
The Logic in Computer Science Column
by

Yuri Gurevich

Computer Science and Engineering
University of Michigan, Ann Arbor, MI 48109, USA

gurevich@umich.edu

https://cse.umich.edu/
http://web.umich.edu/
 gurevich@umich.edu

Reversify any sequential algorithm

Yuri Gurevich

Abstract

To reversify an arbitrary sequential algorithm A, we gently instrument A
with bookkeeping machinery. The result is a step-for-step reversible algo-
rithm that mimics A step-for-step and stops exactly when A does.

Without loss of generality, we presume that algorithm A is presented as
an abstract state machine that is behaviorally identical to A. The existence
of such representation has been proven theoretically, and the practicality of
such representation has been amply demonstrated.

Darn the wheel of the world! Why must it
continually turn over? Where is the reverse gear?

— Jack London

1 Introduction

In 1973, Charles Bennett posited that an“irreversible computer can always be
made reversible” [2, p. 525]. To this end, he showed how to transform any one-
tape Turing machine M that computes a function F(x), into a reversible three-tape
Turing machine MR computing the function x 7→ (x, F(x)). First, MR emulates
the computation of M on x, saving enough information to ensure step-for-step re-
versibility. If and when the output is computed, the emulation phase ends, and MR

proceeds to erase all saved information with the exception of the input.
Bennett’s construction shows that, in principle, every sequential algorithm, is

reversifiable1. In practice, you don’t want to compile your algorithms to a one-
tape Turing machine M and then execute the three-tape Turing machine MR.

1We attempt to give a new useful meaning to the word reversify. To reversify an algorithm
means to transform it into a reversible form (rather than to formulate it anew in verse, which is the
current dictionary meaning of reversify).

It had been discussed in the programming community, in particular by Edsger
Dijkstra [8, pp 351–354] and David Gries [10, pp 265–274], which programs are
reversible, but Bennett’s reversification idea was either unknown to or neglected
by programming experts.

The progress was led by physicists. They reversified Boolean circuits and
other computation models. “We have shown”, wrote Edward Fredkin and Tom-
maso Toffoli [9, p 252], “that abstract systems having universal computing ca-
pabilities can be constructed from simple primitives which are invertible”. The
interest in reversible computations and especially in reversible circuit computa-
tions soared with the advent of quantum computing. This is related to the fact that
pure (involving no measurements) quantum computations are reversible. There
are books on reversible computations [1, 6, 17, 18]. The International Conference
on Reversible Computation will have its 13th meeting in 2021 [19]

In this paper, we use sequential abstract state machines, in short sequential
ASMs, to address the problem of practical reversification of arbitrary sequential
algorithms. Why ASMs? Let us explain.

ASMs were introduced to faithfully simulate arbitrary algorithms on their nat-
ural abstraction levels [11]. One instructive early result was the formalization of
the C programming language [14].

In [12], an ambitious ASM thesis was formulated: For every algorithm A,
there is an ASM B that is behaviorally equivalent to A. If A is sequential, then B
has the same initial states as A and the same state transition function. In [13], we
axiomatized sequential algorithms and proved the ASM thesis for them2. Thus,
semantically, sequential algorithms are sequential ASMs. In the meantime, sub-
stantial evidence has been accumulated to support the practicality of faithful ASM
modeling. Some of it is found in the 2003 book [3].

The main result of the present paper is a simple construction, for every se-
quential ASM A, of a reversible sequential ASM B that step-for-step simulates A
and stops when A does. B does exactly what A does plus some bookkeeping. If
A uses some input and output variables and computes some function, then B uses
the same input and output variables and computes the same function.

2Later these results were generalized to other species of algorithms, e.g. to synchronous parallel
algorithms [4] and interactive algorithms [5].

2 Preliminaries

The purpose of this section is to make the current paper self-contained.

2.1 Sequential algorithms

By sequential algorithms we mean algorithms as the term was understood before
modern computer science generalized the notion of algorithm in various direc-
tions, which happened in the final decades of the 20th century. In this connection,
sequential algorithms are also called classical.

While the term “sequential algorithm" is short and convenient, it also is too
laconic. Some explication is in order. “Algorithms,” said Andrei Kolmogorov
in a 1953 talk [16], “compute in steps of bounded complexity.” Let’s look more
closely at the two aspects mentioned by Kolmogorov. One aspect is computing in
steps, one step after another. Kolmogorov didn’t say “one step after another.” He
didn’t have to. That was understood at the time.

The other aspect is a somewhat vague constraint: the bounded complexity of
any one step of the algorithm. We prefer a related constraint, arguably a version of
Kolmogorov’s constraint: the bounded resources of any one step of the algorithm.
The bounded resources constraint, still informal, seems to us clearer and more
suitable. It might have been Kolmogorov’s intention all along. We do not know
exactly what Kolmogorov said during that talk3.

To summarize, sequential algorithms can be characterized informally as tran-
sition systems that compute in bounded-resources steps, one step after another.

In our axiomatization of sequential algorithms [13], the bounded resources
constraint gives rise to the crucial bounded-exploration axiom. It is also used to
justify that a sequential algorithm doesn’t hang forever within a step; time is a
bounded resource.

In the following subsections, we recall some basic notions of mathematical
logic in the form appropriate to our purposes.

3Vladimir Uspensky, who chaired the Logic Department of Moscow State University after
Kolmogorov’s death, admitted to me that the abstract [16] of Kolmogorov’s talk for the Moscow
Mathematical Society was written by him (Uspensky) after many unsuccessful attempts to squeeze
an abstract from Kolmogorov.

2.2 Vocabularies

A vocabulary is a finite collection of function symbols where each symbol f is
endowed with some metadata according to the following clauses (V1)–(V4). We
interleave the four clauses with auxiliary definitions and explanations.

(V1) Each symbol f is assigned a natural number, the arity of f .

Define terms (or expressions) by induction. If f is an r-ary symbol in and
t1, . . . , tr are terms, then f (t1, . . . , tr) is a term. (The case r = 0 is the basis of
induction.)

(V2) Some symbols f are marked as relational.

Clauses (V1) and (V2) are standard in logic, except that, traditionally, relations
are viewed as separate category, not as a special functions.

(V3) f may be marked as dynamic; if not then f is called static. Nullary static
symbols are called constants; nullary dynamic symbols are called variables.

Clause (V3) is related to our use of structures as states of algorithms. The
intention is that, during computation, only dynamic functions may be assigned
new values. We say that a term is static if it involves only static functions.

We presume that every vocabulary contains the following obligatory symbols
which are all static.

• Constants > and ⊥ (read “true” and “false”), unary Bool, and the standard
propositional connectives. All these symbols are relational.

• Constant 0, and unary Num, increment, and decrement. Of these four sym-
bols, only Num is relational.

• Constant nil (called undef in [13] and other early papers) and the (binary)
equality sign =. Of these two symbols, only the equality sign is relational.

(V4) Every dynamic symbol f is assigned a static term, the default term of f . If
f is relational then so is its default term.

Clauses (V2) and (V4) constitute rudimentary typing which is sufficient for our
purposes in this paper. As a rule, the default term for any relational symbol is ⊥.
If a variable v is supposed to take numerical values, then typically the default term
for v would be 0, but it could be 1. This concludes the definition of vocabularies.

If Υ and Υ′ are vocabularies, we write Υ ⊆ Υ′, and we say that Υ is included
in Υ′ and that Υ′ includes or extends Υ, if every Υ symbol belongs to Υ′ and has
the same metadata in Υ′.

2.3 Structures

A structure X of vocabulary Υ is a nonempty set |X|, the universe or base set
of X, together with interpretations of the function symbols in Υ. The vocabulary
Υ may be denoted Voc(X).

An r-ary function symbol f is interpreted as a function f : |X|r → |X| and is
called a basic function of X. If f is nullary then f is just a name of an element of
(the universe of) X. If f is dynamic and d is the default term for f , then the value
(denoted by) d is the default value of f .

If f is relational, then the elements > are ⊥ are the only possible values of f .
If f (x̄) = >, we say that f is true (or holds) at x̄; otherwise we say that f is false
(or fails) at x̄. If f , g are relations of the same arity r, then f , g are equivalent in X
if their values at every r-tuple of elements of X are the same.

Any basic relation f is the characteristic function of the set {x : f (x) = >}. It
is often convenient to treat f as that set. We will do that in §5.

Remark 2.1 (Names and denotations). Syntactic objects often denote semantical
objects. For example, vocabulary symbols denote basic functions. Different con-
ventions may be used for disambiguation, e.g. a basic function may be denoted
fX. We will use no disambiguation convention in this paper. It should be clear
from the context whether a symbol means a syntactic or semantic object. /

The equality sign has its usual meaning. Bool comprises (the values of) >, ⊥
which, together with the propositional connectives, form a two-element Boolean
algebra.

Given a structure X, the value VX
(
f (t1, . . . , tr)

)
of a Voc(X) term f (t1, . . . , tr)

in X is defined by induction:

VX
(
f (t1, . . . , tr)

)
= f

(
VX(t1), . . . ,VX(tr)

)
. (1)

Again, the case r = 0 is the base of induction.
Instead of increment(x), we will write x + 1 and x − 1. Num comprises the

values of terms 0, 0 + 1, (0 + 1) + 1, . . . which are all distinct. These values are
denoted 0, 1, 2, . . . respectively; we call them the natural numbers of structure X,
and we say that these values are numerical. decrement is interpreted as expected
as well. Instead of decrement(x), we write x − 1. decrement(0) = nil. The
value of nil is neither Boolean nor numerical.

Remark 2.2 (Totality). In accordance with §2.1, all basic functions are total. In
applications, various error values may arise, in particular timeout. But, for our
purposes in this paper (as in [13]), an error value is just another value.

A location in a structure X is a pair ` = (f , x̄) where f is a dynamic symbol in
Voc(X) of some arity r and x̄ is an r-tuple of elements of X. The value f (x̄) is the
content of location `.

An update of location ` = (f , x̄) is a pair (`, y), also denoted (` � y), where
y an element of X; if f is relational then y is Boolean. To execute an update
(` � y) in X, replace the current contentVX(f (x̄)) of ` with y, i.e., set fX(x̄) to y.
An update (`� y) of location ` = (f , x̄) is trivial if y = f (x̄).

An update of structure X is an update of any location in X. A set ∆ of updates
of X is contradictory if it contains updates (` � y1) and (` � y2) with distinct
y1, y2; otherwise ∆ is consistent.

2.4 Sequential abstract state machines

Fix a vocabulary Υ and restrict attention to function symbols in Υ and terms
over Υ.

Definition 2.3 (Syntax of rules). Rules over vocabulary Υ are defined by induc-
tion.

1. An assignment rule or simply assignment has the form

f (t1, . . . , tr) := t0 (2)

where f , the head of the assignment, is dynamic, r = Arity(f), and t0, . . . , tr

are terms. If f is relational, then the head function of t0 is relational. The
assignment (2) may be called an f assignment.

2. A conditional rule has the form

if β then R1 else R2 (3)

where β is a Boolean-valued term and R1,R2 are Υ rules.

3. A parallel rule has the form

R1 ‖ R2 ‖ · · · ‖ Rk (4)

where k is a natural number and R1, . . . ,Rk are Υ rules. In case k = 0, we
write Skip. /

Definition 2.4 (Semantics of rules). Fix an Υ structure X. Every Υ rule R gener-
ates a finite set ∆ of updates in X. R fails in X if ∆ is contradictory; otherwise R
succeeds in X. To fire (or execute) rule R that succeeds in structure X means to
execute all ∆ updates in X.

1. An assignment f (t1, . . . , tr) := t0 generates a single update (`,VX(t0)) where
` =

(
f , (VX(t1), . . . ,VX(tr)

)
.

2. A conditional rule if β then R1 else R2 works exactly as R1, if β = > in
X, and exactly as R2 otherwise.

3. A parallel rule R1 ‖ R2 ‖ · · · ‖ Rk generates the union of the update
sets generated by rules R1, . . . ,Rk in X. /

Definition 2.5. A sequential ASM A is given by the following three components.

1. A vocabulary Υ, denoted Voc(A).

2. A nonempty collection of Voc(A) structures, closed under isomorphisms.
These are the initial states of A. /

3. A Voc(A) rule, called the program of A and denoted Prog(A).

As we mentioned in §1, every sequential algorithm A is behaviorally identical
to some sequential ASM B; they have the same initial states and the same state-
transition function.

In the rest of the paper, by default, all ASMs are sequential.
Consider an ASM A. A Voc(A) structure X is terminal for A if Prog(A) pro-

duces no updates (not even trivial updates4) in X. A partial computation of A is a
finite sequence X0, X1, . . . , Xn of Υ structures where

• X0 is an initial state of A,

• every Xi+1 is obtained by executing Prog(A) in Xi, and

• no structure in the sequence, with a possible exception of Xn, is terminal.

If Xn is terminal, then the partial computation is terminating. A (reachable) state
of A is an Voc(A) structure that occurs in some partial computation of A.

A Boolean expression γ is a green light for an ASM A if it holds in the non-
terminal states of A and fails in the terminal states.

Lemma 2.6. Every ASM has a green light.

Proof. By induction on rule R, we construct a green light γR for any ASM with
program R. If R is an assignment, set γR = >. If R is the parallel composition of
rules Ri, set γR =

∨
i γRi . If R = if β then R1 else R2, set γR =

(
β ∧ γR1

)
∨(

¬β ∧ γR2

)
. �

In examples and applications, typically, such conditions are easily available.
Think of terminal states of finite automata or of halting control states of Turing
machines. In a while-loop program, the while condition is a green light.

4In applications, trivial updates of A may mean something for its environment.

3 Reducts and expansions

In mathematical logic, a structure X is a reduct of a structure Y if Voc(X) ⊆
Voc(Y), the two structures have the same universe, and every Voc(X) symbol f
has the same interpretations in X and in Y . If X is a reduct of Y , then Y is an ex-
pansion of X. For example, the field of real numbers expands the additive group
of real numbers.

We say that an expansion Y of a structure X is uninformative if the additional
basic functions of Y (which are not basic functions of X) are dynamic and take
only their default values in Y . (The default values are defined in §2.3.) Clearly, X
has a unique uninformative expansion to Voc(B).

Definition 3.1. An ASM B is a faithful expansion of an ASM A if the following
conditions hold.

(E1) Voc(A) ⊆ Voc(B). The symbols in Voc(A) are the principal symbols of
Voc(B), and their interpretations in Voc(B) structures are principal basic
functions; the other Voc(B) symbols and their interpretations are ancillary.

(E2) All ancillary symbols are dynamic, and the initial states of B are the unin-
formative expansions of the initial states of A.

(E3) If Y is a Voc(B) structure and X the Voc(A) reduct of Y , then the principal-
function updates (including trivial updates) generated by Prog(B) in Y co-
incide with the those generated by Prog(A) in X, and the ancillary-function
updates generated by Prog(B) in Y are consistent. /

Corollary 3.2. Suppose that B is a faithful expansion of an ASM A, then the
following claims hold.

1. If X0, . . . , Xn is a partial computation of A then there is a unique partial com-
putation Y0, . . . ,Yn of B such that every Xi is the Voc(A) reduct of the corre-
sponding Yi.

2. If states Y0, . . . ,Yn of B form a partial computation of B, then their Voc(A)
reducts form a partial computation X0, . . . , Xn of A.

3. The Voc(A) reduct of a state of B is a state of A.

If an ASM A computes a function F, one would expect that any faithful expan-
sion of A computes function F as well. To confirm this expectation, we need to
formalize what it means to compute a function. In the context of this paper, every
ASM state is endowed with a special copy of the set N of natural numbers. This
makes the desired formalization particularly easy for numerical partial functions
F : Nk → N.

Corollary 3.3. Suppose that an ASM A computes a partial numerical function
F : Nk → N in the following sense:

1. A has input variables ι1, . . . , ιn taking numerical values in the initial states,
and A has an output variable o,

2. all initial states of A are isomorphic except for the values of the input vari-
ables, and

3. the computation of A with initial state X eventually terminates if and only if
F is defined at tuple x̄ =

(
VX(ι1), . . . ,VX(ιn)

)
, in which case the final value of

o is F(x̄).

Then every faithful expansion of A computes F in the same sense. /

Corollary 3.3 can be generalized to computing more general functions and to
performing other tasks, but this is beyond the scope of this paper.

An ASM may be faithfully expanded by instrumenting its program for moni-
toring purposes. For example, if you are interested how often a particular assign-
ment σ fires, replace σ with a parallel composition

σ ‖ κ := κ + 1

where a fresh variable κ, initially zero, is used as a counter. A similar counter is
used in our Reversibility Theorem below.

4 Reversibility

Definition 4.1. An ASM B is reversible (as is) if there is an ASM C which re-
verses all B’s computations in the following sense. If Y0,Y1, . . . ,Yn is a partial
computation of B, then Yn,Yn−1, . . . ,Y0 is a terminating computation of C.

Theorem 4.2 (Reversification Theorem). Every ASM A has a faithful reversible
expansion.

Proof. Enumerate the (occurrences of the) assignments in Prog(A) in the order
they occur:

σ1, σ2, . . . , σN

It is possible that σi, σ j are identical even though i , j. The metavariable n
will range over numbers 1, 2, . . . ,N. For each n, let f n be the head of σn, rn =

Arity(f n), and tn
0, tn

1, . . . , tn
rn

the terms such that

σn =
(

f n(tn
1, . . . , t

n
rn

) := tn
0

)
.

We construct an expansion B of A. The ancillary symbols of B are as follows.

1. A variable κ.

2. For every n, a unary relation symbol Firen.

3. For every n, unary function symbols f n
0 , f n

1 , . . . , f n
rn

.

The default term for κ is 0. The default term for all relations Firen is ⊥. The
default term for all functions f n

0 , f n
1 , . . . , f n

rn
is nil. Accordingly, the initial states

of B are obtained from the initial states of A by setting κ = 0, every Firen(x) = ⊥,
and every f n

i (x) = nil,
The intention is this. If X0, X1, . . . , Xl is a partial computation of B, then for

each k = 0, . . . , l we have the following.

1. The value of κ in Xk is k, so that κ counts the number of steps performed until
now; we call it a step counter.

2. Firen(κ) holds in Xk+1 if and only if σn fires in Xk.

3. The values of f n
1 (κ), . . . , f n

rn
(κ) in Xk+1 record the values of the terms tn

1, . . . , tn
rn

in Xk respectively, and the value of f n
0 (κ) in Xk+1 records the value of the term

f n(tn
1, . . . , t

n
rn

) in Xk.

The program of B is obtained from Prog(A) by replacing every assignment σn

with Instr(n) (an allusion to “instrumentation”) where

Instr(n) =

σn ‖ κ := κ + 1 ‖ Firen(κ + 1) := > ‖

f n
0 (κ + 1) := f n(tn

1, . . . , t
n
rn

) ‖

f n
1 (κ + 1) := tn

1 ‖ . . . ‖ f n
rn

(κ + 1) := tn
rn

It is easy to check that the conditions (E1)–(E3) of Definition 3.1 hold, and B
is indeed a faithful expansion of A. In particular, if Y and X are as in (E3) and X
is terminal, then no assignment σn fires in X, and therefore no Instr(n) fires in Y ,
so that Y is terminal as well.

Lemma 4.3. If Y0, . . . ,Yk is a partial computation of B, then

• κ = k in Yk and

• if j > k then Firen(j), f n
0 (j), . . . , f n

rn
(j) have their default values in Yk.

Proof of lemma. Induction on k. �

Now, we will construct an ASM C which reverses B’s computations. The
vocabulary of C is that of B, and any Voc(C) structure is an initial state of C. The
program of C is

if κ > 0 then
(
κ := κ − 1 ‖ PAR

n
Undo(n)

)
where PAR is parallel composition, n ranges over {1, 2, . . . ,N}, and

Undo(n) =

if Firen(κ) = > then

Firen(κ) := ⊥ ‖

f n
(

f n
1 (κ), . . . , f n

rn
(κ)

)
:= f n

0 (κ) ‖ f n
0 (κ) := nil ‖

f n
1 (κ) := nil ‖ . . . ‖ f n

rn
(κ) := nil

Lemma 4.4. Let Y be an arbitrary nonterminal Voc(B) structure such that all
functions Firen and f n

i have their default values at argument k = VY(κ) in Y. If
Prog(B) transforms Y to Y ′, then Prog(C) transforms Y ′ back to Y, i.e., Prog(C)
undoes the updates generated by Prog(B) and does nothing else.

Proof of lemma. The updates generated by Prog(B) in Y are the updates generated
by the rules Instr(n) such that σn fires in Y . Since k = VY(κ), we have VY′(κ) =

k + 1 > 0, and therefore Prog(C) decrements κ. It also undoes the other updates
generated by the rules Instr(n). Indeed, suppose that σn fires in Y .

To undo the update Firen(k + 1)� >, Prog(C) sets Firen(k + 1) back to ⊥.
To undo the update f n(tn

1, . . . , t
n
rn

)
� tn

0, generated by σn itself, Prog(C) sets
f n

(
f n
1 (k + 1), . . . , f n

rn
(k + 1)

)
to f n

0 (k + 1). Recall that f n
1 (k + 1), . . . , f n

rn
(k + 1) record

tn
1, . . . , t

n
rn

in Y and f n
0 (k +1) records the value of f n(tn

1, . . . , t
n
rn

)
in Y . Thus, Prog(C)

sets f n(tn
1, . . . , t

n
rn

)
back to its value in Y .

To undo the updates of f n
0 (k + 1), f n

1 (k + 1), . . . , f n
rn

(k + 1), Prog(C) sets f n
0 (k +

1), f n
1 (k + 1), . . . , f n

rn
(k + 1) back to nil.

Thus, being executed in Y ′, Prog(C) undoes all updates generated by the rules
Instr(n) in Y . A simple inspection of Prog(C) shows that it does nothing else.
Thus, Prog(C) transforms Y ′ to Y . �

Now suppose that Y0, . . . ,Yn is a computation of B, k < n, Y = Yk, and Y ′ =

Yk+1. Then Y is nonterminal and, by Lemma 4.3, all Firen(κ) and f n
i (κ) have their

default values in Y . By Lemma 4.4, Prog(C) transforms Yk+1 to Yk. The Y0 is a
terminal state of C. Thus, C reverses all B’s computations. �

The proof of Reversification Theorem uses notation and the form of Prog(B)
which is convenient for the proof. In examples and applications, notation and
Prog(B) can be simplified.

Remark 4.5 (Notation). Let σn be an assignment
(
g(tn

1, . . . , t
n
r) := tn

0
)

so that f n is
g. If σn is the only g assignment in Prog(A) or if every other g assignment σm in
Prog(A) is just another occurrence of σn, then the ancillary functions f n

i may be
denoted gi; no confusion arises. /

Recall that a green light for an ASM A is a Boolean-valued expression that
holds in the nonterminal states and fails in the terminal states.

Remark 4.6 (Green light and step counter). In Prog(B), every Instr(n) has an
occurrence of the assignment κ := κ + 1. A green light for A provides an efficient
way to deal with this excess. Notice that B increments the step counter exactly
when the green light is on.

Case 1: Prog(A) has the form if γ then (k := k + 1 ‖ Π).
In this case, γ is a green light for A, and A has already a step counter, namely k.

Without loss of generality, k is the step counter κ used by Prog(B); if not, rename
one of the two variables. Notice that the assignment σ1 = (k := k + 1) needs
no instrumentation. There is no need to signal firings of σ1 because σ1 fires at
every step. And, when a step is completed, we know the previous value of the
step counter; there is no need to record it.

Let Instr−(Π) be the rule obtained from Π by first replacing every assignment
σn with the rule Instr(n) defined in the proof of the program, and then removing
all occurrences of k := k + 1. Then the program

if γ then
(
k := k + 1 ‖ Instr−(Π)

)
has only one occurrence of k := k + 1 and is equivalent to Prog(B).

Case 2: Prog(A) =
(
if γ then Π

)
where γ is a green light for A and the step

counter κ of Prog(B) does not occur in Prog(A).
The modified program if γ then

(
κ := κ + 1 ‖ Π

)
,

where κ is the step counter of B, is a faithful expansion of Prog(A), and thus Case 2
reduces to Case 1.

Case 3 is the general case.
By Lemma 2.6, every ASM program has a green light. If γ is a green light for

A and Π = Prog(A), then the program if γ then Π is equivalent to Prog(A),
and thus Case 3 reduces to Case 2. /

The rules Instr(n) and Undo(n), described in the proof of the theorem, are the
simplest in the case when rn = 0. In such a case, σn has the form v := t where v is
a variable, so that f n = v and tn

0 = t. Then

Instr(n) =

σn ‖ κ := κ + 1 ‖ Firen(κ + 1) := > ‖ v0(κ + 1) := v,

Undo(n) =

if Firen(κ) = > then

Firen := ⊥ ‖ v := v0(κ) ‖ v0(κ) := nil.

Lemma 4.7. Suppose that an assignment σn to a variable v can fire only at the
last step of A and that the update generated by σn is never trivial. Then, Instr(n)
and Undo(n) can be simplified to

Instr(n) = σn ‖ κ := κ + 1

Undo(n) = if v , d then v := d

where d is the default term for v in Voc(A).

We do not assume that σn fires at the last step of every computation of A, and
so the expression v , d is not necessarily a green light for A.

Proof. Suppose that σn fires in state Y of B. Then Y is nonterminal, v = d in
Y , the next state Y ′ is terminal, and v , d in Y ′. It is easy to see the simplified
version of Undo(n) indeed undoes the updates generated by the simplified version
of Instr(n) in Y . �

5 Examples

To illustrate the reversification procedure of §4, we consider three simple exam-
ples. By the reversification procedure we mean not only the constructions in the
proof of Reversification Theorem, but also Remarks 4.5 and 4.6 and Lemma 4.7.
Unsurprisingly, in each case, the faithful reversible expansion produced by the
general-purpose procedure can be simplified.

5.1 Bisection algorithm

The well-known bisection algorithm solves the following problem where R is
the field of real numbers. Given a continuous function F : R→ R and reals a, b, ε
such that F(a) < 0 < F(b) and ε > 0, find a real c such that |F(c)| < ε. Here is a
draft program for the algorithm:

if |F
(
(a + b)/2

)
| ≥ ε then

if F
(
(a + b)/2

)
< 0 then a := (a + b)/2

elseif F
(
(a + b)/2

)
> 0 then b := (a + b)/2

elseif c = nil then c := (a + b)/2

The condition c = nil in the last line ensures that computation stops when c
is assigned a real number for the first time.

The Boolean expression |F
(
(a + b)/2

)
| ≥ ε is not quite a green light for the

algorithm. When it is violated for the first time, c is still equal to nil. But the
equality c = nil is a green light. With an eye on using Remark 4.6, we modify
the draft program to the following program, our “official” program of an ASM A
representing the bisection algorithm.

if c = nil then

if F
(
(a + b)/2

)
< −ε then a := (a + b)/2

elseif F
(
(a + b)/2

)
> ε then b := (a + b)/2

else c := (a + b)/2

Voc(A) consists of the obligatory symbols, the symbols in Prog(A), and the
unary relation symbol Real. In every initial state of A, Real is (a copy of) the set
of real numbers, the static functions of Prog(A) have their standard meaning, and
c = nil.

Notice that Lemma 4.7 applies to Prog(A) with σn being c := (a+b)/2. Taking
this into account, the reversification procedure of §4 gives us a reversible expan-
sion B of A with the following program.

if c = nil then

κ := κ + 1 ‖

if F
(
(a + b)/2

)
< −ε then

a := (a + b)/2 ‖ Fire1(κ + 1) := > ‖ a0(κ + 1) := a

elseif F
(
(a + b)/2

)
> ε then

b := (a + b)/2 ‖ Fire2(κ + 1) := > ‖ b0(κ + 1) := b

else c := (a + b)/2

This program can be simplified (and remain reversible). Notice that

• if Fire1(k + 1) = >, then Fire2(k + 1) = ⊥, the previous value of b is the
current value of b, and the previous value of a is 2a − b where a, b are the
current values; and

• if Fire1(k + 1) = ⊥, then Fire2(k + 1) = >, the previous value of a is the
current value of a, and the previous value of b is 2b − a where a, b are the
current values.

Thus, there is no need for functions a0, b0, recording the previous values of vari-
ables a, b, and there is no need for Fire2. We get:

if c = nil then

κ := κ + 1 ‖

if F
(
(a + b)/2

)
< −ε then

a := (a + b)/2 ‖ Fire1(κ + 1) := >

elseif F
(
(a + b)/2

)
> ε then b := (a + b)/2

else c := (a + b)/2

The corresponding inverse algorithm may have this program:

if κ > 0 then

κ := κ − 1 ‖ if c , nil then c := nil

‖ if Fire1(κ) = > then
(
Fire1(κ) := ⊥ ‖ a := 2a − b

)
else b := 2b − a

5.2 Linear-time sorting

The information needed to reverse each step of the bisection algorithm is rather
obvious; you don’t have to use our reversification procedure for that. Such infor-
mation is slightly less obvious in the case of the following sorting algorithm.

For any natural number n, the algorithm sorts an arbitrary array f of distinct
natural numbers < n in time ≤ 2n. Let m be the length of an input array f , so
that m ≤ n. The algorithm uses an auxiliary array g of length n which is initially
composed of zeroes.

Here is a simple illustration of the sorting procedure where n = 7 and f =

〈3, 6, 0〉. Traverse array f setting entries g[f [i]] of g to 1 for each index i of f , i.e.,
setting g[3], g[6] and g[0] to 1, so that g becomes 〈1, 0, 0, 1, 0, 0, 1〉. Each index j
of g with g[j] = 1 is an entry of the input array f . Next, traverse array g putting
the indices j with g[j] = 1 — in the order that they occur — back into array f , so
that f becomes 〈0, 3, 6〉. Voila, f has been sorted in m + n steps.

We describe an ASM A representing the sorting algorithm. Arrays will be
viewed as functions on finite initial segments of natural numbers. The nonobliga-
tory function symbols in Voc(A) are as follows.

0. Constants m, n and variables k, l.

1. Unary dynamic symbols f and g.

2. Binary static symbols <,+,− where < is relational.

In every initial state of A,

0. m and n are natural numbers such that m ≤ n, and k = l = 0,

1. f , g are arrays of lengths m, n respectively, the entries of f are distinct natural
numbers < n, and all entries of g are zero,

2. the arithmetical operations +,− and relation < work as expected on natural
numbers.

In the following program of A, k is the step counter, and l indicates the current
position in array f to be filled in.

if k < m + n then

k := k + 1 ‖

if k < m then g(f (k)) := 1

elseif g(k − m) = 1 then
(
f (l) := k − m ‖ l := l + 1

)
The reversification procedure of §4 plus some simplifications described below

give us a faithful reversible expansion B of A with a program

if k < m + n then

k := k + 1 ‖

if k < m then
(
g(f (k)) := 1 ‖ g1(k + 1) := f (k)

)
elseif g(k − m) = 1 then

f (l) := k − m ‖ l := l + 1 ‖ f0(k + 1) := f (l)

We made some simplifications of Prog(B) by discarding obviously unnecessary
ancillary functions.

• It is unnecessary to record the firings of assignment σ2 =
(
g(f (k)) := 1

)
be-

cause, in the states of B, the condition Fire2(k) = > is expressed by the in-
equality k ≤ m.

• The ancillary function g0 recording the previous values of g is unnecessary
because those values are all zeroes.

• The final two assignments in Prog(A) fire simultaneously, so that one fire-
recording function, say Fire3, suffices. But even that one ancillary function
is unnecessary because, in the states of B, the condition Fire3(k) = > is ex-
pressed by m < k ∧ g(k − m − 1) = 1.

• The ancillary functions f1 and l0 recording the previous value of l are unneces-
sary because we know that value, it is l − 1.

The desired inverse algorithm C may be given by this program:

if k > 0 then

k := k − 1
‖ if k ≤ m then

(
g(g1(k)) := 0 ‖ g1(k) := nil

)
‖ if m < k and g(k − m − 1) = 1 then

f (l) := f0(k) ‖ l := l − 1 ‖ f0(k) := nil

Obviously, A is not reversible as is; its final state doesn’t have information for
reconstructing the initial f . But do we need both remaining ancillary functions?
Since f0 is obliterated after the first n steps of C, f0 seems unlikely on its own to
ensure reversibility. But it does. The reason is that, after the first n steps of C,
the original array f is restored. Recall that g1(k) records the value f (k − 1) of the
original f for each positive k ≤ m, but we can discard g1 and modify Prog(C) to

if k > 0 then k := k − 1
‖ if k ≤ m then g(f (k − 1)) := 0
‖ if m < k and g(k − m − 1) = 1 then

f (l) := f0(k) ‖ l := l − 1 ‖ f0(k) := nil

Alternatively, we can discard f0 but keep g1. Indeed, the purpose of the as-
signment f (l) := f0(k) in Prog(C) is to restore f (l) to its original value. But recall
that every f (l) is recorded as g1(l + 1). So we can modify Prog(C) to

if k > 0 then k := k − 1
‖ if k ≤ m then

(
g(g1(k)) := 0 ‖ g1(k) := nil

)
‖ if m < k and g(k − m − 1) = 1 then

f (l) := g1(l + 1) ‖ l := l − 1

5.3 External functions and Karger’s algorithm

Until now, for simplicity, we restricted attention to algorithms that are isolated
in the sense that their computations are not influenced by the environment. Actu-
ally, the analysis of sequential algorithms generalizes naturally and easily to the
case when the environment can influence the computation of an algorithm [13,
§8]. To this end, so-called external functions are used.

Syntactically, the item (V3) in §2.2 should be refined to say that a function
symbol f may be dynamic, or static, or external. Semantically, external functions
are treated as oracles5 When an algorithm evaluates an external function f at some
input x̄, it is the environment (and typically the operating system) that supplies the
value f (x̄). The value is well defined at any given step of the algorithm; if f is
called several times, during the same step, on the same input x̄, the same value is
given each time. But, at a different step, a different value f (x̄) may be given.

To illustrate reversification involving an external function, we turn attention to
Karger’s algorithm [15]. In graph theory, a minimum cut of a graph is a cut (split-
ting the vertices into two disjoint subsets) that minimizes the number of edges
crossing the cut. Using randomization, Karger’s algorithm constructs a cut which
is a minimum cut with a certain probability. That probability is small but only
polynomially (in the number of vertices) small. Here we are not interested in the
minimum cut problem, only in the algorithm itself.

Terminology 5.1. Let G = (V, E) be a graph and consider a partition P of the
vertex set V into disjoint subsets which we call cells; formally P is the set of the
cells. The P-ends of an edge {x, y} are the cells containing the vertices x and y.
An edge is inter-cell (relative to P) if its P-ends are distinct. /

Now we describe a version of Karger’s algorithm that we call KA. Given a
finite connected graph (V, E), KA works with partitions of the vertex set V , one
partition at a time, and KA keeps track of the set Inter of the inter-cell edges.
KA starts with the finest partition P =

{
{v} : v ∈ V

}
and Inter = E. If the

current partition P has > 2 cells, then Inter is nonempty because the graph (V, E) is
connected. In this case, KA selects a random inter-cell edge e, merges the P-ends

5In that sense, our generalization is similar to the oracle generalization of Turing machines.

p, q of e into one cell, and removes from Inter the edges in
{
{x, y} : x ∈ p∧ y ∈ q

}
.

The result is a coarser partition and smaller Inter. When the current partition has
at most two cells, the algorithm stops.

Next we describe an ASM A representing KA. There are many ways to rep-
resent KA as an ASM. Thinking of the convenience of description rather than
implementation of KA, we chose to be close to naive set theory. Let U be a set
that includes V and all subsets of V and all sets of subsets of V (which is much
more than needed but never mind). The relation ∈ on U has its standard meaning;
the vertices are treated as atoms (or urelements), not sets.

The nonobligatory function symbols of Voc(A) are as follows.

0. Nullary variables P and Inter.

1. Unary static symbols V, E, |.|, and a unary external symbol R.

2. Binary static symbols >,−, Merge, and Intra, where > is relational.

In every initial state of A,

• V , U and ∈ are as described above (up to isomorphism). |s| is the cardinality
of a set s, and − is the set-theoretic difference. The relation > is the standard
ordering of natural numbers

• E is a set of unordered pairs {x, y} with x, y ∈ V such that the graph (V, E) is
connected. P is the finest partition

{
{v} : v ∈ V

}
of V . Inter = E.

• If e ∈ E, S is a partition of V , and p, q are the S -ends of e, then

– Merge(e, S) = (S − {p, q}) ∪ {p ∪ q}, and

– Intra(e, S) =
{
{x, y} : x ∈ p ∧ y ∈ q

}
.

The external function R takes a nonempty set and returns a member of it. The
program of A can be this:

if |P| > 2 then

P := Merge(R(Inter), P)
‖ Inter := Inter − Intra(R(Inter), P)

Now we apply the reversification procedure of Theorem 4.2, taking Re-
mark 4.6 into account. We also take into account that both assignments fire at
every step of the algorithm and so there is no need to record the firings. This gives
us a faithful reversible expansion B of A with a program

if |P| > 2 then
κ := κ + 1 ‖

P := Merge(R(Inter), P) ‖ P0(κ + 1) := P ‖

Inter := Inter − Intra(R(Inter), P) ‖ Inter0(κ + 1) := Inter

The corresponding inverse ASM C may be given by the program

if κ > 0 then
κ := κ − 1 ‖

P := P0(κ) ‖ P0(κ) := nil ‖
Inter := Inter0(κ) ‖ Inter0(κ) := nil

Remark 5.2. A custom crafted faithful expansion may be more efficient in various
ways. For example, instead of recording the whole P, it may record just one of
the two P-ends of R(Inter). This would require a richer vocabulary.

6 Conclusion

We have shown how to reversify an arbitrary sequential algorithm A by gently
instrumenting A with bookkeeping machinery. The result is a step-for-step re-
versible algorithm B whose behavior, as far as the vocabulary of A is concerned,
is identical to that of A.

We work with an ASM (abstract state machine) representation of the given
algorithm which is behaviorally identical to it. The theory of such representation
is developed in [13], and the practicality of it has been amply demonstrated.

Acknowledgment

Many thanks to Andreas Blass for generous sanity check.

References

[1] Anas N. Al-Rabadi, “Reversible logic synthesis: From fundamentals to quantum
computing,” Springer Berlin, 2014

[2] Charles H. Bennett, “Logical reversibility of computation," IBM Journal of Research
and Development 17:6 (1973), 525–532

[3] Egon Börger and Robert Stärk, “Abstract state machines: A method for high-level
system design and analysis," Springer Berlin, 2003

[4] Andreas Blass and Yuri Gurevich, "Abstract state machines capture parallel algo-
rithms," ACM Transactions on Computational Logic 4:4 (2003), 578–651. Correc-
tion and extension, ibid. 9:3 (2008), Article 19

[5] Andreas Blass, Yuri Gurevich and Benjamin Rossman, “Interactive small-step algo-
rithms," Parts I and II; Logical Methods in Computer Science 3:4 (2007), Articles 3
and 4

[6] Alexis De Vos, “Reversible computing: Fundamentals, quantum computing, and
applications,” Wiley-VCH Weinheim, 2010

[7] Nachum Dershowitz and Yuri Gurevich, “A natural axiomatization of computability
and proof of Church’s thesis,” Bulletin of Symbolic Logic 14:3 (2008), 299–350

[8] Edsger W. Dijkstra, “Selected writings on computing: A personal perspective,”
Springer New York, 1982

[9] Edward Fredkin and Tommaso Toffoli , “Concervative logic,” International Journal
of Theoretical Physics 21:3/4 (1982), 219–253

[10] David Gries, “The science of programming,” Springer New York, 1981

[11] Yuri Gurevich, “Evolving algebras: An introductory tutorial,” The Bulletin of the
EATCS 43 (1991), 264–284, and (slightly revised) in “Current Trends in Theoretical
Computer Science: Essays and Tutorials” (eds. G. Rozenberg and A. Salomaa),
World Scientific, 1993, 266–292. (Abstract state machines used to be called evolving
algebras.)

[12] “Evolving Algebra 1993: Lipari Guide,” in Specification and Validation Methods
(ed. E. Börger), Oxford University Press 1995, 9–36. Reprinted at arXiv, https://
arxiv.org/abs/1808.06255. (Abstract state machines used to be called evolving
algebras.)

[13] Yuri Gurevich, “Sequential abstract state machines capture sequential algorithms,”
ACM Transactions on Computational Logic 1:1 (2000), 77–111

https://arxiv.org/abs/1808.06255
https://arxiv.org/abs/1808.06255

[14] Yuri Gurevich and Jim Huggins, “The semantics of the C programming language,”
in Proc. CSL’92, Computer Science Logic (eds. E. Börger et al.), Springer Lecture
Notes in Computer Science 702 (1993), 274–308

[15] David Karger, “Global min-cuts in RNC and other ramifications of a simple min-
cut algorithm,” Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
1993

[16] Andrei N. Kolmogorov, “On the concept of algorithm,” Uspekhi Matematicheskikh
Nauk 8:4 (1953), 175–176 (Russian). English version in Vladimir Uspensky and
Alexei Semenov, “Algorithms: Main ideas and applications,” Kluwer 1993, 18—19

[17] Kenichi Morita, “Theory of reversible computing,” Springer Japan, 2017

[18] Kalyan S. Perumala, “Introduction to reversible computing,” CRC Press Boca Ra-
ton, 2014

[19] RC2021, 13th International Conference on Reversible Computation,
https://reversible-computation-2021.github.io/

https://reversible-computation-2021.github.io/

	Introduction
	Preliminaries
	Sequential algorithms
	Vocabularies
	Structures
	Sequential abstract state machines

	Reducts and expansions
	Reversibility
	Examples
	Bisection algorithm
	Linear-time sorting
	External functions and Karger's algorithm

	Conclusion

