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Abstract
An observation space S is a family of probability distributions 〈Pi : i ∈ I〉 shar-
ing a common sample spaceΩ in a consistent way. A grounding forS is a signed
probability distribution P on Ω yielding the correct marginal distribution Pi for
every i. A wide variety of quantum scenarios can be formalized as observa-
tion spaces. We describe all groundings for a number of quantum observation
spaces. Our main technical result is a rigorous proof that Wigner’s distribu-
tion is the unique signed probability distribution yielding the correct marginal
distributions for position and momentum and all their linear combinations.

Keywords: negative probability, observation space, Wigner’s distribution

What are numbers and what are they for?

—Richard Dedekind [10].

1. Introduction

The uncertainty principle asserts a limit to the precision with which position x and momentum
p of a particle can be known simultaneously. You may know the probability distributions of
x and p individually in a given quantum state but the joint probability distribution with these
marginal distributions of x and p makes no physical sense. Yet the question whether there
exists an appropriate joint distribution (with the correct marginal distributions of x and p)
makes mathematical sense. In 1932, Eugene Wigner exhibited such a joint distribution [27].
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Some of its values were negative, but this, wrote Wigner, ‘must not hinder the use of it in
calculations as an auxiliary function which obeys many relations we would expect from such a
probability’.

But what are negative probabilities? We split this intriguing question into two: formal
and ontological. The formal question asks how to generalize the axiomatic probability the-
ory of Kolmogorov so that negative probabilities are allowed. Kolmogorov’s theory is based
on measure theory, and measure theory provides the desired generalization: signed probability
distributions are special signed measures. In section 2, we define a signed probability distribu-
tion on a measurable space as a countably additive function assigning a real number to every
measurable set and assigning 1 to the set of all points.

The ontological question is much harder. It asks what reality, or at least intuition, is behind
negative probabilities. Obviously, the standard frequential interpretation of probabilities does
not apply to negative probabilities. There are serious attempts to address the ontological
question [1, 12] but, at least in our judgment, the ontological question remains wide open.

The question in the center of our attention here is more pragmatic: what are negative prob-
abilities good for? It is not rare in science to usefully apply a notion without properly under-
standing its ontology. One historical example is complex numbers. They are not quantities,
but they could be used to solve algebraic equations. Another historical example is the use of
uncountable sets in mathematical analysis.

There are efforts to apply negative probabilities in several disciplines, including biology
[13], decision theory [9], finance [18], information theory [17], machine learning [32], and
transportation science [30]. But the vast majority of negative-probability applications are in
quantum physics. Wigner’s discovery, mentioned above, led to a whole new approach to foun-
dations of quantum mechanics [31] and to fruitful physical applications, especially in quantum
tomography; see [24, 25, 29] for example.

Many of the disparate quantum applications can be seen as examples of a certain application
template. Thinking of Wigner’s 1932 discovery provoked us to introduce the template.

According to quantum mechanics, some but not all observables can be measured simultane-
ously, and the theory predicts probabilities for the outcomes of such measurements. Thus, for
a given physical system, we may have numerous coexisting probability distributions which are
impossible to subsume under a single distribution for all the observables. But negative proba-
bilities may allow us the desired single distribution, which we call a grounding and which may
be useful for analysis, computation and even applications.

In more detail, consider a family, indexed by an arbitrary set I, of probability distributions
〈Pi : i ∈ I〉 sharing a common sample space Ω in a consistent way, so that any two of the dis-
tributions agree on the events where both of them are defined. We call members of the domain
Dom(Pi) of any Pi observable events, and we call observable events 〈e j : j ∈ J〉 coobservable
if they all belong to Dom(Pi) for the same i. Finally, we call the pair S = (Ω, 〈Pi : i ∈ I〉) an
observation space.

The idea behind observability is this. Each Pi reflects a probabilistic experiment, e.g. a quan-
tum measurement, and the information obtained by running the experiment specifies an atom
a of the Boolean algebra Dom(Pi). While atom a is nonempty, it need not be a singleton (as
we will see below). All events e ∈ Dom(Pi) with a ⊆ e occurred in this run of the experiment,
and the rest of the events in Dom(Pi), those disjoint from a, did not occur in this run. In that
sense, we observe, for any run and any e ∈ Dom(Pi), whether e occurs or not.

It is reasonable to ask whether the legitimate combinations of observable events, those in the
σ-algebra Σ generated by the observable events, can be assigned probabilities in a consistent
way. Our notion of grounding formalizes the hope of doing just that. A grounding, or ground
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distribution, for the observation space S is a signed probability distribution P on the measur-
able space (Ω,Σ) such that the original distributions Pi are restrictions of P . The grounding
problem for S is the problem of describing the groundings for S. Is there a grounding? Is there
a grounding which is nonnegative, i.e., has no negative values? Is the grounding unique? What
are the general forms of groundings and of nonnegative groundings?

In section 3, we study observation spaces and prove a modeling theorem according to which
a wide variety of quantum and classical scenarios can be formalized as observation spaces.

In many cases, the resulting observation space is finite. Section 4 is devoted to quantum
scenarios modeled by finite observation spaces. We solve the grounding problem for a number
of observation spaces. In particular, we address the scenario, studied by Feynman, involv-
ing a spin- 1

2 particle and two components of its spin [12]. The uncertainty principle implies
that these two quantities cannot have definite values simultaneously. So it seems plausible
that an attempt to assign joint probabilities would again, as in Wigner’s case, lead necessarily
to negative probabilities. It turns out that negative probabilities can be avoided in this situ-
ation. Specifically, the groundings for Feynman’s scenario form an infinite family with one
real parameter t, and there is a nonempty real interval [m, M] such that the grounding is non-
negative if and only if m � t � M. We also consider a Feynman-type scenario involving three
independent components of a particle’s spin. There are nonnegative groundings in that sce-
nario as well. We give a general solution for all groundings and for all nonnegative groundings
in that scenario.

The proof of the modeling theorem gives us a general method of modeling quantum scenar-
ios by observation spaces. But, in specific scenarios, e.g. in all scenarios studied in section 4,
modeling can be done more economically and more faithfully.

In section 5, we show that, in contextual situations like that in the Kochen–Specker theorem,
such faithful modeling is impossible.

Wigner’s distribution happens to be the unique signed probability distribution on the phase
space that yields the correct marginal distributions not only for position and momentum but for
all their linear combinations [4]. In other words, it is the unique grounding for the observation
space formed by the distributions of these linear combinations. In section 6, we give a rigorous
proof of that fact.

2. Signed probability distributions

A measurable space is a set Ω together with a σ-algebra of subsets of Ω. Elements of Ω are
sample points, Ω is the sample space and members of the σ-algebra are measurable sets. In
this paper, by default, the sample space is not empty.

Definition 2.1. A signed probability distribution on a measurable space (Ω,Σ) is a real-
valued, countably additive function P on Σ assigning value 1 to Ω. If e ∈ Dom(P), then the
number P(e) is the probability of e. If all probabilities are nonnegative, then P is nonnegative.

�
One may worry whether countable additivity makes sense in signed probability spaces, i.e.,

whetherP(
⋃

nen) =
∑

nP(en) whenever events en are pairwise disjoint. A priori, the sum could
depend on the order of the events. But in fact it does not. Indeed,

∑
{P(en) : P(en) � 0} con-

verges to the probability p of event
⋃
{en : P(en) � 0}, and

∑
{P(en) : P(en) < 0} converges

to the probability q of event
⋃
{en : P(en) < 0}. Accordingly,

∑
nP(en) converges absolutely

to p+ q, and therefore the order of summands is irrelevant.
Many laws of nonnegative probability theory survive the generalization to signed probabil-

ity theory.
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‘Since the formal structure for the distributions is unaltered, it is trivial to show that the
probabilities in the extended theory must for consistency obey the same rules as before,
that is, the addition and multiplication laws’ [[3], p 72].

For example, we can use, in the signed case, the standard definitions of random variable,
expectation, independence, and standard deviation, and we still have

E(aX + bY) = aE(X) + bE(Y),

X, Y are independent =⇒ E(XY) = E(X)E(Y),

σ(aX + b) = |a| · σ(X).

But one should be careful. For example, the following laws fail in the signed case.

P(e) � 1,

(P(e) = 0 and ω ∈ e) ⇒ P(ω) = 0,

(X(ω) � Y(ω)for all sample points ω) ⇒ E(X) � E(Y).

Probabilistic experiments, whether real-world experiments or thought experiments, may
give rise to a signed probability distribution.

Example 1 (Piponi’s thought experiment [22]). A machine produces boxes with pairs
(l, r) of bits. In any run of the experiment, exactly one of the following three tests can be done.

(a) Look through the left window and observe l.
(b) Look through the right window and observe r
(c) Test whether l = r.

Performing these tests repeatedly, you find out that

• in the left window you always see 1,
• in the right window you always see 1,
• the two bits are always different.

This gives rise to a signed probability distribution P on the sample space Ω =
{(l, r) : l, r ∈ {0, 1}}. Let plr = P(l, r), so that

p00 + p01 + p10 + p11 = 1.

The three tests give three additional constraints:

p10 + p11 = 1, p01 + p11 = 1, p01 + p10 = 1.

The unique solution of this system of four linear equations is this:

p00 = −1
2

, p01 = p10 = p11 =
1
2
. �

Piponi’s thought experiment allows one to perform some computations, e.g.,

E(l) = 0 · (−1/2) + 0 · 1/2 + 1 · 1/2 + 1 · 1/2

= (1/2)[−0+ 0 + 1 + 1] = 1 = E(r),

E(l + r) = (1/2)[−0+ 1 + 1 + 2] = 2,
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σ(l) =
√

E[(l − 1)2] =
√

(1/2)[−1+ 1 + 0 + 0] = 0 = σ(r),

σ(l + r) =
√

E[(l + r − 2)2] =
√

(1/2)[−4+ 1 + 1 + 0] =
√
−1.

Note some unusual features of standard deviation. The most glaring is the imaginary standard
deviation of l + r. But there is something else. In nonnegative probability theory, a standard
deviation of zero indicates that the random variable is almost everywhere constant. This still
works for l in the sense that l = 1 on the set {10, 11}whose complement {00, 01} has measure
−1/2 + 1/2 = 0. Similarly r is almost everywhere constant. But it is not the case that l + r
is almost everywhere constant; in signed probability spaces, the union of sets of measure zero
need not have measure zero.

Does Piponi’s thought experiment make any physical sense? Maybe. Perhaps one can
come up with an appropriate real-world quantum experiment involving two qubits and three
projective yes/no measurements.

But physics is not the only prospective application domain for signed probability distri-
butions. Piponi’s experiment may make some sense in social sciences. It may be possible
that

• one party provides overwhelming evidence in favor of a claim L,
• the other party provides overwhelming evidence in favor of an alternative claim R, and
• in all circumstances, exactly one of the two claims is true and the other is false; sometimes

L is true and sometimes R is true.

3. Observation spaces

We introduce a general framework of observation spaces for the sort of situation that arises
in Piponi’s experiment. Certain events and combinations of events are observable and have
probabilities. Other combinations of events cannot be simultaneously observed and need not
have well defined probabilities. It is reasonable to ask whether such combinations can be
assigned probabilities in a way consistent with the given probabilities of observable events.
Our notion of observation space will formalize the picture of simultaneously observable events
and their probability distributions. Our notion of grounding will formalize the hope of consis-
tently assigning probabilities even to combinations of events which are not simultaneously
observable.

Definition 3.1. An observation space is a nonempty set Ω together with nonnegative proba-
bility distributions 〈Pi : i ∈ I〉 with σ-algebras Dom(Pi), subject to the coherence requirement

e ∈ Dom(Pi) ∩ Dom(P j) =⇒ Pi(e) = P j(e). �
Elements of Ω are sample points, subsets of Ω are events, and Ω itself is the underlying

sample space. An event e is observable if it belongs to some Dom(Pi). A family E of events is
coobservable if E ⊆ Dom(Pi) for some i ∈ I.

Piponi’s thought experiment gives rise to an observation space with sample space
{00, 01, 10, 11}and three nonnegative probability distributionsP1,P2,P3 corresponding to the
tests (1)–(3). In addition to ∅ and {00, 01, 10, 11}, the Boolean algebras Dom(P1), Dom(P2)
and Dom(P3) contain complementary atoms

(1) {00, 01}, {10, 11},

(2) {00, 10}, {01, 11},

(3) {00, 11}, {01, 10},
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respectively. Dom(P1) consists of the events that can be observed by looking into the left
window. Dom(P2) and Dom(P3) represent looking into the right window and testing the equal-
ity respectively. An individual outcome, like 01, represents an unobservable combination of
events, namely, looking into the left and the right windows simultaneously (or looking into
one of the windows and testing equality simultaneously).

Definition 3.2. A ground distribution, or grounding, of an observation space(
Ω, 〈Pi : i ∈ I〉

)
is a signed probability distribution P on Ω such that

• Dom(P) is the σ-algebra generated by all of the observable events and
• Every Pi is the restriction of P to Dom(Pi). �
The grounding problem for a given observation space is the problem of characterizing the

groundings for the observation space:

• Is there a grounding? Is there a nonnegative grounding?
• Is the grounding unique?
• What are the general forms of signed groundings and of nonnegative groundings?

The grounding problem is trivial if the given observation space has only one original dis-
tribution. In this case, the original distribution is the unique grounding. But the case of two
original distributions is already nontrivial as we will see in section 4.1.

A wide variety of quantum (and also classical) scenarios can be formalized as observation
spaces. But, in this section, by default, we work with a fixed finite-dimensional Hilbert space
H, so that the spectra of observables are pure point spectra3.

Definition 3.3. A multi-test experiment over H is a pair
(
|ψ〉 ,O

)
where |ψ〉 is a unit vector

in H, and O is a set of self-adjoint operators, called observables, on H, subject to the following
condition.

Simultaneous measurement: If A, B ∈ O commute4, then there is C ∈ O such that
every eigenspace Z of C has the form X ∩ Y where X, Y are eigenspaces of A, B respec-
tively. �

Intuitively, a multi-test experiment is a laboratory experiment or thought experiment where
a source repeatedly produces quantum systems in the specified state |ψ〉, and each time
an observable A, arbitrarily chosen from O, is measured on the system. We call such a
measurement a test; hence the name ‘multi-test experiment’.

If the observables A, B ∈ O commute, then, according to quantum mechanics, we can
measure them simultaneously in |ψ〉. The simultaneous-measurement condition provides an
observable C such that measuring C amounts to measuring A and B together. In that sense,
the condition seems rather natural to us. In particular, the condition is trivially satisfied if O
contains no commuting observables, as will be the case in all four experiments in section 4.

If A is an observable, let EV(A) be the collection of the eigenvalues of A, i.e., the spectrum
of A. For each r ∈ EV(A), let Er(A) be the (maximal) eigenspace of A for eigenvalue r, and let
ES(A) = {Er(A) : r ∈ EV(A)}.

Definition 3.4. An observation space
(
Ω, 〈PA : A ∈ O〉

)
models a multi-test experiment

E =
(
|ψ〉 ,O

)
over H if, for each A ∈ O, there is a map μA : ES(A) → 2Ω such that

3 An alternative restriction, sufficient for our purposes in this section, is that we restrict attention to observables with
pure point spectra.
4 An apparently stronger condition, with more than two commuting observables, easily follows.
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Partition: for every A ∈ O, events αr(A) = μA(Er(A)), where r ∈ EV(A), partition
Ω, and
Correctness: PA(αr(A)) is the probability that, according to quantum mechanics, the
measurement of A in state |ψ〉 exhibits r. �

Theorem 3.5. Every multi-test experiment is modeled by some observation space.

Proof. Consider a multi-test experiment E =
(
|ψ〉 ,O

)
. For every A ∈ O and every

r ∈ EV(A), let pr(A) be the probability that, according to quantum mechanics, the measurement
of A in state |ψ〉 exhibits r.

We construct an observation space S0 =
(
Ω, 〈PA : A ∈ O〉

)
modeling E . Define

Ω =
∏

〈EV(A) : A ∈ O〉 .

For every A ∈ O, let

αr(A) = { f ∈ Ω : f (A) = r} for every r ∈ EV(A),

so that the events 〈αr(A) : r ∈ EV(A)〉 partition Ω. Define PA so that the domain of PA is the
Boolean algebra generated by the atoms αr(A), and each PA(αr(A)) = pr(A).

The required coherence of S0 follows from the claim that, for all indexes A �= B in O, the
intersection Dom(PA) ∩ Dom(PB) contains only the empty set and the whole Ω. To prove the
claim, let e be a nonempty event in Dom(PA) ∩ Dom(PB).

There are nonempty subsets X, Y of EV(A), EV(B) respectively such that

e =
⋃
r∈X

αr(A) =
⋃
s∈Y

αs(B).

Choose any r ∈ X and any f ∈ αr(A) = {g ∈ Ω : g(A) = r}. Change the Bth component of f to
any s ∈ EV(B); the resulting element ofΩ still belongs to αr(A) ⊆ e. It follows that Y = EV(B)
and therefore e = Ω.

This completes the proof of the theorem. �
The observation space S0 constructed in the proof of theorem 3.5 models the given multi-

test experiment E in a perfunctory way. In particular, S0 always has a nonnegative grounding;
just use the product measure on Ω, i.e., make the results of tests probabilistically independent.
Still, the theorem demonstrates the existence of some observation space for E . One does not
have to be a proponent of hidden variables to realize that a grounding of an observation space
for E can be useful in the mathematical analysis of the experiment.

4. Grounding some observation spaces

Given a multi-test experiment E , it is often possible to construct and analyze an observation
space for E which is more succinct than the observation space S0 constructed in the proof of
theorem 3.5 and which models E more faithfully.

We illustrate this point on four examples in subsections 4.1–4.4. The example in section 4.2
is new; the other three examples come from the literature. Notice also that the four-point obser-
vation space for Piponi’s example in section 3 is also more succinct than the correspondingS0,
which would have eight sample points.

Intuitively, the proof of theorem 3.5 takes unfair advantage of the absence, in definition 3.4
of modeling, of any correlation between the maps μA for different observables A. A more
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faithful notion of modeling is provided by the following definition, which correlates the various
maps μA in a meaningful way.

Definition 4.1. An observation space
(
Ω, 〈PA : A ∈ O〉

)
monotonically models a multi-test

experiment E =
(
|ψ〉 ,O

)
over H if it models this experiment via maps μA : ES(A) → 2Ω as in

definition 3.4 and satisfies the following additional requirement.

Monotonicity: if A, B ∈ O commute, X ∈ ES(A), Y ∈ ES(B), and X ⊆ Y, then
μA(X) ⊆ μB(Y). �

The idea behind this definition is this. As in the monotonicity requirement, suppose that
A, B ∈ O commute, and suppose X = Er(A) ⊆ Es(B) = Y . Then observing the value r for A
entails observing the value s for B. So a sample point giving A the value r should also give B
the value s.

The monotonicity requirement is trivially satisfied ifO contains no commuting observables,
as will be the case in all four experiments considered below in this section. But we shall show
in section 5 that some multi-test experiments cannot be monotonically modeled by observation
spaces.

4.1. Feynman’s experiment

Let H = C2 and recall the Pauli operators given by matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

in the computational basis |0〉, |1〉 of H. Each of the Pauli operators P has eigenvalues ±1.
The eigenvectors for +1 and −1 of P are the eigenvectors for eigenvalues 1 and 0 of operator
(I + P)/2 and also eigenvectors for eigenvalues 0 and 1 respectively of operator (I − P)/2; here
I is, as usual, the identity operator. If you measure P in state |ψ〉, the probability of obtaining
+1 in |ψ〉 is

(
1 + 〈P〉

)
/2 and the probability of obtaining −1 in |ψ〉 is

(
1 − 〈P〉

)
/2; here 〈P〉

is, as usual, the expectation of P in state |ψ〉.
For any unit vector |ψ〉 in H, consider a multi-test experiment with two tests in state |ψ〉:

measuring Z and measuring X; this is essentially the experiment studied by Richard Feynman
in [12].

The experiment gives rise to an observation space S with sample space Ω and two
nonnegative probability distributions PZ and PX described below.

Since Z and X have eigenvalues ±1, each run of the Z or X test produces +1 or −1,
and the result may be described by + or − respectively. Accordingly, the sample space
Ω = {++,+−,−+,−−} where the first sign in each pair refers to Z and the second to X.
The domain of PZ is the Boolean algebra of events generated by events

+∗ = {++,+−} and − ∗ = {−+,−−},

and the domain of PX is the Boolean algebra of events generated by events

∗+ = {++,−+} and ∗ − = {+−,−−}.

In a given state |ψ〉, PZ(+∗) = 1
2 (1 + 〈Z〉) and PZ(−∗) = 1

2 (1 − 〈Z〉), while PX(∗+) =
1
2 (1 + 〈X〉) and PX(∗−) = 1

2 (1 − 〈X〉).
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Grounding problem. LetP be an alleged signed ground probability distribution for obser-
vation space S. Using Feynman’s notation, we abbreviate P(++) to f++ and similarly for the
other three sample points +−,−+ and −−. We have

f ++ + f +− = PZ(+∗) =
1
2

(1 + 〈Z〉),

f −+ + f −− = PZ(−∗) =
1
2

(1 − 〈Z〉),

f ++ + f −+ = PX(∗+) =
1
2

(1 + 〈X〉),

f +− + f −− = PX(∗−) =
1
2

(1 − 〈X〉).

There is a redundancy in the equations. For example, the fourth equation is obtained by adding
the first two and subtracting the third. But the first three are independent, so there’s one free
parameter in the general solution. In fact, it is easy to write down the general solution:

f ++ =
1
4

(1 + 〈Z〉+ 〈X〉+ t)

f +− =
1
4

(1 + 〈Z〉 − 〈X〉 − t)

f −+ =
1
4

(1 − 〈Z〉+ 〈X〉 − t)

f −− =
1
4

(1 − 〈Z〉 − 〈X〉+ t),

where t is arbitrary real number.
Feynman considered the solution where t is the expectation 〈Y〉 in the same state |ψ〉 of the

third Pauli operator Y =

(
0 −i

i 0

)
.

A question arises whether there is a nonnegative grounding for S. The answer is affirmative.
For each state |ψ〉, there is a choice of t that makes all four components of f nonnegative.

Indeed, write down the four inequalities f±± � 0 using the formulas above for these f±±’s.
Solve each one for t. You find two lower bounds on t, namely

−1 − 〈Z〉 − 〈X〉 (from f ++ � 0)

−1 + 〈Z〉+ 〈X〉 (from f −− � 0),

and two upper bounds, namely

1 + 〈Z〉 − 〈X〉 (from f +− � 0)

1 − 〈Z〉+ 〈X〉 (from f −+ � 0).

An appropriate t exists if and only if both of the lower bounds are less than or equal to
both of the upper bounds. That gives four inequalities, which simplify to −1 � 〈Z〉 � 1 and
−1 � 〈X〉 � 1. But these are always satisfied, because the eigenvalues of Z and X are ±1.
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Thus, if
m = max

(
−1 − 〈Z〉 − 〈X〉 ,−1 + 〈Z〉+ 〈X〉

)
,

M = min
(
1 + 〈Z〉 − 〈X〉 , 1 − 〈Z〉+ 〈X〉

)
,

then m � M and the general solution above yields a nonnegative grounding for the observation
space S if and only if m � t � M.

4.2. Three-test version of Feynman’s experiment

Again, there is a source that repeatedly produces single qubits, all in the same state |ψ〉, but
this time around there are three tests—X, Y and Z—which can be performed on each of these
qubits. Test X (resp., Y or Z) is measuring the Pauli operator X (resp., Y or Z) in state |ψ〉.

This time around, the sample points of our observation space S are represented by words
of length three in the alphabet {−,+} where the signs in each triple refer to X, Y and Z
respectively. Accordingly, the sample space

Ω = {−−−,−−+,−+−,−++,+−−,+−+,++ −,+++}.

Enumerating these triples in the given lexicographic order, we obtain an alternative represen-
tation Ω = {0, 1, 2, 3, 4, 5, 6, 7}.

The domain of the probability distribution PX, corresponding to test X, is the Boolean alge-
bra generated by two events − ∗ ∗ and + ∗ ∗ where ∗ stands for either + or −, and similarly
for the domains of PY and PZ .

Grounding problem. Let P be an alleged signed ground probability distribution for S.
Abbreviating P(−−−),P(−−+), . . . ,P(+++) to f0, f1, . . . , f7 respectively, and abbre-
viating 〈X〉, 〈Y〉, 〈Z〉 to x, y, z respectively, we have

f 0 + f 1 + f 2 + f 3 = PX(− ∗ ∗) = (1 − x)/2 (1)

f 4 + f 5 + f 6 + f 7 = PX(+ ∗ ∗) = (1 + x)/2 (2)

f 0 + f 1 + f 4 + f 5 = PY(∗ − ∗) = (1 − y)/2 (3)

f 2 + f 3 + f 6 + f 7 = PY(∗+ ∗) = (1 + y)/2 (4)

f 0 + f 2 + f 4 + f 6 = PZ(∗ ∗ −) = (1 − z)/2 (5)

f 1 + f 3 + f 5 + f 7 = PZ(∗ ∗+) = (1 + z)/2. (6)

It is easy to see that this system of six equations is equivalent to the following system of
four equations obtained by removing equations (1), (3) and (5) and adding a new equation (7)

f 0 + f 1 + f 2 + f 3 + f 4 + f 5 + f 6 + f 7 = 1 (7)

f 4 + f 5 + f 6 + f 7 = (1 + x)/2 (2)

f 2 + f 3 + f 6 + f 7 = (1 + y)/2 (4)

f 1 + f 3 + f 5 + f 7 = (1 + z)/2. (6)

10
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Indeed (7) follows from (1) and (2), while (2), (4) and (6) imply (1), (3) and (5) respectively
in the presence of (7).

Viewing f3, f5, f6, f7 as parameters allows us to give a general solution of the grounding
problem:

f 1 = (1 + z)/2 − f 3 − f 5 − f 7

f 2 = (1 + y)/2 − f 3 − f 6 − f 7

f 4 = (1 + x)/2 − f 5 − f 6 − f 7

f 0 = 1 − (1 + x)/2 − (1 + y)/2 − (1 + z)/2 + f 3 + f 5 + f 6 + 2 f 7.

Theorem 4.2. For every state |ψ〉, there is a nonnegative grounding P .

Proof. View the triple (x, y, z) as a point in a three-dimensional real vector space. Since
−1 � x � 1, we have 0 � (1 + x)/2 � 1, and the same holds for y and z. Thus the point

q =
(
(1 + x)/2, (1 + y)/2, (1+ z)/2

)
lies in the cube C with corners

p0 = (0, 0, 0), p1 = (0, 0, 1), p2 = (0, 1, 0), p3 = (0, 1, 1),

p4 = (1, 0, 0), p5 = (1, 0, 1), p6 = (1, 1, 0), p7 = (1, 1, 1).

(In fact, point (x, y, z) lies on the unit sphere around p0, so that point q lies on the sphere of
radius 1/2 inscribed in the cube C, but this is not important for the current proof.)

For each i = 0, 1, . . . , 7, let �pi be the vector from p0 to pi, and let �q be the vector from p0

to q. Since the cube C is the convex closure of the points p0, . . . , p7, there are nonnegative
coefficients f0, . . . , f7 such that

7∑
i=0

f i = 1 and
7∑

i=0

f i�pi = �q. (F)

It is easy that (F) is equivalent to the system of equations (2), (4), (6) and (7). Indeed, if we
project the vector equation in (F) to the three axes, we get

0 f 0 + 0 f 1 + 0 f 2 + 0 f 3 + 1 f 4 + 1 f 5 + 1 f 6 + 1 f 7 = (1 + x)/2

0 f 0 + 0 f 1 + 1 f 2 + 0 f 3 + 0 f 4 + 1 f 5 + 1 f 6 + 1 f 7 = (1 + y)/2

0 f 0 + 1 f 1 + 0 f 2 + 1 f 3 + 0 f 4 + 1 f 5 + 0 f 6 + 1 f 7 = (1 + z)/2. �
The proof gives a four-dimensional polytope of nowhere negative solutions of the grounding

problem. The average of these solutions is also a nowhere negative solution.
An explicit canonical nowhere negative solution of the grounding problem. Recall that each

i ∈ {0, 1, . . . , 7} represents a string aibici in alphabet {−,+}. Define

f i =
1 ± x

2
× 1 ± y

2
× 1 ± z

2

where the signs of x, y and z are ai, bi and ci respectively.

Claim 4.3. Coefficients f i satisfy equations (1)–(6).

11
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Figure 1. The two photons, emitted in state |ψ〉 are analyzed by linear polarizers in
orientations (a) and (b). One can measure the probabilities of single or joint detections
in the output channels of the polarizers.

Proof. By symmetry, it suffices to prove that equations (1) and (2) are satisfied. We
prove (1):(

1 − x
2

1 − y
2

1 − z
2

+
1 − x

2
1 − y

2
1 + z

2

)
+

(
1 − x

2
1 + y

2
1 − z

2
+

1 − x
2

1 + y
2

1 + z
2

)

=

(
1 − x

2
1 − y

2

)
+

(
1 − x

2
1 + y

2

)
=

1 − x
2

.

The intended proof of (2) is similar; just replace 1−x
2 with 1+x

2 above. �

4.3. Schneider’s experiment

We formalize the experiment described in David Schneider’s blog post [23], model it by means
of an observation space, and then analyze the observation space. Schneider’s experiment is a
version of the Einstein–Podolsky–Rosen–Bohm thought experiment [6, 11]. Figure 1, together
with the caption, is from article [2].

In the figure, the two photons are moving along the z axis. The pure state |ψ〉 =(
|00〉+ |11〉

)
/
√

2. The computational basis vectors |0〉 and |1〉 correspond to polarization
in the directions of the x and y axes respectively5.

Proposition 4.4 ([21], section 6.2). If θ is the angle ∠(α, β) between the orientations α
and β of the two polarizers in figure 1, then the outcomes (+1,+1) and (−1,−1), in which the
two measurements give us the same result, have probability 1

2 cos2 θ each, and the outcomes
(+1,−1) and (−1,+1) have probability 1

2 sin2 θ each.

In particular, if α = β then the probability of getting the same result is 1.
Our experiment involves three orientations A, B, C with angles

∠(A, B) = π/4, ∠(B, C) = π/8, ∠(A, C) = 3π/8.

Let Alice and Bob manage the left and the right polarizers respectively. To perform one run
of the experiment, Alice gives her polarizer one of the three orientations, and Bob gives his
polarizer one of the three orientations.

5 For polarization states of photons, the standard basis vectors correspond to vertical and horizontal polarization, in
contrast to spin- 1

2 particles, whose standard basis vectors correspond to spin up and spin down.
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A priori this gives rise to nine tests: (A, A), (A, B), . . . , (C, C). But the three tests where Alice
and Bob choose the same orientation are not very interesting. We are going to ignore the runs
of the experiment with any of the three uninteresting tests. The remaining six tests split into
three groups of dual tests: (A, B) with (B, A), (B, C) with (C, B), and (A, C) with (C, A).

Further, view every pair, (α, β) and (β,α), of dual tests as insignificantly different vari-
ants of one symmetric test where one party chooses orientation α and the other party chooses
orientation β. The symmetric test will be denoted simply αβ where the letters are in the lexi-
cographical order. (So the three symmetric tests are AB, BC and AC.) The outcome (−1,+1) of
the symmetric test αβ means that the party that choseα observed−1 while the party that chose
β observed +1. Similarly, the outcome (+1,−1) means that the party that chose α observed
+1 and the party that chose β observed −1.

There is a natural observation space S that models the experiment. A sample point is a
three-letter word abc in in the alphabet {−,+}. The intention is that a = − (resp. a = +) if
a party choosing orientation A would observe the result −1 (resp. +1). Of course, the same
applies also to b and c. The sample space is

Ω = {−−−, −−+, −+−, −++, +−−, +−+, + +−, +++}.

Enumerating these triples in the given lexicographical order, we obtain an alternative repre-
sentation Ω = {0, 1, 2, 3, 4, 5, 6, 7}.

Test AB gives rise to a probability distribution PAB whose domain is the Boolean algebra of
events generated by the four events

−− ∗ = {− −−, −−+}, −+ ∗ = {−+−, −++},

+− ∗ = {+−−, +−+}, ++ ∗ = {++−, +++}

determined by the values of a and b. Similarly for the other two tests. According to
proposition 4.4,

PAB(−− ∗) = PAB{0, 1} = (1/2)cos2(π/4) = 1/4,

PAB(−+ ∗) = PAB{2, 3} = (1/2) sin2(π/4) = 1/4,

PAB(+− ∗) = PAB{4, 5} = (1/2)sin2(π/4) = 1/4,

PAB(++ ∗) = PAB{6, 7} = (1/2)cos2(π/4) = 1/4,

PBC(∗ − −) = PBC{0, 4} = (1/2)cos2(π/8) = (1/4) + (
√

2/8),

PBC(∗ −+) = PBC{1, 5} = (1/2)sin2(π/8) = (1/4) − (
√

2/8),

PBC(∗+−) = PBC{2, 6} = (1/2)sin2(π/8) = (1/4) − (
√

2/8),

PBC(∗++) = PBC{3, 7} = (1/2)cos2(π/8) = (1/4) + (
√

2/8),

PAC(− ∗ −) = PAC{0, 2} = (1/2)cos2(3π/8) = (1/4) − (
√

2/8),

PAC(− ∗+) = PAC{1, 3} = (1/2)sin2(3π/8) = (1/4) + (
√

2/8),

PAC(+ ∗ −) = PAC{4, 6} = (1/2)sin2(3π/8) = (1/4) + (
√

2/8)

PAC(+ ∗+) = PAC{5, 7} = (1/2)cos2(3π/8) = (1/4) − (
√

2/8).
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The coherence requirement is easy to check. Dom(PAB) ∩ Dom(PAC) is the Boolean algebra
generated by two complementary atoms − ∗ ∗,+ ∗ ∗ determined by the values a. These atoms
should have probability 1/2 with respect to both, PAB and PAC, and they do:

PAB(− ∗ ∗) = PAB{0, 1, 2, 3} = PAC{0, 1, 2, 3}= PAC(− ∗ ∗) = 1/2,

PAB(+ ∗ ∗) = PAB{4, 5, 6, 7} = PAC{4, 5, 6, 7}= PAC(+ ∗ ∗) = 1/2.

The cases of Dom(PAB) ∩ Dom(PBC) and Dom(PAC) ∩ Dom(PBC) are similar.

Proposition 4.5. The groundings for observation space S form a family with one real
parameter, and no grounding is nonnegative.

Proof. Suppose that P is a grounding for S, and let t = P(0). We have

P(1) = 1/4 − t because PAB{0, 1} = 1/4

P(2) = 1/4 − (
√

2/8) − t because PAC{0, 2} = (1/4) − (
√

2/8)

P(3) = (
√

2/8) + t because PAB{2, 3} = 1/4

P(4) = 1/4 + (
√

2/8) − t because PBC{0, 4} = (1/4) + (
√

2/8)

P(5) = −(
√

2/8) + t because PAB{4, 5} = 1/4

P(6) = t because PBC{2, 6} = (1/4) − (
√

2/8)

P(7) = 1/4 − t because PAB{6, 7} = 1/4.

It is easy to check that, for any value of t, P is consistent with PAB, PBC and PAC. For no value
of t is P nonnegative, because

P{2, 5} = (1/4) − (
√

2)/4 < 0. �

4.4. Hardy’s experiment

Lucien Hardy described an interesting approach to non-locality in [15], and David Mer-
min elaborated it in [19]. The following thought experiment is based on an example in [19]
(figure 2).

Two one-qubit particles emerge from a common source heading in opposite directions
toward distant detectors. Alice and Bob manage the left and right detector respectively. Aside
from the passage of the particles from the source to the detectors, there are no connections
between Alice, Bob, and the source. Figure 2 is from [19].

Figure 2.
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Ahead of each run of the experiment, Alice and Bob set their detectors arbitrarily to one of two
modes, indicated by ‘1’ and ‘2’ in the figure. When a particle arrives at a detector, the detector
performs a measurement and exhibits the result. In mode 1, Pauli observable Z is measured,
and in mode 2, Pauli observable X is measured. Initially, the two particles are in the entangled
state.

|ψ〉 = 1√
3

(
|01〉+ |10〉 − |00〉

)
. (11)

Thus we have a four-test experiment E =
(
|ψ〉 , {Z ⊗ Z, Z ⊗ X, X ⊗ Z, X ⊗ X}

)
, performed

jointly by Alice and Bob. The corresponding tests will be denoted ZZ, ZX, XZ and XX.
The initial state is given to us in the computational basis {|00〉 , |01〉 , |10〉 , |11〉}. It will

be convenient to express it in three additional bases. Recall that |+〉 = (|0〉+ |1〉)/
√

2 and
|−〉 = (|0〉 − |1〉)/

√
2, and therefore |0〉 = (|+〉+ |−〉)/

√
2 and |1〉 = (|+〉 − |−〉)/

√
2. We

have
√

3 |ψ〉 = |0〉 (|1〉 − |0〉) + |10〉 = |0〉 (|1〉 − |0〉) + |1〉 (|+〉+ |−〉)/
√

2,

and so, in basis {|0+〉 , |0−〉 , |1+〉 , |1−〉},

|ψ〉 = −
√

2√
3
|0−〉+ 1√

6
|1+〉+ 1√

6
|1−〉 . (12)

By the symmetry of (11),

|ψ〉 = −
√

2√
3
|−0〉+ 1√

6
|+1〉+ 1√

6
|−1〉 . (13)

Finally, in basis {|++〉 , |+−〉 , |−+〉 , |−−〉}, we have

|ψ〉 = 1

2
√

3
|++〉 − 1

2
√

3
|+−〉 − 1

2
√

3
|−+〉 −

√
3

2
|−−〉 . (14)

Next we describe an observation space S, starting with the sample space Ω. In each run of
the experiment, Alice chooses Z or X, and so does Bob. When either of them measures one
of the observables (Z or X), the result of the measurement is either +1 or −1, and (it will be
useful to assume that) the detector exhibits 0 or 1 respectively.

The sample space Ω has 16 a priori possible sample points represented by binary strings

ZAXAZBXB

where ZA, ZB are the symbols exhibited after measuring Z by Alice or Bob respectively, and
XA, XB are the symbols exhibited after measuring X by Alice or Bob respectively.

The four tests give rise to four probability distributions PZZ , PZX, PXZ and PXX. The
domain of each of these distributions consists of the events that can be detected by the cor-
responding test. Each of these four domains is a Boolean algebra of sample points generated
by four atoms. The probabilities are assigned to the atoms in accordance with (11)–(14)
respectively.

Distributions Atoms Probabilities

PZZ 0 ∗ 0∗, 0 ∗ 1∗, 1 ∗ 0∗ , 1 ∗ 1 ∗ 1/3, 1/3, 1/3, 0 (15)
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PZX 0 ∗ ∗0, 0 ∗ ∗1, 1 ∗ ∗0, 1 ∗ ∗1 0, 2/3, 1/6, 1/6 (16)

PXZ ∗ 00∗, ∗01∗, ∗10∗, ∗11 ∗ 0, 1/6, 2/3, 1/6 (17)

PXX
∗0 ∗0, ∗0 ∗ 1, ∗1 ∗ 0, ∗1 ∗ 1 1/12, 1/12, 1/12, 3/4 (18)

Where ∗ means either of the binary digits.
To check the coherence requirement, we examine all six pairwise intersections of our four

domains. Dom(PZZ) ∩ Dom(PXX) = Dom(PZX) ∩ Dom(PXZ) = {∅,Ω}.
Dom(PZZ) ∩ Dom(PZX) is the Boolean algebra generated by two complementary atoms

0 ∗ ∗ ∗ and 1 ∗ ∗ ∗. It suffices to check that one of the two atoms has the same proba-
bility in both distributions. Indeed, we have PZZ(0 ∗ ∗ ∗) = 2/3 = PZX(0 ∗ ∗ ∗). The case
of Dom(PZZ) ∩ Dom(PXZ) is similar. The complementary atoms are ∗ ∗ 0 ∗ and ∗ ∗ 1∗, and
PZZ(∗ ∗ 0∗) = 2/3 = PXZ(∗ ∗ 0∗).

Dom(PZX) ∩ Dom(PXX) is the Boolean algebra generated by two complementary atoms
∗ ∗ ∗0 and ∗ ∗ ∗1. We have PZX(∗ ∗ ∗0) = 1/6 = PXX(∗ ∗ ∗0). The case of Dom(PXZ) ∩
Dom(PXX) is similar. The complementary atoms are ∗0 ∗ ∗ and ∗1 ∗ ∗, and PXZ(∗0 ∗ ∗)
= 1/6 = PXX(∗0 ∗ ∗). The coherence requirement is satisfied.

This completes the definition of observation space S. By (11), the initial state is symmetric
with respect to the two qubits, and therefore the sides of Alice and Bob play symmetric roles.
The transformation

ZAXAZBXB → ZBXBZAXA (19)

is an automorphism of S. We will take advantage of that symmetry later.
By construction,S models E . The maps μZZ , μZX, μXZ , μXX are defined in the obvious way.

For example, the events μZZ(Eab(Z ⊗ Z)) are the atoms a ∗ b∗ of PZZ with probabilities given
by (15); here a, b ∈ {0, 1}.

Finally, we address the grounding problem for the observation space in question. There are
no nonnegativegroundings. Indeed suppose toward a contradiction thatP is such a distribution.
Observe that, thanks to nonnegativity, if an event has probability zero, then so does each point
in it. By (15)–(17), P(ω) = 0 for any sample point ω in 1 ∗ 1∗ or 0 ∗ ∗0 or ∗00∗; call these
points ω idle. The remaining points are

0011, 0101, 0111, 1100, 1101.

By (16), P(1100) = 1/6 because 1100 is the only non-idle point in set 1 ∗ ∗ 0. On the other
hand, by (18), P(1100) = 1/12 because 1100 is the only non-idle point in ∗1 ∗ 0. This gives
the desired contradiction.

Now let us consider the general case where negative probabilities are allowed. The ground-
ing problem reduces to solving a system of linear equations in 16 variables. LetP be an alleged
grounding. To avoid fractions, we deal with variables

v0 = 12P(0000), v1 = 12P(0001), . . . , v14 = 12P(1110), v15 = 12P(1111).

Notice that each subscript of v is the number represented in binary by the corresponding argu-
ment of P . Each of the 16 atoms in (15)–(18) gives rise to a linear equation in four variables:

0 ∗ 0∗ generates v0 + v1 + v4 + v5 = 4

0 ∗ 1∗ generates v2 + v3 + v6 + v7 = 4
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1 ∗ 0∗ generates v8 + v9 + v12 + v13 = 4

1 ∗ 1∗ generates v10 + v11 + v14 + v15 = 0

0 ∗ ∗0 generates v0 + v2 + v4 + v6 = 0

0 ∗ ∗1 generates v1 + v3 + v5 + v7 = 8

1 ∗ ∗0 generates v8 + v10 + v12 + v14 = 2

1 ∗ ∗1 generates v9 + v11 + v13 + v15 = 2 (20)

∗00∗ generates v0 + v1 + v8 + v9 = 0

∗01∗ generates v2 + v3 + v10 + v11 = 2

∗10∗ generates v4 + v5 + v12 + v13 = 8

∗11∗ generates v6 + v7 + v14 + v15 = 2

∗0 ∗ 0 generates v0 + v2 + v8 + v10 = 1

∗0 ∗ 1 generates v1 + v3 + v9 + v11 = 1

∗1 ∗ 0 generates v4 + v6 + v12 + v14 = 1

∗1 ∗ 1 generates v5 + v7 + v13 + v15 = 9.

Any solution of this system of 16 equations with 16 variables determines a grounding for our
observation space. More interesting and relevant groundings are those which conform to the
automorphism (19) which has four fixed points 0000, 0101, 1010, 1111 and pairs the remaining
twelve points as follows:

0001 ↔ 0100, 0010 ↔ 1000, 0011 ↔ 1100,

0110 ↔ 1001, 0111 ↔ 1101, 1011 ↔ 1110.

The conformant groundings give rise to symmetric solutions of system (20), subject to the
following constraints:

v1 = v4, v2 = v8, v3 = v12, v6 = v9, v7 = v13, v11 = v14. (21)

Notice that any solution �v of (20) leads to a symmetric solution. Indeed, let �w be obtained
from �v by swapping the values of the variables vi, v j whenever the equality vi = v j occurs in
(21). Due to the automorphism (19), if �v is a solution for system (20) then so is �w. But the
solutions for (20) form an affine space, and so the average (�v + �w)/2 is a symmetric solution
for (20).

Here we restrict attention to symmetric solutions of (20). The constraints (21) simplify
the problem considerably. 0∗∗0 and ∗00∗ generate the same equation in (20), and so do pairs
(0∗∗1,∗10∗), (1∗∗0,∗01∗), and (1∗∗1,∗11∗). Accordingly, we have 12 equations with 10 variables

(
v0, v1, v2, v3, v5, v6, v7, v10, v11, v15

)
.
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We spare the reader the details of solving this system of linear equations. The general solution
can be given in the following form

(−3, −1, 2, 0, 9, 2, 0, 0, 0, 0)
+ a · (2, −1, −1, 1, 0, 0, 0, 0, 0, 0)
+ b · (0, 1, 0, 0, −2, −1, 1, 0, 0, 0)
+ c · (0, 0, 1, 0, 0, −1, 0, −2, 1, 0)
+ d · (−1, 1, 1, 0, −1, −1, 0, −1, 0, 1)

where a, b, c, d are real parameters.

5. Contextuality and nonnegative groundings

For simplicity, as in sections 3 and 4, we consider finite-dimensional Hilbert spaces, so that
the spectra of observables are pure point spectra. Recall that measuring several commuting
observables produces eigenvalues for a common eigenvector of those observables, in short
simultaneous eigenvalues.

In a hidden-variable theory, measurement outcomes are determined by the values of the
hidden variables and thus exist prior to the measurement. They are merely revealed by
the measurement. It does not matter whether you measure an observable A all by itself
(context 1) or together with another compatible observable B (context 2). In that sense,
hidden-variable theories are non-contextual. By the Kochen–Specker theorem [16], non-
contextual theories cannot reproduce all predictions of quantum mechanics in Hilbert spaces of
dimension �3.

Notice that an observation space S that models a multi-test experiment E =
(
|ψ〉 ,O

)
con-

stitutes a hidden-variable model of E with one hidden variable whose possible values are the
sample points. The partition requirement in the definition of modeling ensures that each sam-
ple point ω assigns a unique eigenvalue to any observable A ∈ O: if ω is in μAEr(A) then it
assigns to A the value r. Accordingly, μAEr(A) is the event that measuring A in the state |ψ〉
produces eigenvalue r.

The correctness requirement assures that the probabilities PA(μAEr(A)) match the predic-
tions of quantum theory.

Definition 5.1. We say that a set O of observables on H is contextual if, for every func-
tion f assigning to each A ∈ O one of its eigenvalues, there are commuting observables
A1, . . . , An ∈ O such that the values fA1, . . . , fAn are not simultaneous eigenvalues of
A1, . . . , An. �

This definition is stricter than some in the literature, but the standard examples of contex-
tuality provide sets O that satisfy our definition of contextuality. Kochen and Specker proved
that, in the three-dimensional Hilbert space, there is a finite contextual set of rank-1 projections
[16]. A simpler example is described in [7] and nicely illustrated in the Wikipedia article [28].
Other simple contextuality examples are described in [19, 20].

For instance, let us indicate how the example in [7] satisfies our definition. That example
involves 18 vectors in C4, forming 9 bases of four vectors each, with each of the 18 vectors in
exactly two of the bases. LetO consist of the 18 projections to the 18 vectors plus an observable
for each base, having the four vectors of the base as eigenvectors for four distinct eigenvalues.
Let f be any function as in definition 5.1. For each of the 9 bases, f picks out one eigenvalue
for the associated observable and thus picks out one of the basis vectors. Since 9 is odd, one
of the 18 vectors, call it v, is chosen from exactly one of the two bases where it occurs. Let A
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be the projection to v. If f(A) = 0, let B be the observable corresponding to the base where f
chose v. Then f(A), f(B) are not simultaneous eigenvalues of A, B. Otherwise, f(A) = 1. In this
case, let B be the observable corresponding to the other base containing v, i.e. where f could
choose v but did not. Again, f(A), f(B) are not simultaneous eigenvalues of A, B. In either case,
we get a witness for the contextuality of O.

Recall the modeling definition 3.4, the notation introduced just before that definition, and
the monotonicity definition 4.1.

Theorem 5.2. Let O be a contextual set of observables. Then no multi-test experiment
E =

(
|ψ〉 ,O

)
can be monotonically modeled by an observation space.

Proof. Suppose, toward a contradiction, that S =
(
Ω, 〈PA : A ∈ O〉

)
is an observation space

that monotonically models E via maps μA : ES(A) → 2Ω.
Fix any sample point ω ∈ Ω. For each A ∈ O and each eigenvalue r of A, let f(A) = r if

ω ∈ μA(Er(A)). By the partition requirement, f is well defined.
Since O is contextual, there are commuting A1, . . . , An in O such that fA1, . . . , fAn are not

simultaneous eigenvalues of A1, . . . , An. For simplicity, we assume n = 2, and we write A, B
for A1, A2. The simultaneous-measurement condition in the definition of multi-test experi-
ment (definition 3.3) provides an observable C ∈ O whose eigenspaces are intersections of
eigenspaces of A and B. In particular, letting c = f(C), we have that Ec(C) = Ea(A) ∩ Eb(B)
for some eigenvalues a of A and b of B.

Since C commutes with A and with B, monotonicity implies that ω, being in μC(Ec(C)), is
also in both μA(Ea(A)) and μB(Eb(B)). That is, f(A) = a and f(B) = b. But (a, b) is a pair
of simultaneous eigenvalues of A and B, witnessed by any eigenvector in Ec(C), and this
contradicts our choice of A and B. �

Remark 5.3. In the preceding proof, if observation spaceS admits a non-negativegrounding
P , the sample point ω might have P(ω) = 0. In such a situation, the partition requirement of
definition 3.4 seems too strong, at least in the case of discrete distributions. Why should an
impossible outcome ω produce well defined values for observables? Fortunately, in that case
(of discrete distributions), we can modify the proof and achieve that the relevant sample point
ω has P(ω) > 0.

By definition, the domain ofP is generated by observable events. Without loss of generality,
we may assume the following.

(a) Every two sample points are distinguished by some observable event.
(b) There are no sample points ω with probability P(ω) = 0.

To achieve (a), for every maximal subset S of Ω of cardinality �2 such that no two points of
S are distinguished by the observable events, merge the points of S into one point of probabil-
ity

∑
ω∈SP(ω). Then, to achieve (b), just discard sample points ω of probability P(ω) = 0.

It is obvious that the reduced observation space still admits a nonnegative grounding and
monotonically models E . As a result, each sample point ω has a positive probability P(ω).

�

6. Wigner’s distribution as a ground distribution

This section can be read independently from all the previous sections. But, even though we
do not mention observation spaces much, the reader will recognize that we deal with ground-
ings for a particular observation space. Contrary to sections 3–5, where we restricted atten-
tion to observables with pure point spectra, here we consider observables of a very different
kind.
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Heisenberg’s uncertainty principle asserts a limit to the precision with which position x and
momentum p of a particle can be known simultaneously. One can know the probability distri-
butions of x and p individually, yet the joint probability distribution with the correct marginal
distributions of x and p makes no physical sense. But maybe such a joint distribution makes
mathematical sense.

In 1932, Eugene Wigner exhibited a joint signed distribution [27] with the correct marginal
distributions of x and p. Some of the values of Wigner’s distribution are negative. ‘But of
course this must not hinder the use of it in calculations as an auxiliary function which obeys
many relations we would expect from such a probability’ [[27], p 751]. Wigner’s ideas indeed
have been used in optical tomography; see [24] for example.

According to [4], Wigner’s distribution is the unique signed probability distribution that
yields the correct marginal distributions for position and momentum and all their linear
combinations. Here we rigorously prove that assertion6. For simplicity we work with one par-
ticle moving in one dimension, but everything we do in this section generalizes in a routine
way to more (distinguishable non-relativistic) particles in more dimensions.

In this context we have to deal with the Hilbert space L2(R) of square integrable functions
f : R→ C where the inner product 〈 f |g〉 is given by the Lebesgue integral∫ ∞

−∞
f ∗(x)g(x)dx.

In the rest of this section, by default, the integrals are from −∞ to ∞.
A state of the particle is given by a unit vector |ψ〉 in L2(R). The position and momentum

are given by Hermitian operators X and P where

(Xψ)(x) = x · ψ(x) and (Pψ)(x) = −i �
dψ
dx

(x)

and � is the (reduced) Planck constant. For any real numbers a, b, not both zero, consider the
Hermitian operator (an observable) Z = aX + bP.

The unbounded operator Z is not defined on the whole state space L2(R). But its domain
clearly includes the space C∞

c (R) of smooth, compactly supported functions on R. For brevity,
we will say that a state |ψ〉 in L2(R) is nice if the function |ψ〉 ∈ C∞

c (R). The restriction of
the operator Z to C∞

c (R) is essentially self-adjoint [[14], proposition 9.40] which is implicitly
used below.

Fix a nice state |ψ〉 and consider an observation space(
R× R,

〈
Pa,b : a, b ∈ R and a2 + b2 �= 0

〉)
(22)

where the domain of any Pa,b consists of sets [ax + bp ∈ E] = {(x, p) : ax + bp ∈ E} ,
wherein E ranges over Borel subsets of R, and Pa,b[ax + bp ∈ E] is the quantum mechani-
cal probability Pψ[aX + bP ∈ E] that the measurement of aX + bP in |ψ〉 produces a value
in E.

To check the consistency requirement, let e = [ax + bp ∈ E] = [a′x + b′p ∈ E′] �= ∅. Pick
any point (x0, p0) ∈ e. Since e = [ax + bp ∈ E], the value c = ax0 + bp0 belongs to E, and
e includes the line L given by equation ax + bp = c. Pick any point (x′, p′) ∈ L. Since
L ⊆ e = [a′x + b′p ∈ E′], the value c′ = a′x′ + b′p′ belongs to E′, and e includes the line L′

6 When we found a simple proof of the assertion, we attempted, in [5], to popularly explain that proof. Here we replace
all hand-waving in our explanation with rigorous mathematical arguments. Fortunately, the proof remains relatively
simple.
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given by equation a′x + b′p = c′ If L′ �= L, then e includes all lines parallel to L′, because
(x′, p′) could be any point on L. Thus e = R2 and 1 = Pa,b(e) = Pa′,b′ (e). If L′ = L, then
a′ = ar, b′ = br, c′ = cr for some r, and E′ = rE, and Pa,b(e) = Pψ[aX + bP ∈ E] =
Pψ[a′ X + b′P ∈ E′] = Pa′,b′ (e).

We restricted the range of the variable E to Borel sets because it is sufficient for our purposes
and because the functional calculus guarantees that, for Borel sets E, the probabilitiesPψ[aX +
bP ∈ E] are well defined [[14], section 6].

Lemma 6.1 ([26]). For any real a, b, not both zero, there is a probability density function
g(z) for Z = aX + bP, so that for every Borel set E

Pψ[Z ∈ E] =
∫

E
g(z)dz.

Proof. If Z is X or P, the claim is well known. Suppose b �= 0. To simplify notation, assume
without loss of generality that b = 1, and let c = −a/� so that Z = −c�X + P. Let U be the
unitary operator f �→ eicx2/2 f over L2(R). For any differentiable function f (x) ∈ L2(R), we
have

(UPU−1) f = −i� · eicx2/2 d
dx

(
e−icx2/2 f

)
= −c�x f − i� f ′

= −c�X f + P f = Z f .

Since Z is the unitary conjugate of P, there is a density function for Z in state |ψ〉 because there
is a density function for P in the nice state U−1 |ψ〉. �

Wigner’s distribution is the signed probability distribution on R2 with the density function

w(x, p) =
1

2π

∫
ψ∗

(
x +

β�

2

)
ψ

(
x − β�

2

)
eiβp dβ. (23)

All values of Wigner’s density functions are real. Indeed, if F(x, p, β) is the integrand in (23),
then

F∗(x, p, β) = ψ

(
x +

β�

2

)
ψ∗

(
x − β�

2

)
e−iβp = F(x, p,−β),

and therefore

w∗(x, p) =
1

2π

∫ ∞

−∞
F∗(x, p, β)dβ =

1
2π

∫ ∞

−∞
F(x, p,−β)dβ = w(x, p).

On the other hand, the values of w(x, p) may be negative.

Theorem 6.2. In every nice state |ψ〉, Wigner’s density function is the unique signed density
function on R2 that yields the correct marginal density functions for all linear combinations
Z = aX + bP where a, b are real numbers, not both zero.

Corollary 6.3. For every nice state |ψ〉, Wigner’s distribution is the unique continuous
grounding on the Borel sets in Ω for the observation space (22).

In the rest of this section, we prove theorem 6.2. Throughout the proof, we use (a, b) to
denote pairs of real numbers not both zero.
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If f(x, p) is a signed probability density function on R2, and z = ax + bp, then the marginal
density function g(z) can be defined thus:

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

1
|b|

∫
f (x,

1
b

(z − ax))dx if b �= 0

1
|a|

∫
f (

1
a

(z − bp), p)dp if a �= 0
(24)

Here’s a justification in the case b �= 0. For any real u � v, the probability that u � z � v
should be ∫ v

u
g(z)dz =

∫∫
u�ax+bp�v

f (x, p) dx dp.

Since p = 1
b (z − ax), we can change variables in the integral, from x, p to x, z. The absolute

value of the Jacobian determinant of this transformation is 1/|b|, so we obtain∫ v

u
g(z)dz =

∫∫
u�ax+bp�v

1
|b| f

(
x,

1
b

(z − ax)

)
dx dz

=

∫ v

u
dz
∫ ∞

−∞

1
|b| f

(
x,

1
b

(z − ax)

)
dx.

Since the first and last expressions coincide for all u � v, we have

g(z) =
1
|b|

∫
f

(
x,

1
b

(z − ax)

)
dx.

Lemma 6.4. For any a, b not both zero, the following claims are equivalent.

(a) g(z) is the marginal probability density function of z = ax + bp.
(b) ĝ(ζ) =

√
2π · f̂ (aζ, bζ) where f̂ and ĝ are ( forward) Fourier transforms of f and g

respectively.

Proof. We assume b �= 0; the case a �= 0 is similar. To prove (a) → (b), suppose (a) and
compare the forward Fourier transforms of g and f :

ĝ(ζ) =
1√
2π

∫
g(z)e−iζz dz

=
1√
2π

∫∫
f

(
x,

1
b

(z − ax)

)
e−iζz 1

|b| dx dz

=
1√
2π

∫∫
f (x, p)e−iζ(ax+bp) dx dp.

Since f̂ (ξ, η) = 1
2π

∫∫
f (x, p)e−i(ξx+ηp) dx dp, we have ĝ(ζ) =

√
2π f̂ (aζ, bζ).

To prove (b) → (a), suppose (b) and use the implication (a) → (b). If h is the marginal
distribution of z = ax + by then ĥ(ζ) =

√
2π · f̂ (aζ, bζ) = ĝ(ζ), and therefore g = h. �

Corollary 6.5. For any real α, β not both zero, f̂ (α, β) = 1√
2π

ĝ(ζ) where g(z) is the
marginal distribution for the linear combination z = ax + bp such that α = aζ, β = bζ for
some ζ .
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Lemma 6.6. For any nice state |ψ〉 and any real numbers α, β, not both zero, we have

〈ψ| e−i(αX+βP) |ψ〉 = eiαβ�/2
∫

ψ∗(y)e−iαyψ(y − β�)dy.

Proof. We want to split the exponential on the left side of this equation into a factor with X
times a factor with P. This is not as easy as it might seem, because X and P don’t commute.
We have, however, two pieces of good luck. First, there is Zassenhaus’s formula [8], which
expresses the exponential of a sum of non-commuting quantities as a product of (infinitely)
many exponentials, beginning with the two that one would expect from the commutative case,
and continuing with exponentials of nested commutators:

eA+B = eA eB e−
1
2 [A,B] . . . ,

where the ‘. . .’ refers to factors involving double and higher commutators.
The second piece of good luck is that [X, P] = i�I, where I is the identity operator. (Below,

we will usually omit writing I explicitly, so we will regard this commutator as the scalar i�.)
Since that commutes with everything, all the higher commutators in Zassenhaus’s formula
vanish, so we can omit the ‘. . .’ from the formula. We have

〈ψ| e−iαX−iβP |ψ〉 = 〈ψ| e−iαX e−iβP eiαβ�/2 |ψ〉 .

The last of the three exponential factors here arose from Zassenhaus’s formula as

−1
2

[−iαX,−iβP] =
1
2
αβ[X, P] = iαβ�/2.

That factor, being a scalar, can be pulled out of the bra-ket:

〈ψ| e−i(αX+βP) |ψ〉 = eiαβ�/2
∫

ψ∗(y)e−iαyψ(y − β�) dy.

�

Finally, we are ready to prove theorem 6.2. Assume that, in a given nice state |ψ〉, a signed
probability density function f(x, p) yields correct marginal density functions for all linear
combinations of position and momentum.

Fix any real a, b not both zero, and let Z be the operator aX + bP and z = ax + bp where
x, p are real variables. By lemma 6.1, there is a probability density function g0(z) for Z. For
any real ζ, we have

1√
2π

ĝ0(ζ) =
1

2π

∫
g0(z)e−iζz dz =

1
2π

〈ψ| e−iζZ |ψ〉 (25)

=
1

2π
〈ψ| e−iζ(aX+bP) |ψ〉 .

Let g(z) be the marginal distribution of f given by formula (24). By the assumption, g coincides
with g0. By corollary 6.5, we have

f̂ (α, β) =
1√
2π

ĝ(ζ) =
1

2π
〈ψ| e−iζ(aX+bP) |ψ〉 . (26)
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By lemma 6.6,

f̂ (α, β) =
eiαβ�/2

2π

∫
ψ∗(y)e−iαyψ(y − β�)dy. (27)

To get f(x, p), apply the (two-dimensional) inverse Fourier transform.

f (x, p) =
1

(2π)2

∫∫∫
ψ∗(y)e−iαy eiαβ�/2ψ(y − β�)eiαx eiβp dy dα dβ.

Collecting the three exponentials that have α in the exponent, and noting that α appears
nowhere else in the integrand, perform the integration over α and get a Dirac delta function:

∫
e−iα

(
y− β�

2 −x
)

dα = 2πδ

(
y − x − β�

2

)
.

That makes the integration over y trivial, and what remains is

f (x, p) =
1

2π

∫
ψ∗

(
x +

β�

2

)
ψ

(
x − β�

2

)
eiβp dβ, (28)

which is Wigner’s signed probability distribution w(x, p).
To check that Wigner’s signed probability distribution yields correct marginal distributions,

note that the derivation of (28) from (26) is reversible. By (26) and (25)

1√
2π

ĝ(ζ) =
1

2π
〈ψ| e−iζ(aX+bP) |ψ〉 = 1√

2π
ĝ0(ζ),

so that ĝ = ĝ0 and therefore g = g0. This completes the proof of theorem 6.2.

7. Conclusion

To address the question what negative probabilities are good for, we introduced observa-
tion spaces and demonstrated that all quantum multi-test experiments can be modeled by
observation spaces and their non-negative groundings.

We also demonstrated that in specific examples modeling can be made more succinct and
faithful. This comes with a price: in some cases negative probabilities are unavoidable in these
groundings. But we agree with Wigner that this fact ‘must not hinder’ the use of negative prob-
abilities in calculations [27]. In fact, Wigner’s distribution, which usually has some negative
values, is widely used in quantum optics.

On the other hand, we showed that a situation proposed by Feynman as an application of
negative probabilities admits a succinct non-negative grounding. This remains true even in an
extended version of Feynman’s example.

We showed that succinct faithful modeling is not universally available. In contextual
situations like those in the Kochen–Specker theorem, such modeling is impossible.

Coming back to Wigner’s distribution, we rigorously proved that this distribution is
uniquely characterized by its marginal distributions of linear combinations of position and
momentum.
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