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0. MOTIVATION AND PROPAGANDA

Classifying (unordered) sets by the elementary (first order) properties of their auto-
morphism groups was undertaken in (7), (9) and (11). For example, if Q. is a set whose
automorphism group, <S(Q), satisfies

3x3y(x2 = e & y2 = e & Vz[(zx = xz & zy = yz) -*• z = e]),

then Q. has cardinality at most fc$0, and conversely (see (7)). We are interested in classi-
fying homogeneous totally ordered sets (homogeneous chains, for short) by the
elementary properties of their automorphism groups. (Note that we use 'homogeneous'
here to mean that the automorphism group is transitive.) This study was begun in (4)
and (5). For any set Q, S(Cl) is primitive (i.e. has no congruences). However, the auto-
morphism group of a homogeneous chain need not be o-primitive (i.e. it may have
convex congruences). Fortunately,' o-primitive' is a property that can be captured by
a first order sentence for automorphisms of homogeneous chains. Hence our general
problem falls naturally into two parts. The first is to classify (first order) the homo-
geneous chains whose automorphism groups are o-primitive; the second is to deter-
mine how the o-primitive components are related for arbitrary homogeneous chains
whose automorphism groups are elementarily equivalent.

According to the general theory of automorphism groups of homogeneous chains (3),
an o-primitive automorphism group is either o-2 transitive or regular (uniquely
transitive). Again, propitiously, these two classes can be distinguished by a first order
sentence. The o-2 transitive case was treated in (4) and (5), and bears most resemblance
to the unordered case ((7), (9) and (ll)) - not surprisingly since S(Q.) is 2-transitive for
any set Q. In this paper, we completely settle the case of homogeneous chains with
uniquely transitive automorphism groups (these are the rigid homogeneous chains of
the title).

Specifically, let Q be a chain and s/(Q) = Aut ((Q, ^ )). stf(Q) is a lattice-ordered
group under the pointwise ordering. Q is a rigid homogeneous chain if for each a, ft g O,
there is a unique g g&f(Q) such that ag = /?. We will see that D is an o-group, and as
such is rigid in the model-theoretic sense. T. 0hkuma(8) proved that if Q is a rigid
homogeneous chain, then it is ordermorphic to a subgroup of R, the real numbers, and
is ordermorphic to J / ( Q.) which is totally ordered with respect to the pointwise ordering
(a self-contained proof is included in the next section). Consequently, we are dealing
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8 GLASS, GUREVICH, H O L L A N D AND SHELAH

with torsion-free abelian groups. Such groups have an elementary classification
determined by a certain set, {yp: p prime}, of invariants due to Szmielew (12); namely if
G i s a torsion-free abelian group, its Szmielew ^-invariant (p prime), yp, is just the
dimension of the rLp vector space G/pG, where Zp is the field of p elements. The main
result is:

THEOREM. If Q. is a rigid homogeneous chain, then £/(£!) is a cyclic or dense subgroup of
R; and in the former case Q is isomorphic to Z. For eachprimep, the Szmielew p-invariant,
yp(Q), of jtf(Q.) satisfies 1 ^ yv < 2so. If {yp: p prime} is a set of cardinal numbers with
1 ^ YP ^ 2Ko for each prime p, then there are 2° pairwise non-isomorphic rigid homo-
geneous chains Q. having {yp: p prime] as the set of Szmielew invariants for stf(Q.) {where
c = 2No). Iffurther Q. is dense and A is any dense homogeneous chain, stf(A) =<s/(Q,)ifand
only if A is a rigid homogeneous chain and for each prime p, yp(A) = yp(Q) or both are
infinite.

Our proof essentially follows that of T. 0hkuma(8) but is somewhat simpler and has
necessarily been modified in several ways for our purposes (Ohkuma proved the first
sentence of the above theorem and the existence of 2C pairwise non-isomorphic rigid
homogeneous chains-but with no results about Szmielew invariants).

For all unexplained terms, see the next section.

1. BACKGROUND DEFINITIONS AND NOTATION

Let Q be a totally ordered set. stf(Q.) is a lattice-ordered group if we define/ ^ g if and
only if of < cug for all a e Q. Throughout all totally ordered sets will be assumed to be
homogeneous (i.e., if a, fie Q., then there exists gejtf(Q.) such that ccg = fi). If Q. is a
rigid homogeneous chain (e.g., Z, the integers), then fix aoe Q and define a map from
stf{Q.) onto D. via: gt-+ ocog. This well-defined map preserves order and provides an
ordermorphism between j/(Q) and Q; so s/(Q) is a totally ordered group. (If a0 < ao<7
and a > ocg for some a e Q, let ges/(Q.) be defined by

{ fig if a.og
n < fi < aog

m for some m,neZ

fi otherwise

Then ocg = a but a.og =|= a0, contradicting the fact that Q is rigid.) Moreover, jtf(Q) is
Archimedean. (If e <fn < g for all neZ+ = {1, 2, 3,4,...}, then a0 < acof

n < aog for
all neZ+ since D is rigid. Let Q be the Dedekind completion of the totally ordered set
Q. and a = sup{ao/

m: neZ+}eQ. Definefejtf(Q) by

if a <a

otherwise.
<*/ =

u
Then / fixes aog but not a0, contradicting the fact that Cl is rigid.) Hence J / ( Q ) is
isomorphic (as a totally ordered group) to a subgroup of R and if we identify JS/(Q) with
Q as above, we have that each gesrf(Q.) can be realized as a translation by an element
of Q (viz. ocg = a + (aog — a0) for all aeQ). Thus each element of A(Cl) is a translation.

For the rest of this paper, Q. will be a rigid homogeneous chain, and we assume that
Q is a subgroup of R, the real numbers.
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Rigid homogeneous chains 9

Let G be a torsion-free abelian group and p a prime. Let yv{G) be the dimension of
G/pG as a vector space over Zp, the Galois field of p elements. yv{G) is called the pth
Szmielew invariant of G. One way to construct torsion-free abelian groups with given
Szmielew invariants {yp: p prime} is as follows: Let Ip be an index set for each prime p
so that \lp | = 7P and Ip n Iq = 0 Up and q are distinct primes. Let / = U {Ip: p prime}
and {^: i el) be a linearly independent set of elements in a rational vector space of
dimension greater than or equal to | / | . For each prime p, let Qp be the set of rational
numbers which, in simplest form, have denominators relatively prime to p. Note that

(0 if q 4= p

U if q=p.

Let Gp = S ^ Q j , : ie / p } and G = ^{Gp: p prime}. Then yv{G) = yp for each prime p.
If Ip 4= 0 for some prime p and | / | < 2S°, the group constructed above is a dense
subgroup of R, if we take R to be the rational vector space.

THEOEEM (Szmielew(12)). If G and H are torsion-free abelian groups, then G and H
are elementarily equivalent if and only if, for each prime p, yp(G) = yp(H) or both are
infinite.

We will write yp(O) for yp(jrf(Q.)) for notational convenience - since we are identi-
fying J^/(Q) and Q, this is especially permissible!

If A is homogeneous and s?(A) = stf{Q.) (just as groups), then j^(A) is also abelian.
I f / e J / ( A ) and A/ = A for some A e A, let cr £ A. There exists g ejrf(A) such that cr = Ag.
Now erf = Xgf = Afg = a, so / = e. Hence A is a rigid homogeneous chain and, for each
prime 2?, y^A) = yp(£l) or both are infinite.

Robinson and Zakon (10) have shown that if G and H are dense Archimedean totally
ordered groups with yp(G) = yp(H) or both infinite (for each primes), then G = H (as
lattice-ordered groups). Hence if A is homogeneous and J / ( A ) = stf(Q.) (as groups),
then «s/(A) = s/(Q.) (as lattice-ordered groups) - cf. a similar result for the other
o-primitive class of ordered permutation groups (4).

Note that, for each primep, the raapat->ya fixes O(eR). Hence not every element of
Q is divisible by p. Therefore yp(Q) ^ 1 for each prime p.

It remains to prove the existence and cardinality part of the theorem.
For more details of the above and the original proof of Theorem A (without specified

Szmielew invariants) of the next section, see (8) or ((3), section 3-2).

2. THE ESSENTIAL PROOF

THEOREM A. Let Qo be a subgroup of R having all its Szmielew invariants at least 1. / /
|Q0| < 2so, there exists a rigid homogeneous chain Q 2 Qo having the same Szmielew
invariants as Qo.

Note that the hypothesis implies yp < 2S<> for each p.

Proof. First we may assume that Qo is dense in R (if it is not, let ^e R be such that
Q£ D Qo = {0}. Qo © Q£ has the same cardinality and Szmielew invariants as Qo). Let
Do be the divisible closure of Qo in R and Eo = {0}.
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10 GLASS, GUBEVIOH, HOLLAND AND SHELAH

Let {/A: 1 < A < 2No} be an enumeration of the elements of J / ( R ) which are not
translations. Define QA, Z>A and Ex by induction on A( < 2No) so that

(1) QA is the direct sum of Qo and the divisible subgroup EA of R.
(2) Z)A is a divisible subgroup of R containing QA.
(3) |DA|s:max{|A|,|Q0|},
(4) if A' < A, then Ex. c Ex and BX\Q.X £ Z>A\QA,
(5) (QA/A u nji1) n (Z>A\QA) #= 0 .
Then Q = U {^A: ^ < 2X°} will be the required rigid homogeneous chain having the

same Szmielew invariants as Do. (By (1), each QA is a subgroup of R having the same
Szmielew invariants as ii0, so the same is true of Q.. I f / e j / (R) is not a translation,
/ = /A for some A. By (5), there exists a e QA £ Q such that a/or a/"1 e Z>A\DA — ^»\^/«
for all /i ^ A. Now a/ (or a/-1) $ u {*y /i > A} = Q, so fi is rigid.)

Suppose Z>A, 1?A and DA have been defined for all A < /i so as to satisfy (l)-(5). Let
X* = u {Xx: A < /i} where X = Z>, E or Q. Then Z>*, E* and Q* are subgroups of R
with D* and E* divisible, and Q* = E* ® Qo. Le t / = /^.

Let A = {aeR: af = a, + cr for some creQ*}, ,6 = {aeR: af = -a + cr for some
creQ*} and C = {aeR: a / = g'a + a-for some <refl* and qeQ\{0,1, — 1}}.

(i) If R 4= A u B u C u i i * / " 1 U -D ,̂ let a e R \ ( 4 u B u C U O*/- 1 U DJ). Then
since E* £ Q* £ Z)*, Eft = E*@ aQ is indeed a direct sum as is DA = Qo © E^. If
afeQ^, then a / = ga + cr for some <reQ£ and geQ- Hence a e i u ^ u C u D*/ - 1 ,
a contradiction. Thus (l)-(5) hold for all A < /i if we let D^ be the divisible closure of
the subgroup of R generated by D* © aQ and a/.

(ii) I f R = i 4 u £ u C f U Q*/"1 U £>*, let A: a t -+a / -a . Then A is continuous and,
since / is not a translation, h is not constant. Hence Kh contains an interval. But
( R \ i ) A 2 Rh\Ah 3 Rh\Q* since Ah c Q*. Since |RA| = 2xo and |Q*| ^ \D*\ ^ max

Now .k: ai-Kxf+a. is a strictly increasing function. Hence, for a given creQ*, there
is at most one a e R such that ctlc = a. Thus \B\ < |Q*j| < 2so.

Consequently, \C\ = 2No, and so C\D* #= 0 .
If there exists 8e C\D* with Sf = qd + cr for some aef l* and q$ Z, let a = S. Other-

wise a = Sf where S is an arbitrary member of C\D*. In the latter case, a. = Sf = m5 + a
for some ere Q.% and 0, +1 4=raeZ(<Je<7so<7=f=0, ± 1). Therefore a/-1 = 8 = a — cr/m.
But cr e Z)* and 5 ̂  Z)*, so a £ Z>*. In either case we have a £ Z)* with a/ (or a/"1) having

the form -a + cr' with <r'eZ>* and k,nrelatively prime integers with n =f= 1.

If cr' £ D*, let E/i = E*@ aQ, Q^ = Qo ® Ep and Z)̂  be the divisible subgroup of R
generated by Z>* © aQ and /?(= a/ or af'1) - the indicated sums being indeed direct.
I t is straightforward to show that (l)-(5) now hold for all A ̂  /t (if / ? e ^ , then
k k
-a + cr' = ra + T for some reQ and r eDJ . Since aiD*, - = r and a' = reQ.*,
n r r n *
a contradiction).

If a' eQ.*, \etp be a prime such thatp|?i. Let £eQ0 be such tha t - eZ>0\Q0(yp > 0 for

all primes p, so such a £ must exist). Let £ = a - £ . Then ££Z>* Let E = E*@ £Q,
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Rigid homogeneous chains 11

QA = Qo @ Ep and D^ be the divisible subgroup of R generated by D*, £ and /? (= ocf or
a/"1) - the indicated sums being indeed direct as is easily shown. Again, a routine veri-
fication shows that (l)-(5) now hold for all A < /*. (Note that aeQ^ and /?^QA-if

k k k
fieQ. -a + a' = /? = a + r£forsomereQ and aeQ*. Sinceoc$D*, - = r. So -£eQ*,

A;
and hence - £ e Qo, a contradiction.)

n
This completes the proof of the theorem.
The idea of enumerating the elements of stf(R) (which are not translations) and

killing them off one by one is not new. Its origins date back to the isolation of the well-
ordering principle around the turn of the century. A specific reference predating
Ohkuma is (2).

3. APPLICATIONS (ADAPTATIONS OF THE METHOD)

We now make some minor modifications to the proof of Theorem A to obtain further
results concerning the existence and number of certain rigid homogeneous chains. Our
first application is to handle the case when some Szmielew invariants actually attain
2*o.

THEOREM 1. Let {yp: p prime] be a set of cardinal numbers with 1 < yp < 2**» for all
primes p. There exists a rigid homogeneous chain having {yp: p prime) as its set of Szmielew
invariants.

Proof. Let I — {p:p prime and yp = 2so}. Let D.o be a dense subgroup of R having
Szmielew invariants y'p such that 1 =% y'p < 2so and y'p = yp for all primes p $ I, with
| Qo| < 2Ko. Let Do be the divisible closure of Qo. If /i = v+p for v a limit ordinal and
p e / , let T e R\Dv+p_v Let E* = Ev+p_x ® TQP, Q* = no@E*, and D* be the divisible
closure of Q* u Dv+P_v For all JJ, not of this form, let Q.*, D* and E% be defined as in the
proof of Theorem A. Now proceed as before using the new Q*, D*, and E* in place of
the old ones.

THEOREM 2. Let {yp: p prime} be a set of cardinal numbers with 1 ^ yp < 2so for all
primes p. There exists a rigid homogeneous chain Q having {yp: p prime) as its Szmielew
invariants such that for eachfejrf(R) not a translation {D.f u O/-1) n {D\Cl) 4= 0 , where
D is the divisible closure of Q.

Proof. We proceed as in the proof of Theorem 1 except that we require Dx to be the
divisible closure of QA in (2). In order to ensure this at each stage of the induction we
proceed exactly as before, constructing first a D^ which is possibly not the divisible
closure of QM. If /? = afM (or a/"1), belongs to the divisible closure of Q ,̂ let Q^ and EM

be as before and D^ be the divisible closure of Q .̂ Otherwise, we change Q.p D^ and
Ep as follows: Let £e Q.o be such that | f £ no. Adjoin to E (and hence to Q )̂ (/? — \£) Q
and replace D^ by the divisible closure of the new Q.^. Note that (/# — ££) 0 is adjoined
as a direct summand. Further, since !£eZ)0\Q0, /? belongs to the new D^ but not the
new QA. Thus the modified (l)-(5) hold for all A < /i. Now D = u {OA: A < 2«o} and
D = u \Px- A < 2Ko} satisfy the conclusion of the theorem.
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12 GLASS, GUREVICH, HOLLAND AND SHELAS

We now answer a question of Stephen H. McCleary (see (3), page 108).

COROLLARY 3. Let {yp: p prime} be a set of cardinal numbers with 1 ^ yp ^ 2No for all
primes p. There exists a rigid homogeneous chain £2 having {yp: p prime) as its Szmielew
invariants such that R is the divisible closure of Q.

Proof. Let Q. and D be as in Theorem 2. There exists a divisible subgroup H of R such
that R = D © H. D.® H is the desired rigid homogeneous chain.

We now further modify Theorem 2 to help us count the number of isomorphism
classes of rigid homogeneous chains of given Szmielew invariants. This proof will not
depend on extra set-theoretic assumptions (cf. section 4).

THEOREM 4. Let {yp: p prime} be a set of cardinal numbers with 1 < yp ^ 2No for all
primes p. There is a rigid homogeneous chain D satisfying the conclusion of Theorem 2
such that R = D © A, where D is the divisible closure of Q, and | A| = 2No.

Proof. Let {£v: v < 2so} be a basis for R as a vector space over Q. We construct
AA(A < 2No) at the same time as we construct Qx, Dk and Ex so that QA, DA and Ex satisfy
the modified (l)-(5) of the proof of Theorem 2 and AA satisfies

(a) AA fl Dx = {0},
(b) AA is a divisible subgroup of R,
(c) AA- is a proper direct summand of AA for each A' < A, and
(d) |AA| = max{X0,|A|}.
Let Qo, Do and Eo be as in the proof of Theorem 1. Let v0 be the least v such that

£y$D0 and define Ao = Q£,Va- Assume that QA, DA, EK and AA have been defined for all
A < yMso that (a)-(d) hold aswell as the modified (l)-(5). Let X* = U {Xx: A < /i} where
X = Q, D, E or A. As in the proof of Theorem 2, we can find a, £$D* @ A* such that
a e f l * © £Q and /? = af^ (or af~x)$Q.* ® £Q © A* (all the indicated sums being
indeed direct). As before, we can find a divisible E/t containing E* as a direct summand
such that Q/( = Qo © Efl has the same cardinality and Szmielew invariants as Q* and
fleD^Clp, where Dfl is the divisible closure of Q .̂ In either case (/?e (̂ ) D* © £Q), the
proof given in Theorem 2 yields D/t intersecting A* trivially. Let V be the least ordinal v
such that £„ £ D^ © A*, and A;i = A* © QE,-. Then QA, Dx and AA satisfy (a)-(d) and the
modified (l)-(5) for all A < ji. Thus Q = U {OA: A < 2 % D = U {Dx: A < 2No} and
A = u {AA: A < 2No} satisfy the conclusion of the theorem.

THEOREM 5. Let {yp: p prime} be a set of cardinal numbers with 1 ^ yv < 2*0 for all
primes p. There are 2C isomorphism classes of rigid homogeneous chains which have
{yp: p prime} as Szmielew invariants, where c = 2so.

Proof: Since any order-preserving isomorphism between totally ordered subgroups
of R is obtained by multiplication by a real number and any isomorphism between two
rigid homogeneous chains (considered as subgroups of R) is a group isomorphism
followed by a translation, there are at most 2Ko rigid homogeneous chains in any one
isomorphism class. Hence it is enough to show that there are 2C distinct rigid homo-
geneneous chains having [yp: p prime} as Szmielew invariants. Let Q, D and A satisfy
the conclusion of Theorem 4, and {£„: v < 2*V} be a basis for the rational vector space A.
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Rigid homogeneous chains 13

For each X c 2No, let Qx = Q © Yi{Qg'v'- veX). Then Clx is a rigid homogeneous chain
having {yp: p prime} as its Szmielew invariants. Clearly Q v =j= Q r if X and Y are
distinct subsets of 2so. Thus there are 2C rigid homogeneous chains having the desired
{y.p: p prime} as Szmielew invariants.

An alternative proof of Theorem 5 can be given by modifying Ohkuma's original
proof to include the invariants. This is conceptually easier but messier in its details.
In the proof of Theorem 1, at each stage /t we have at least two rationally independent
choices a* and ap for a. We can either ensure a* e Q^ and a* e D^Q.^ or vice versa. In this
way we obtain a distinct O for each <j>: 2so -> 2 = {0, 1}. This yields 2C distinct rigid
homogeneous chains of the given Szmielew invariants. For details see (8) or (3), 113.

We complete this section with some measure-theoretic results about dense rigid
homogeneous chains. The first is easy.

THEOREM 6. There is a dense rigid homogeneous chain that is not Lebesgue measurable.

Proof. Since every perfect subset of R is the closure of a countable set, there are 2No
distinct non-empty perfect subsets of R. Let {Y : /t < 2so} be an enumeration of them.
Let Dp Efl and Q.^ be as constructed in the proof of Theorem 1. Since each Y^ has
cardinality 2No, there is v^eY^D^. Take fi/( © i^Q, DM ® v/tQ and E^® v^Q in place
of Q ,̂, Dp and E/t respectively and build a dense rigid homogeneous chain with them;
viz. Q. = u {Q/(: /i < 2so}. Note that Q. intersects every non-empty perfect subset of R
and hence is not Lebesgue measurable. (Otherwise, D., being a proper subgroup of R has
measure 0. Therefore, its complement contains a non-empty perfect subset of R,
a contradiction.)

Note that the proof, combined with that of Theorem 5 actually gives 2C non-
measurable dense rigid homogeneous chains of any prescribed {yp: p prime} with
1 « yp < 2*o.

The question of whether every dense rigid homogeneous chain is not Lebesgue
measurable remains open. The only result we have in this direction is the following.

Let (J) be the set of non-negative integers. Then

THEOREM 7. Let Q.bea dense rigid homogeneous chain. Then D. cannot be covered by the
union of intervals Kn (n e to) where Kn has length less than 9~n.

Proof. Let A £ Q and B £ R\Q be countable dense subsets of R. Let 5? be the
collection of all strictly increasing functions / whose domain is a finite union of non-
adjacent intervals I with end-points in B such that/17 is translation by an element a7

of A. For each/e^5", let a(f) be the set of intervals I whose finite union is the domain
of/, and r(f) = {//: Iea{f)}. Let a'(f) (respectively T ' ( / ) ) be the set of maximal
real intervals disjoint from dom (/) (respectivelyrng(/)). Let mo(f) (resp. rny(f)) be
the minimal length of intervals in u '( /) (resp. T ' ( / ) ) , and

m(/) = min{rao(/), mx(/)}.
We next show:

LEMMA. If felF and K is a non-empty interval of length < \m{f), then there are
extendingf such that K £ dom(^), K c rng(A) and m(g),m(h) > \m(f).
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14 GLASS, GUREVICH, HOLLAND AND SHELAH

Proof of Lemma. By symmetry, it is enough to construct such a g. Since B is dense
in R, we may assume that the endpoints of K belong to B, without loss of generality,
and, moreover, that there are consecutive intervals I,Jea(f) with I < K < J.

If sup / = inf K, let g be defined by

( xf if a;edom(/)(
z + dj if xe[infK, su

Thus / and K together with their point of adjacency have become one interval of
o~(g) and ge^. A similar construction works in case supiiT = inf J. In all other cases,
we extend/to a g for which Kerr(g) and so that for xeK, xg = x + a with aeA,

(sup/) + a/ + ̂ m(/) < K + a < (inf J) + a,j-%m(f).

We can now complete the proof of Theorem 7. Assume {Kn: new) covers Q with
length (Kn) < 9~n. We construct {fn: u e w } c J^so that

(i) <r(/0) = {/, J} for some / < J,ax 4= aJt inf J — sup I > 9,
(inf J + a,j) — (sup/ + a7) > 9, and Ko c dom(/0).

(ii) /„ extends fm if n ^ m.
(iii) m(fn) > 3~n+1 and
(iv) Kn £ dom (f2n) n rng (/2n+1).

This can be done by the lemma. L e t / = u {/„: new}; i.e., dom(/) = u {dom(/w):
n £ o)} and if re e dom (fn), xf = xfn (/is well-defined by (ii) and strictly increasing). Since
{Kn: nea)} covers Q and Q s dom (/) n rng (/), Qf = D. by construction. But / is not
a translation (az =J= a,), so D is not rigid, the desired contradiction.

4. A SET-THEORETIC CONSIDERATION

In this section we prove results about rigid homogeneous chains which depend on
the particular model of set theory we consider. In particular, we will prove that the
existence of dense rigid homogeneous chains of cardinality less than the continuum is
independent of the axioms of ZFC. For all unexplained set-theoretic terms, see (6).

Do there exist small rigid homogeneous chains (other than Z) ? That is, do there exist
dense rigid homogeneous chains Q with | Q| < 2so? If so, for each cardinal K < 2Ko, how
many of cardinality K are there? If we assume the continuum hypothesis there are, of
course, none. (If K < 2xo = J^j, then K ^ J$o and any countable dense subset of R is
isomorphic to Q-) Observe that if Q is a dense rigid homogeneous chain, then it is
|D|-dense; i.e., any non-empty open interval of Q. contains |D| points of Q. In (l),
Baumgartner gave a model of set theory in which 2so = J$2 and any two Xrdense sets
of reals are isomorphic. In such a model, there can be no dense rigid homogeneous
chains of cardinality Ĵ x since there exist non-rigid homogeneous J^-dense chains of
cardinality KJ (Take the divisible subgroup of R generated by fc^ rationally independent
elements of R). Hence in such a model, there are no small dense rigid homogeneous
chains. Actually:

THEOREM 8. Martin's axiom implies that there are no dense rigid homogeneous chains
of cardinality less than 2xo.
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Proof. Suppose Q is a dense subgroup of R with | D.\ < 2so. Then R\O is dense in Rand
we can choose A, B countable dense subsets of R with A s Q. and B £ R\Q. Let P be
the set of all strictly increasing functions p whose domain is a finite union of non-
adj acent intervals / with endpoints in B such that p \ I is translation by an element of A.
Then P is a partially ordered set if we define p < q if and only if p extends q. Since P ia
countable, it satisfies the countable (anti) chain condition. Moreover,

Da = {peP:aedom(p)} and Ra = {peP: (3^efi)(^ = a)}

are dense subsets of P for each a e Q, since B and A (respectively) are dense subsets of
R. Also, D = {peP: 3a3fi(a.p — ot =j= fip-fij} is dense in P. By Martin's axiom, there is
a filter G s P such that G n D * 0 and (? n A, * i> + G fi Ra for all a e Q (|Q| < 2*o).
This provides a function g (that is not a translation) such that Q c dom (9), Q c Qgr,
and gf extends to an element of J / ( R ) . For all aeQ,ag = aga = a + cra for some aa e A;
so a<? e Q. Thus £}# = Cl. Since <? is not a translation, Q is not a rigid homogeneous chain.

The proof given above only uses Martin's axiom for countable p.o. sets. This weak
form of Martin's axiom is equivalent to: 'The real line is not a union of less than con-
tinuum many nowhere dense subsets.' So the conclusions of Theorem 8 follow from this
most natural axiom.

In contrast to Theorem 8.

THEOREM 9. Consecutively adding w-^ random reals to a transitive model of ZFCprovides
a rigid homogeneous chain of cardinality J$r (8ee below for the definition of random real.)

Proof. Let M be a transitive model of ZFC. Let P1 be the p.o. set of Borel subsets of
R (in M) modulo sets of Lebesgue measure zero. We force by Px as described in (6), § 20.
Let Gx be a generic subset of Px and £x = sup {r e Q: (r, oo)/Null e G^, where Null is the
ideal of all subsets of R (in M) of Lebesgue measure 0. Then M[GX] = M[^]. £x is called
the random real corresponding to G1. For any r e Q, £x + r is also a random real (corre-
sponding to the translated Gj). Hence the set of random reals is dense in the real line of

As P1 satisfies the countable (anti) chain condition (c.c.c), the cardinals of
are the same as those of M.

Using the Solovay-Tennenbaum iterated forcing procedure (see (6) § 22); we con-
struct a notion of forcing, PA, for each A < w1: If A = fi + 1 ^ 2, let PA = P^ * P [̂, where
Pf is a name (with respect to P^), and in M\YP (P£ is the p.o. set of Borel sets modulo
the null sets). If A is a limit ordinal, let PA be the set of functions/ whose domain is a
finite subset of A satisfying: if / tedom(/) , then /ifeP^. (Forcing with PA adds reals
{^: /i < A}). Let P = Pm. Each PA is c.c.c. (A < wx), and hence so is P (see (6), § 22).

Let G be a generic subset of P adding £A: A < o>x. Note that the cardinals of M[G] are
precisely those of M. Let C be the additive subgroup of R (in M\G]) generated by 0 and
{£A: A < wx}. We prove that C is a rigid homogeneous chain, which establishes the
theorem.

For reductio ad absurdum, assume that C is not a rigid homogeneous chain in M[G].
Let feM[G] be such that/6^(R)-Mt°])/is not a translation and Cf = C. Without loss
of generality, there exist x,yeQ such that x < y and yf—xf<y — x.Xsz [#, y] will be
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16 GLASS, GUREVICH, HOLLAND AND S H E L A H

called good if X is a closed set of strictly positive Lebesgue measure ju,X, and there is
n G Z+ such that xxf— x2f = n(x1 — x2) for all xv x2 e X. Let !F be a maximal family of
disjoint good sets. Then |!F\ < J$o, so

y/-a;/ < y-x.

Hence there is Do c [x,y]\u & of strictly positive measure. Since any set of strictly
positive measure contains a closed subset of strictly positive measure, we may assume
that Do is closed.

There is p0 e P forcing that f (a P name for/) is a counterexample (to C being a rigid
homogeneous chain), and 5? is a maximal family of disjoint good subsets of [x, y~\. For
every reQ and nea), there is a condition denning the nth component of rf (Repre-
senting R by elements of W2). The set of such conditions is dense. Therefore there is a
maximal antichain of P (which must be countable since P is c.c.c.) contained in this
set. Since each Xe^is closed (and hence Borel), it is coded by a real number. It
now follows easily that there is A < wx such that p0, &', f\ QeMx = M[{g/t: /i < A}].
Mx = M[GX] for some generic Gx £ PA. Let £PsMx be the quotient notion of forcing
P/Px; i.e., P = PA * &>. Let 0>x be the p.o. set of Borel sets modulo Null in Mx. The
elements of 0* can be identified with finite functions q such that

dom (g) £ {fi: A < /i < wj .

So for each D e &>lt <A, Z>> e^8.
Let G' be a generic subset of 0* containing (A, J90>/Null. Since E,xeC and Cf = G,

gxf = n£x + a in -3/A[Cr'] where a = n1£Xl + --- +nkE>Xk + a' with o ' e Q , new, nv...,nk

non-zero integers, Ax < ... < Aj. and A^Aj, ...,/\.k}. If A < Ak, then £,X]c is known in
ilfA[{^A, £Al, ...,^t_i}] which is absurd. Hence aeMx and there is qe&* such that
(A.DoVNullGg and glh??Af = n?A+a. Let Z>; = D0\Z> where D = u {/nZ>0:^ is a
rational open interval with / n Do having Lebesgue measure 0}. Then for each rational
interval I, I fl D'o = 0 or / n D'o has strictly positive measure. So, without loss of
generality, Do enjoys this property. But as

IVNull Ih^ \x I = n%x + a, (I n D0)/NuU Ih^ §A f = w?A + a

whenever I (] Do ^ 0 (I a, rational interval). Indeed Z)0/Null forces that the equation
zf = nz + a has a solution in each rational interval meeting Do. Since / is continuous,
zf = nz + a for all zeD0. Thus Do is good which contradicts the maximality of S'.
Consequently, C is a rigid homogeneous chain (of cardinality Xi). a s desired.

The proof of Theorem 9 can easily be modified to replace CJ1 and Xi by any uncount-
able cardinal K < 2so. Indeed, the ideas of section 3 can be incorporated with the above
proof to show that if K is an uncountable cardinal no bigger than 2so, there is a model of
ZFC (dependent on K) in which there are 2K pairwise non-isomorphic rigid homogeneous
chains of cardinality K. The best result in this direction that we are able to obtain is:

THEOREM 10. Let M be a transitive model of ZFC. There is a notion of forcing, P, in
M such that if G £ P is generic, then

1. The cardinals of M[G] are those of M,
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Rigid homogeneous chains 17
2. (2*o)M[G] = (2»o)-M,

and
3. In M[G], for any J$o < K ^ 2xo, i^ere are 2* pairwise non-isomorphic rigid homo-

geneous chains of cardinality K.

The proof is a generalization of that of Theorem 9 but involves a more complex
iteration of random reals than the Solovay—Tennenbaum one used above. Since the
proof is so technical, we have decided to exclude it.

Finally, as a.consequence of Theorems 8 and 9 we have:

THEOREM. The existence of small dense rigid homogeneous chains is independent of the
axioms of ZFC Specifically, Consis (ZFC) -> Consis(ZFC + —CH + there are no rigid
homogeneous chains of cardinality J$i) and Consis(ZFC) -> Consis{ZFC ^ 'CH + there
exists a rigid homogeneous chain of cardinality J^1).
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