completes

So far we have been able to capture every property we want.

However, since there are only complete theories, there exist

non-ordermorphic doubly homogeneous chains and A with =fiCA);
indeed, such and A exist with t IAi. As yet, we have been

unable to explicitly obtain such and A. The problem is that the

Ehrenfeucht game to be played between A(Q) and fiCA) (to prove

=A(A)) lS rather complicated. This is a big gap in our work

to date.
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