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RECOGNIZING THE REAL LINE

BY

YURI GUREVICH AND W. CHARLES HOLLAND

Abstract. A certain elementary statement about the group of automorphisms of

the real line R is sufficient to characterize R among homogeneous chains. A similar

result holds for the chain of rational numbers.

Is it possible to characterize the real line with elementary statements? The

answer depends, of course, on the language used. At one extreme, using only the

elementary language of ordered sets, the real line is indistinguishable from any

other totally ordered set which is dense in itself and has no endpoints. At the other

extreme, the usual ways of defining the real line use set quantification. A somewhat

different approach which is valuable in many areas of mathematics, in particular,

geometry, is to classify structures by properties of their automorphism group. In

this spirit we distinguish the real line among homogeneous chains by a statement in

the elementary language of the group of automorphisms of the line. The rational

and irrational chains have the same group of automorphisms as each other, but

they are distinguished from all other homogeneous chains by a statement in the

same elementary language.

The problem was originally raised at the 1978 ordered group conference in Boise,

and many of the methods of this paper were presented there and appear in [4]. The

authors are grateful for several stimulating discussions with Andrew Glass. A

slightly different approach to this and similar problems is developed independently

by Jambu-Giraudet in [5], where, again, many of the results of this paper appear.

Neither [4] nor [5] contains the theorems announced above. The crucial difference

of the present paper with [4] and [5] begins with Lemma 1 of this paper.

For any totally ordered set (chain) fi, the group A(£i) of all order-preserving

permutations of S2 becomes a lattice-ordered group when ordered pointwise. These

groups are fundamental in the study of lattice-ordered groups, since every lattice-

ordered group can be embedded in some A(&) [3]. The elementary language

appropriate to the lattice-ordered group A(tt) contains the usual logical symbols

and also symbols for equality, order, the group and lattice operations, and variables

denoting members of A(Çl) (but does not contain variables denoting members of £2).

This paper was motivated by our interest in lattice-ordered groups, and most of

the results were expressed and proved in that language. When this work was almost

finished, we became aware of [5] where the interest is mainly in A($l) as a group.

The lattice-ordered group (/-group) A(ü) is interpretable in the group A(il) in a
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certain sense (see the appendix). If <p is the /-group statement about A(R) which

characterizes R (where R denotes the real line), and </>' is the translation of <j> into

the language of groups, then <£' characterizes R also (because R is isomorphic to its

inversion). The rational chain Q can be treated similarly. Hence, in the rest of this

paper we deal with A (ß) as an /-group.

The analogous question-which sets ß are characterized by the elementary

properties of the full symmetric group S(ß)?-has been investigated by McKenzie

[7], Pinus [8], and Shelah [9].

Since A(R) and A([0, 1]) are isomorphic as lattice-ordered groups, we see it is

necessary to impose some homogeneity condition before we can expect an arbitrary

chain ß to be completely characterized by properties of A(£i). Therefore, we will

assume throughout that A (ß) acts transitively on ß.

Also, we will need the following facts about A(ü,), which can be found in [1]. The

support of a member/ G A($l) is the set of points of ß which are moved by/. A

convex congruence on ß is an equivalence relation which is preserved by the

permutations in A($l) and whose classes are convex subsets of ß. The convex

congruences on ß are totally ordered by inclusion [3, Lemma 7]. For any convex

congruence class A, .4(A) is isomorphic to a subgroup of A(tï), namely those

members of A(Q) which fix each point off A. In particular, .4(A) is transitive on A,

and every congruence class with more than one point contains the support of a

nonidentity member of A($l). For any given convex congruence, all its classes are

isomorphic to each other, by the transitivity of A(Q). There are two cases to

consider regarding the local structure of ß. In the first case, suppose there is no

smallest convex congruence whose classes contain more than one point. Then every

interval of ß with more than one point contains a convex congruence class with

more than one point, and hence contains the support of a nonidentity member of

A(Q). In the second case, suppose that there is a smallest convex congruence whose

classes contain more than one point. If A is a class of this congruence, then .4(A)

has no nontrivial convex congruences on A, and there are just two possibilities [3,

Lemmas 16 and 17, and Theorem 4]. The first of these is that .4(A) is 0-2-transitive

(A is doubly homogeneous); that is, for all a, ß, y, 8 E A, if a < ß and y < 8 then

there exists g E A(A) such that ag = y and ßg = 8. It is an easy exercise to verify

that when .4(A) is 0-2-transitive, .4(A) is also 0-«-transitive for every positive

integer «, in the sense that for every pair of sequences of points of A, ax < a2

< •• • < an and ßx < ß2 < ■ ■ ■ < ß„, there exists g G .4(A) such that a¡g = /?,,

for all /'. In this case, for any interval / of ß containing more than one point, we

may choose points a < ß < y < 8 all in / and all in the same class A of the

minimal convex congruence. There exists g E A(A) such that ag = a, ßg = y, and

8g = 8. By truncation off the interval (a, 8), we may assume the support of g is

contained between a and 8, and hence lies in /. Here again, every interval of ß

containing more than one point contains the support of a nonidentity member of

A(il). The only remaining possibility is that .4(A) is an archimedean totally ordered

group with the property that if e ¥= g E A(A) and A G A, then {Xg"\n =

0,± 1,±2, . . . } has no upper or lower bound in A. In this case, ß is said to be
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locally Ohkuma and A is an Ohkuma segment (see [1] or [3] for more details). To

recapitulate: either every interval of ß with more than one point contains the

support of a nonidentity member of A (ß), or ß is locally Ohkuma.

In any case, the members of A(Q) have unique extensions to .4(ß), where ß is the

Dedekind completion of ß. A member/ G .4(ß) is positive if / > e, where e is the

identity permutation. For any / G .4(ß), |/| = / V/_1- Two elements/, g G A(íl)

are disjoint if |/| A I g\ = e, which is equivalent to saying that the supports of/ and

g are disjoint sets. A convex cycle is a member of .4(ß) whose support in ß consists

of a single interval. Convex cycles/ are characterized by the property that if af ¥= a

then the set {af"\n = 0,± 1,±2, . . . } is cofinal and coinitial in the support of/

Roughly speaking, the graph of a convex cycle has "one bump" in comparison with

the identity function. It is instructive to note that a member of /l(ß) whose support

consists of a single interval in ß need not be a convex cycle, since its graph could

have two bumps separated by a point of ß not in ß. Every positive member of .4(ß)

is uniquely the join of a set of pairwise disjoint convex cycles.

Our general aim is to translate certain statements about ß or A(il) into equiva-

lent elementary statements about .4(ß). The first of these is

(¿(g) g is a positive convex cycle.

It is easily seen that this is equivalent to the elementary statement: e < g and not

(3/ « such that g = / V h and/A h = e and/ =f= e and « =£ e).

p. The support of g lies to the left of the support of «; that is, if

ag ¥= a and ßh ¥= ß, then a < ß.

An equivalent statement is: V/(/ > e => \g\ A \f~lhf\ = e). The equivalence is

clear when one observes that the support of f~lhf is the image under / of the

support of h.

tfh ( g) g has bounded support.

This is equivalent to: 3 /, «(/£g and g£/i and/ ** e and « ¥= e).

In order to translate statements about points of ß or ß into statements about

A (ß), we want to identify each point a of ß with the set of those members of A (ß)

whose support has least upper bound a. Two permutations corresponding to the

same point in this way are similar in the sense of the following statement,

g ~ «        The supports of g and « have the same least upper bound in ß.

Equivalently, g£/ if and only if «£/. It is clear that if the supports of g and «

have the same least upper bound then the elementary statement holds. Conversely,

if l.u.b. support g = a < ß = l.u.b. support « and every interval of ß supports a

member of A(Q), let e ¥=f have support/ E (a, ß). Then g£/but not «£/. In the

other case, if y G (a, ß) and / is the Ohkuma segment containing y, then every

point of / is above every point of support g, but some point of / is below some

point of support «, so if e ¥=f and support/ E I, then g£/but not «£/.

A similar argument shows

Adj(g, «) l.u.b. support g = g.l.b. support « (in ß)

is equivalent to g£«, and for no/ i= e is g£/and/£/i.
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0 (B) A (B) is locally Ohkuma.

This is equivalent to 3 / > e (for all g, h, e < g < / and e < h < /=> g < « or

« < g). If .4(B) is locally Ohkuma, then any / > e whose support lies in an

Ohkuma segment works. Conversely, if / has the property described in the state-

ment, then the support of/is an Ohkuma segment.

It is easy to see that .4(B) is 0-2-transitive if and only if for each a < ß < y in ß,

there exists / G .4(B) such that af = a and y < ßf. From this, it is easily proved

that

%(Q) A (B) is 0-2-transitive

is equivalent to not 0 (B) and (if g ¥= e and /£g and g£« and htk and % (k), then

3/ such that |/| /\ j = e and k£j~lhj).

Suppose 3C(B). Then certainly not 0(B), and if <$>(k) and ftgthtk, choose

o, ß, y G B with a < ß, a, ß G supp g, and supp k < y. Then there exists j G

.4(B) such that e < j, 8j = 8 for all 8 < a, and /?/ = y. It follows that |/| /\j = e

and supp k < y = ßj < (supp h)j = supp(j-1«/), so ktj~xhj. Conversely, suppose

the elementary statement is true, and let a < ß < y with a, ß, y G B. Choose

a¡ G ß so that a < a, < a2 < ß < y < a3. As ß is not locally Ohkuma, every

interval of B supports a member of /1(B). Choose nontrivial /, g, h, k G /1(B) so

that a < supp / < a, < supp g < a2 < supp « < /? < y < supp A: < a3. Then

/£g£«£/c and $(£), so there exists / G .4(B) with \f\/\j = e and ktj~xhj. Since

8j = 8 for each ô G supp/, we may assume that 8j = 8 for all 5 < supp/, and in

particular, aj = a. Moreover, ßj > (supp h)j = supp(j~xhj) > supp k > y. Hence

3C(Q).
The next statement has a decidedly nonelementary flavor.

^(ß) B is Dedekind complete and not discrete.

This is equivalent to: %(Q) and (if 9>(g) and g ¥= e then 3« such that

Adj(g,«-'g«)).

To prove this, assume ß is Dedekind complete and not discrete. It is known that

/1(B) is 0-2-transitive [3]. Furthermore, if <$>(g), let a = g.l.b. support g and ß =

l.u.b. support g. Then a, ß E B and if ah = ß, it is obvious that Adj(g, h~xgh).

Conversely, if ß is discrete there are points a < ß < y of B with no other points of

B between a and y. No order-preserving permutation of ß can map a to a and y to

ß. Hence not 3C(B). Now suppose, instead, that B is not Dedekind complete.

Choose a < ß, a G B, ß G ß \ B. Assuming 0C(B), we easily construct g G /1(B)

such that a = g.l.b. support g and ß = l.u.b. support g as follows. Because %(Q),

every nontrivial interval of B contains the support of some positive member of

.4(B), and so we can produce, by transfinite induction if necessary, a pairwise

disjoint collection {g,} of positive members of /1(B) in this manner: Let e < g0 and

support g0 G (a, ß). If l.u.b. support g0 = ß0 < ß, then let e < g, and support g,

C (ß0, ß). Continue in this manner until l.u.b. u support g, = ß. In a similar way,

we can arrange that g.l.b. u support g, = a. Then g = V & exists and has the

desired property. Now if « G /1(B) and g£h~xgh, it must be that ß < ah. Hence,

there exists e ¥= k E /1(B) with support k E (ß, ah). Then gtk and kth~xgh, so not

Adj(g, h~xgh).
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5 ( g) g is a positive convex cycle which fixes no point.

This is clearly equivalent to: Q(g) and not (3/ ^ e such that/A g = ¿)-

Lemma 1. Assume DC(B), G a subgroup of A($l), and for each e ¥= g E G, 5(g) or

(a) Then the following are equivalent:

(1) For all a E B, aG is dense in B.

(2) Ife *f E /1(B) andfg - gf for all g E G, then <h(f) or S (/-»).
Ço) If G satisfies (1) and (2) of part (a) and H is a subgroup of G, then H satisfies

(1) and (2) of part (a) if and only if H is not cyclic.

Corollary. // 3C(B), the following elementary statement implies that B has a

countable order-dense subset:

There exist fx,f2 in /1(B) such that fxf2 = f2fx, and if e =£g E /1(B) such that

gf¡ = fjg, then í ( g) or Í ( g"1). Of course, the statement with any other finite number

off also implies the same conclusion.

Proof of Lemma 1. (a) Assume (1) and e ¥=f, fg = gf for all g G G. If af = a

for some a E B, then agf = ag for all g G G. Since / fixes each point of the dense

subset aG, f = e, a contradiction. Hence, without loss of generality, a < af for all

a G ß, and 5 (f). Thus, (1) implies (2). Now assume there exists a E B with aG not

dense in B. Let 2 be a maximal nontrivial interval of B which contains no points of

aG. Because %(B), there exists e ¥=f G /1(B) with support/ E 2. Suppose that for

some g £ G, 2 n 2g is not empty. It follows that 2 = 2g, so neither i(g) nor

ff(g-1); hence g = e. Consequently, for g, h E G, if 2g n 2« is not empty, then

g = «. We may now unambiguously define/ G A (il) by

f = [ S %    on each 2g, g G G,

{ e otherwise.

Then / commutes with each member of G. But f ¥^ e, and yet / fixes the endpoints

of 2 (in B), so not í (/) and not i (/"'). Hence (2) implies (1).

(b) By the assumption, for every g G G, either g > e or g < e, so G is totally

ordered. If e < g </ and g,f E G, then for any a E B, {ag"|« = 1, 2, 3, . . . } is

cofinal in B (because i(g)), and hence, for some positive integer «, af<ag".

Therefore g" ^/, and since G is totally ordered, / < g". This shows that G is

Archimedean. If H is not cyclic, then H is dense in G. In this case, if a, ß, y G ß

with ß < y, then there exist /, g G G such that ß <af <ag <y, and there exists

h E H such that/ < « < g. It follows that ß < af < ah < ag < y. Hence H has a

dense orbit. Conversely, it is obvious that a cyclic group cannot have a dense orbit.

For the remainder of this paper, we let B denote a chain isomorphic either to the

chain R of real numbers or the chain Q of rational numbers. In the former case, we

may assume B = R; and in the latter case, we assume B is the additive subgroup of

R generated by 1 and V2 (since any two chains, each countable and dense in itself

without endpoints, are isomorphic). Let /: xHx + 1 and s: x \-> x + V2 , so

t, s E /1(B). Then the members of the subgroup G of /4(B) generated by / and s are

just the translations of the form xHr + m+ «V2   with m, « integers. Also,
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Di"(B). Since every orbit of G is dense, Lemma 1 implies that if e ¥=f G /1(B) and

fg = g/for all g EG, then 5(f) or 5 (/"').

Now suppose that A is a chain such that /1(A) is transitive and /1(A) is

elementarily equivalent to /1(B). The %(A), and there exist s, t G /1(A) such that

si = is, and for each e ¥=f E A(A) such that sf = fi and // = //", 5(/) or í (/"'). By

the corollary to Lemma 1, A has a countable subset which is dense in A.

Consequently, A is isomorphic to a dense subset of R. In case ß = R, then ty (B),

so also ^(A), which implies A is isomorphic to R. Thus we have our main result.

Theorem. Let R be the chain of real numbers. There is a formula p in the

elementary language of groups such that p holds in A(R), and if A is a homogeneous

chain and p holds in /1(A), then A is isomorphic to R.

We go on now to deal with the case when B is countable, and where there is a

substantial extra difficulty. The lattice-ordered group /1(Q) is isomorphic to the

lattice-ordered group A(R \ Q) (extension to R followed by restriction provides an

isomorphism from either group to the other). Thus, it will certainly not be possible

to distinguish Q from R \ Q on the basis of elementary statements about A(Q) and

A(R\ Q). We will show, however, that this is the worst that can happen; that is, if

/1(A) is elementarily equivalent to A(Q), then A«QorAaiR\Q.

Assume as before, that B is the additive subgroup of R generated by 1 and V2 ,

and that </, s} is the subgroup of /1(B) generated by the translations / and s. Let

Z(t, s) = {/ G A(Sl)\ft = tf and fs = sf). Note that Z(t, s) = <f, s}, because cer-

tainly </, s} E Z(t, s) since ts = st, and on the other hand, if / G Z(r, s), then

there exists g G </, s) such that 0/ = Og (zero = 0 G R). We show that/ = g. For

any a G ß, there exists « G </, s} such that 0« = a. Then af = 0«/ = Ofh = Og«

= 0«g = ag, so that / = g. Hence Z(t, s) E <f, s}. For any subset G of /1(B), let

9"(G) stand for the statement: G satisfies the condition (a)(2) in Lemma 1. Note

that 9"(G) is equivalent to 9"«G», where <G> denotes the subgroup generated by

G.
The following are true:

(i) t, s G Z(r, s) and t > e and s > e;

(ii)«T({M>);
(iii) if/ G Z(t, s) and not 5"({r,/}) then / < |/|;

(iv) if/ G Z(t, s) and not 9"({*,/}) then 5 < |/|;

(v) if / G Z(r, s) then 3 g, « such that / = g« and g, « G Z(t, s) and not

$({t,g}) and not $({5, «}).

Parts (iii)-(v) are clear because, for example, / G Z(t, s) and not ?T({/,/}) is

equivalent to/ G </>.

Assuming that A(A) is transitive and elementarily equivalent to /1(B), since

(i)-(v) are elementary statements we may assume there exist t, s E /1(A) satisfying

the appropriately relabelled forms of (i)-(v). Then the hypotheses of Lemma 1 are

satisfied for G = Z(i, s), and 'ö(G). Thus, if / G G, then/ = g« with g, « G G and

not 9"«/, g» and not ^«i, «». From Lemma 1(b) it follows that <i, g> and

<I, «> are cyclic. Let q be the positive generator of </, g>, so that ç < t. Then
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a G G and not 9"«a», so / < a (from (hi)). Hence t = q, and g G <r>. Likewise,

« G <i>. We conclude that G = </, f >, and therefore Z(i, f) is countable. Finally,

we are going to exploit the fact that <r, s> (= Z(r, i)) acts transitively on ß. Let

c G /1(B) such that S(c), ®(c), and l.u.b. support c = a G B. Then if / G /l(ß),

l.u.b. support/"V/= af E B, so there exists g G Z(r, s) such that ag = af, and

hence/~'c/~ S"'cg In short: 3 c such that G(c) and ®(c) and V/3 g(g G Z(r, i)

and/ 'c/— glcg). The corresponding statement must be true for some c G /1(A),

ano tnere are two cases.

Case 1. l.u.b. support c = ß G A.

Then if A G A, there exists/ G /1(A) such that ßf = X, and so since f~xcf—g~xcg

for some g G Z(t, s), we have ßg = A, and thus Z(i, s) acts transitively on A.

Consequently, A is countable and therefore isomorphic to Q.

Case 2. l.u.b. support c = ß G R \ A.

In this case, for every y G R \ A there exists / G /1(A) such that ßf = y (this is

easy to prove using 0-2-transitivity of /1(A) together with the fact that every point

of R has countable character). Since f~xcf ~ g'xcg for some g G Z(r, s), then

ßg = y, and Z(r, s) acts transitively on R \ A. Thus R \ A is countable. Since

9/Z(/, s)), the orbit R \ A is dense in A = R. It follows that A is isomorphic to the

chain R \ Q of irrational numbers.

Theorem. Let Q be the chain of rational numbers and R the chain of real numbers.

There is a formula 8 in the elementary language of groups such that 8 holds in A (Q)

and in /1(R \ Q), and if A is a homogeneous chain and 8 holds in .4(A), then A is

isomorphic to either Q or R \ Q.

Appendix.

Lemma 2 (McCleary [6]). //B is doubly homogeneous, and p E /1(B), then (p > e

or p < e) if and only if there exist nontrivial f, g E A (il) such that for all u G A(íl),f

commutes with (u xpu)g(u~xpuyx.

The following lemma is easily proved.

Lemma 3 (see [5]). There is an elementary group formula <$>p(x, y) such that for

every p, x,y in the 0-2- transitive /1(B),

(i) if p > e the <$>p(x, y) holds in /1(B) if and only if x < y,

(ii) if p < e then <$>p(x,y) holds in /l(ß) if and only if y < x.

Lemma 4 (courtesy of M. Rubin). The homogeneous chain B is doubly homoge-

neous if and only if -ip, where p is the following group-theoretic statement: 3 x,y, z

E A(Q) such that x ^ e, y ¥= e, z =£ e, and every conjugate of z commutes with either

x or y.

Proof of Lemma 4. Using the fact that a 0-2-transitive /1(B) is also 0-«-transitive

for every positive integer «, it can be shown that p fails when B is doubly

homogeneous. If B is not doubly homogeneous, there are two cases. Either /1(B) is

an Ohkuma group (B is an Ohkuma segment), in which case /1(B) is isomorphic to

a subgroup of the real numbers, is therefore abelian, and so p holds; or /4(B) is not
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O-primitive, and there is a proper congruence on B with convex classes. In this case,

any nontrivial x,y, z whose supports lie in different classes of that congruence

show that p holds.

Without loss of generality, the /-group language contains only < in addition to

the group language. Given a statement i// in the /-group language, we replace each

occurrence of x < y by <i>p(x,y), and call the result \pp. Form \p' = 3p(tpp and 3/

3 g V u([f, (u~xpu)g(u~xpu)'x] = e)). Then yV holds in the 0-2-transitive group /1(B)

if and only if \p holds in the /-group /1(B) or the /-group /1(B*) where ß* is the

chain dual to B.
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